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Dislocations pinning by substitutional impurities in an

atomic-scale model for the Al(Mg) solid solutions

S. Patinet∗ and L. Proville

CEA, DEN, Service de Recherches de Métallurgie Physique, F-91191 Gif-sur-Yvette,

France

(v1.1 released February 2009)

We report our atomic-scale computations for the static depinning threshold of dislocations in
the Al(Mg) solid solutions. The interaction between the dislocations and the isolated obstacles
is studied for different types of obstacle, i.e., the single solute atoms situated at different posi-
tions and the solute dimers with different bond directions. A part of this work is used to apply
different standard analytical theories for solid solution hardening, the predictions of which are
finally compared with our direct atomic-scale simulations (AS) for the dislocation depinning
in the random Al(Mg) solid solutions. According to our comparisons, the dislocation statistics
in our AS is qualitatively well described by the Mott-Nabarro-Labusch theory. In agreement
with earlier results about a different system, namely Ni(Al), the depinning thresholds are
similar for the edge and for the screw dislocations.

1. Introduction

The origin of the macroscopic yield stress in metals is mainly ascribed to the pin-
ning of dislocations by other extended defects as dislocations and grain boundaries
and other point-like defects. Substitutional alloying elements are among such de-
fects and lead to the well-known phenomenon of solid solution hardening (SSH).
Avoiding the introduction of large inhomogeneities and thence material embrit-
tlement, SSH is a standard process of metallurgy which, in spite of its relative
importance in commercial alloy design and a number of experimental studies [1],
is still difficult to predict accurately. One of the main challenges of the theory is
to predict quantitatively the critical resolved shear stress (CRSS) as a function
of the nature and the concentration of impurities. To take up this challenge, it is
necessary to determine the relevant parameters associated with the SSH and to
understand the role played by the different types of glissile dislocation.
The statistics of a dislocation impinging on a random distribution of obstacles

was shown to depend on the details of the dislocation-obstacle interaction [2–9]. A
dislocation gliding in a solid solution experiences both long-range and short-range
interactions. The former stems from the Coulomb type stress field of the dislocation
meanwhile the latter results from the dislocation core crossing with solute atoms
situated in the vicinity of the glide plane. Although, the long range interaction can
be described remarkably well through the linear elastic theory [10, 11], nearby the
dislocation core such a linear theory is not applicable because of nonlinearity of
the atomic interactions. The problem of the short range interaction can however
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be addressed using three-dimensional atomic-scale simulations (AS) based on the
Embedded Atom Method (EAM) [12–17]. Recently [18], the use of EAM allowed
us to examine the dislocation pinning in a model Ni(Al) solid solution as a function
of the dislocation character. Hereby we extend our study to another face centered
cubic (fcc) alloy, namely Al(Mg) for which the EAM [19] model has been employed
in several atomistic studies bearing on dislocation-solute interactions [20–23]. In-
terestingly, the system Al(Mg) contrasts with Ni(Al) on several physical features
related to SSH theory, e.g., the size and modulus misfit of Mg atoms in Al, the
stacking fault energy and the order energy of the alloy. Thence it is possible to
verify whether the conclusions to which we came in Ni(Al) can be extended to
another fcc solid solution. In the present work we examine the behaviour of the
two glissile dislocation types, i.e., edge and screw in fcc crystals and we address
the reliability of different SSH statistical models.
Our study is divided within two steps. The AS are used primarily to examine

different features of the dislocation cores in the EAM model for pure Al. We deter-
mine the dissociation width, the Shockley partials core spreading and the Peierls
stress. Such quantities are compared with their conventional estimates from the
standard theory of dislocations [24]. The stiffness of the dislocations is then calcu-
lated from AS in order to derive the effective line tension of the different types of
dislocation. The maximum pinning forces and the interaction ranges are computed
for different obstacle configurations such as the isolated Mg solute atoms and the
solute dimers. In the second step of our study, the static AS allow us to compute
the CRSS for an isolated dislocation in a fully random solid solution as a function
of the Mg content, cMg with 2 at. % < cMg < 10 at. %. The main results of the
present work are : (i) the elementary interactions between the dislocations and the
obstacles are found to be of the same order for the edge and the screw dislocations;
(ii) in agreement with (i), the flow stress increase with Mg concentration is of same
order for the edge and for the screw dislocation segments; (iii) the CRSS is found
to follow a fractional power law of the solute concentration cMg close from the
Mott-Nabarro-Labusch theory.
The paper is organized as follows. In Sec. 2, the atomic-scale method and the

geometry of the simulation cell are described. The dislocation core geometry, the
Peierls stress and the line tension are computed for the edge and for the screw
dislocations in a pure Al crystal. In Sec. 3, we analyze the interaction between the
dislocations and the different pinning configurations of Mg solutes. In Sec. 4, the
prediction from the SSH analytical models are discussed in regard of our direct
AS computations for the dislocation depinning threshold. In Sec. 5, the results are
resumed.

2. Atomic-scale model for dislocations

2.1. Simulation technics

The inter-atomic potentials for Al(Mg) were derived in different studies [19, 25, 26].
In the context of the present work, it may be noted that this potential was derived
from adjustment on electronic structure calculations (which is expected to pro-
vide some portability) and on experimental results. Originally, Liu et al. have built
this potential to study the anisotropic surface segregation of Mg atoms for alloy
concentration running from 1 to 10 at. %. The calculated dependence of the lat-
tice parameter as a function of the solute concentration is close to the experiment
value [27]. However, it does not correctly describes the variation of elastic moduli
with Mg concentration. In particular, we found that the decrease of the C44 elastic
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Figure 1. Schematic view of the simulation cell with a dissociated edge dislocation (a) and a screw one
(b). The dislocations interact with Mg obstacles (squares) forming with the periodic images a regularly
spaced chain of obstacles.

constant is overestimated compared to experiments [28] that are confirmed by elec-
tronic structure calculations [29]. The molecular dynamics code used in our study
was developed in the Service de Recherches de Métallurgie Physique laboratory. It
was implemented originally by N. V. Doan [30], then adapted to the problematic of
dislocation by D. Rodney [31] and used specifically in the context of solid solution
hardening by E. Rodary [13] and L. Proville [32]. The current version of the code is
named ADD, standing for Atomic Dislocation Dynamics. The AS cell required to
introduce a dislocation in a nano-crystal has been adapted from the slab geometry
introduced by Rodney and Martin [31] and Osetsky and Bacon [33]. The disloca-
tions glide through the crystal with 2 free surfaces parallel to the glide plane (11̄1)
(see Fig. 1). The edge and screw dislocations have a b = 1/2[110] Burgers vector
and are aligned with the [1̄12] and [110] direction, respectively. Periodic boundary
conditions (PBC) are imposed in the dislocation line, denoted as Y , and in the glide
direction, denoted as X. The Z direction is perpendicular to the glide plane. The
atoms that compose the upper and lower free surfaces of the slab are constrained
to a two-dimensional (2D) dynamics with a frozen motion in the Z direction. The
external shear stress, τxz (τyz) for the edge (screw) dislocation is applied through
additional constant forces on the frozen atoms. Between the constrained free sur-
faces, the cell height is Lz = 15 b. The length along X is Lx = 40 b and 70 b, for
edge and screw dislocation, respectively. The cell length along the Y-axis, denoted
by Ly, will take different values depending on which dislocation length has to be
simulated. Three different types of simulations will be realized: (i) in the rest of
Sec. 2 the simulation cell is made of a pure Al nano-crystal and the dislocation
remains straight; (ii) in Sec. 3 the simulation cell contains an obstacle either made
of an isolated Mg or a dimer with different configurations. In the latter case, the
PBC along Y forms a regular array of obstacles with a separation distance between
nearest obstacles which equals Ly. Varying Ly will allow us to modify the critical
stress required to liberate the dislocation and thence to characterize the pinning
force of each type of obstacle. The dislocation can then form some bows; (iii) in
Sec. 4 the simulation cell is made of an Al(Mg) fully random solid solution. The
Mg solute concentrations are imposed between cMg = 2 at. % and 10 at. %. In
order to capture the statistics of a dislocation impinging on a random distribution
of obstacles, the length along Y is chosen larger than the Larkin length[34], i.e.,
Ly = 520 b and 300 b, for the edge and for the screw dislocations, respectively.
In each case, an over-damped noiseless Langevin dynamics is used to minimize the
total simulation cell enthalpy.[18]
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Figure 2. Normalized disregistry function D (see text) for the dislocation cores projected on the slip plane
in the glide direction, X, for an edge (circle) and a screw (square) dislocation. The symbols correspond to
atomic calculations while the lines are the results of the adjustment of the Peierls-Nabarro equation 1.

2.2. Dislocation core

The dislocation core features are first studied in a pure crystal of Al. After min-
imizing the total energy of the simulation cell, i.e., with no applied stress, the
dislocation is straight and it dissociates into two Shockley partial dislocations, sep-
arated by a stacking fault region, as it is expected in fcc metals [35, 36]. For the
slip system studied here, it is also expected that the Peierls potential is rather
flat and the core of each partial spread over few atomic spacing. The Peierls-
Nabarro (PN) model [24, 37, 38] provides thus a convenient way to parameter-
ize the dislocation geometry. From AS, the dislocation displacement field is com-
puted through the so-called disregistry function, i.e., the displacement difference
D(x) = uabove(x) − ubelow(x) along the glide direction across the (11̄1) slip plane.
The displacement fields uabove(x) and ubelow(x) correspond to the displacement of
the atomic rows situated at x in the planes contiguous to the glide plane above and
below, respectively. The continuous variation of such fields is obtained through the
spline of the discrete atomic row positions. In Fig. 2, the disregistry function has
been plotted for the edge and the screw dislocations. The PN model, accounting
for the formation of partial dislocations reads as follow:

D(x) =
b

2π

[

arctan(
x− d/2

ζ
) + arctan(

x+ d/2

ζ
)

]

+
b

2
, (1)

where b is the Burgers vector of the whole dislocation, ζ the half of the width over
which the partial dislocation core spreads and d is the dissociation distance between
partials. While b is fixed, ζ and d have been adjusted such that the model agrees
satisfactorily with the AS results. In the following, the subscripts e and s indicate
the parameter values associated with edge and screw dislocation, respectively. We
found for the separation distance between partials de = 5.57 b, ds = 2.76 b, and
for the dislocation core widths ζe = 1.2 b and ζs = 0.69 b. Note that although the
potential used in the present work is known to provide a reasonable stacking-fault
energy for Aluminium, it has been shown recently by density-functional theory
calculations [39] that it overestimates the dissociation distance between the two
Shockley partial dislocations. In order to minimize the finite size effects of simu-
lations, Lx and Lz were chosen large enough to obtain a steady dislocation core
geometry, i.e., with negligible variations on d and ζ when Lx or Lz vary.
According to elastic theory of dislocations [24], the dissociation distance d should

be 11.5 Å for the edge dislocation and 5 Å for the screw one. Though such pre-
dictions underestimates stringently the AS results, the ratio between de and ds is
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qualitatively good. The PN model also predicts a ratio ζe/ζs = 1/(1 − ν) = 1.47
where ν is the Poisson’s ratio 1 and in AS, it is found that ζe/ζs = 1.8. The ex-
tensions of the PN model [36, 40] could certainly allow to improve the theoretical
predictions for d and ζ and to get them closer from AS data.
The adjustment of the disregistry function D(x) allows us to compute the position
of the partial dislocations. To such a purpose a standard manner in AS consists
in analyzing the first neighbour shell [13, 18, 31, 32] of each atoms and to retain
only the ensemble of atoms which the first neighbours arrangement differs from
the perfect crystal. With the disregistry function, the location of the leading and
trailing partials are recognized as the maximum of the first derivative of the D(x)
function. This method will also be applied to bowing dislocations after slicing the
crystal perpendicularly to Y-axis and repeating the disregistry function adjustment
in each slice. The advantage of such a method is to provide directly a smooth con-
tinuous profile for the partial dislocations.
Within AS, the straight dislocation starts to move when the applied stress τapp
reaches the Peierls stress τp which for the edge dislocation is found τpe = 1.98 MPa
while for the screw τps = 18.43 MPa.

2.3. Line tension of the model dislocations

The line tension is an important property of dislocations which characterizes their
stiffness along the dislocation line. It enters amongst the input parameters in the
SSH analytical models. Through AS, it is not possible to compute directly the line
tension. Instead the AS can be used to analyze the dislocation shape when it is
anchored on some obstacles. Under a certain applied stress, the dislocation bows
out indicating how stiff is the dislocation. To quantify the line tension, we shall
analyze the dislocation shape given by AS within a harmonic elastic string model,
also dubbed line tension model [41]. The simplest configuration is to consider a
dislocation pinned by a regular array of obstacles, i.e., where the distance between
nearest obstacles is constant. In the AS, because of PBC along Y, the introduction
of a single isolated obstacle allows us to construct such a regular array with a
distance between nearest obstacles fixed by Ly [32].
The anchored configurations of the different dislocations are computed for different
applied stresses. In order to cover a broad range of dislocation configuration, i.e.,
from small to large values of Ly and τapp, we introduce in AS some unshearable
obstacles by freezing the position of two first neighbour atoms that cross the glide
plane. Thence, the dislocation can form large bows (see Fig. 4) when Ly and τapp are
both large or it can be nearly straight when Ly or τapp are small. We assume that
the partial dislocations are tightly bounded and we analyze the mean dislocation
shape by averaging the position of partial segments. This allows us to consider a
single isolated dislocation anchored as represented schematically in Fig. 3 (a). In
the dislocation glide plane, the point O refers to the abscissa of the dislocation
apex and the bowing-out amplitude is h. The applied stress σ yields a Peach-
Koehler force, (σ.~b)× ~ξ giving the force per unit length exerted on the dislocation

segment which the direction is fixed by the unitary vector ~ξ. The Peach-Koehler
force exerted in the glide direction X can be reduced to τb where τ corresponds
to the resolved shear stress parallel to the Burgers vector. A segment of length L
reaches equilibrium when the stress field σ is balanced by a tension Γ~ξ at some point

1The shear modulus is the one for (11̄1) planes µ = (C11 −C12 +C44)/3 while Poisson’s ratio is computed
from the Voigt average ν = (C11 + 4C12 − 2C44)/(2(2C11 + 3C12 + C44)). Within EAM model for Al,
µ = 30.8 GPa and ν = 0.32.
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Figure 3. (a) Schematic view of the forces acting on a bowed-out dislocation between pinning centers. (b)
Amplitude of bowing-out h for the pinned dislocation against the external applied stress τapp, for different
dislocation lengths, Ly. The circle (square) symbols correspond to the simulated edge (screw) dislocation
while the lines are the adjustments of the line tension relation given in equation 3.

along the dislocation line. In order to determine the dislocation equilibrium shape
in the form x = f(y), we assume that the shear stress is constant discarding the
self-stress field of the dislocation and those of periodic images. The Peierls stress
is also assumed to be negligible. Therefore, we can use the classical result that a
pinned dislocation with a constant line tension subjected to a constant stress takes
a circular shape [4, 42, 43]. With the geometry shown in Fig. 3 and the boundary
conditions x(−Ly/2) = x(Ly/2) = 0, the dislocation shape is then given by:

x(y) =
√

R2 − y2 −
√

R2 − (Ly/2)2, (2)

where R = Γ/τappb is the radius of the arc. The maximum amplitude of the dislo-
cation bow is h = x(0) which reads:

h(τapp, Ly) = R−
√

R2 − (Ly/2)2. (3)

The effective line tension of the dislocation is determined by adjusting Γ in Eq. 3 to
find the same amplitude h of the dislocation bending than in AS. The adjustment
of Γ has been carried out for several dislocation configurations, i.e., for different
applied stresses τapp and lengths Ly. It proves to match for all configurations tested,
provided that τp remains small with respect to τapp. For different applied stress and
for different types of dislocation, the dislocation bow amplitudes were reported
in Fig. 3 (b) as symbols for the AS computations and as continuous lines for
the analytical estimate of Eq. 3 computed from the fit of Γ.We point that the
variation of h with τapp is better reproduced if instead of Ly in Eq. 3 we substitute

(Ly − b
√
3) for the edge and (Ly − b) for the screw dislocation. This substitution

accounts for the obstacle width in the distance between the dislocation pinning
centers. In what follows the line tension will be normalized by its classical estimate
given by Nabarro Γ0 = 0.5µb2 [44]. After adjusting Γ as proposed previously, the
line tension predictions for the mean dislocation profile derived from Eq. 3 agree
satisfactorily with AS as shown in Figs. 4 (a) and (b) for the two dislocation
characters. Some small discrepancies can be noticed for the screw dislocation in
Fig. 4 (b) arising from the non-negligible screw Peierls stress. The periodic potential
landscape either pushes or retains locally the screw segments along the dislocation
line according to their positions. The line tension estimated here has therefore to
be considered as an average value over the explored configurations. As expected
from dislocation theory [24], the screw dislocation is found stiffer than the edge
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Figure 4. Comparison of the bow-out obtained by atomic-scale calculation (symbols) and line tension
approximation (lines) given by Eq. 3 for edge (a) and screw (b) dislocations. Note that the scales are not
the same in abscissa and in ordinate so that the dislocation position deviates from a circular shape.

one. Numerically, we obtained Γe = 0.21Γ0 and Γs = 0.94Γ0. One should also note
that for large amplitude of dislocation bows, the effective line tension must diverge
from the current estimates since the interactions between periodic images have
been discarded in the present model.
Vijay et al. in [45] computed the screw dislocation line tension in Al and they
account theoretically for fixed boundary condition in a cylindrical cell which radius
is comparable to the height, Lz, of our simulation cell. They found Γs = 0.84Γ0

which despite very different boundary conditions is close from our one.
The standard analytical expression for the dislocation line tension is also derived
from the elasticity theory [4, 24, 42]. It reads as a function of the angle β between
the Burgers vector and the tangent to the dislocation line:

Γel =
µSBb

2

4π(1− νSB)

[

(1 + νSB)cos
2β + (1− 2νSB) sin

2 β
]

ln(
R

r0
), (4)

where µSB and νSB are the elastic modulus following the Scattergood and Bacon
definition [46] that takes into account the crystal anisotropy 1. In the AS, the upper
cut-off length, denoted by R, corresponds to the distance to the free surfaces, i.e.,
the half-height of the simulation box Lz/2. In order to obtain a line tension approx-
imation as accurate as possible, we calculate Eq. 4 with a core radius estimated
from the dislocation core half-width ζ, as computed previously. Following Hirth
and Lothe in [24], for the edge character roe = 2ζe/ exp (1 + γ) and for the screw
one ros = 2ζs/e where γ = (1− 2ν)/(4(1− ν)). We obtain from Eq. 4: Γe = 0.17Γ0

and Γs = 0.84Γ0 which is found to be in fair agreement with the results yielded
through our previous adjustment procedure.

3. Dislocation obstacle interaction

According to the SSH theory [2–4, 6–8], an obstacle can be characterized by a
maximum pinning force and a finite interaction range, here denoted by fm and
w, respectively. Following the method developed in Ref. [32], these parameters are
determined for different positions of an isolated Mg substitutional atom near the
glide plane and for Mg dimers with different orientations of the Mg-Mg bond. Atoms
of Mg are substituted to atoms of the pure Al crystal in the obstacle geometry that

1Using the sextic theory presented in [24], we found µSB = 31.9 GPa and νSB = 0.34 within the EAM
model for Al.
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Figure 5. The normalized critical stress, τc/µ, versus the normalized inverse distance between pinning
centers along the dislocation line, b/Ly , for Mg atom situated in the vicinity of the glide plane, and
for edge (a) and screw (b) dislocations. According to Eq. 5, the linear interpolations of the critical stress
associated with the leading and trailing partials are represented as continuous lines for the obstacle situated
in the (11̄1) plane just above the glide plane whereas dashed lines correspond to Mg in the (11̄1) plane
just below the glide plane.

we want study. The PBC along the dislocation line yields a chain of regularly spaced
obstacles.

3.1. Maximum pinning forces

The Peach-Kohler force per unit length, τappb applied to the dislocation pushes
it toward the Mg obstacle. The applied stress is incremented by 0.002 MPa and
for each increment the crystal enthalpy minimization is repeated until either it
converges to a required precision or the dislocation starts to glide. The critical
threshold of the applied stress, τc, depends on the distance between the nearest
obstacles, i.e., Ly owing to the PBC along the dislocation line. Actually a mere
balance sheet of forces leads to the relation τappbLy = fm and therefore varying Ly

and computing the corresponding critical stress within AS allows us to determine
the obstacle pinning strength [32].
The previous considerations discard the pure crystal strength. Since in the atomistic
model used here for Al, the dislocation has a non-negligible Peierls stress we must
examine how the pure crystal strength combines with the obstacles. At the critical
threshold, the force total balance sheet yields:

τcbLy = fm + τ effp bLy (5)

where, in the right hand side, one recognizes the pinning strength fm and the effect

of the Peierls potential which we introduce as an effective stress τ effp which depends
on the critical profile of the dislocation and the Peierls landscape. In the limit of
small Ly, the dislocations are nearly straights meaning that we can consider that
the Peierls potential exerts a constant stress along the dislocation line (see appendix
A). To compute the dislocation-obstacle interaction, we thus used simulation cells
with small Ly, ranging from Ly = 8 b to 16 b.
In Fig. 5, the results of the critical stress computed from AS has been reported

for different Ly for both dislocation types and both partial dislocations crossing
an isolated Mg solute. We note that the AS results for short Ly are correctly

reproduced by choosing τ effp as constant in Eq. 5. This allows us to determine fm
in the limit of small Ly. The pinning coefficient, α = fm/µb2, corresponds to the
slop of the linear interpolations of the stress threshold reported in Fig. 5 (a) and
(b) for different types of obstacle. Our results for the pinning strength associated
with each partial dislocation have been reported in Tab. 1 with same notations as
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in Ref. [18]. In Tab. 1 the single obstacle denoted by (a) corresponds to an isolated
Mg placed in the (11̄1) plane situated just above the glide plane and (b) is for a
Mg which participates to the (11̄1) plane just below the glide plane.
From Tab. 1, we found that the pinning strength depends on the position above
or below the glide plane and which partial is concerned as well. Such a feature is
thought to stem from the nonlinearity of the atom interactions. The anharmonicity
enhances the pinning strength in the compressive regions by contrast to the tensile
regions where the pinning strength is smaller.
This trend has been noticed for both edge and screw dislocations. The pinning
strengths of edge dislocation are found to be larger for Mg situated above the
glide plane ((a) in Tab. 1), i.e., the compressive regions in our simulation cell,
than those below ((b) in Tab. 1). In agreement, for the screw type, in which the
compressive region alternate for each partial according to the direction of the edge
component of the Shockley partial Burgers vector, the trailing (leading) partial for
Mg situated above (below) is anchored more strongly than the leading (trailing)
partial for which the pinning coefficient even vanishes.
So far we have studied the anchoring forces of isolated solute atoms however,

in a solid solution of few atomic percent, solutes are no longer isolated and often
form clusters. In their experimental work on copper alloys Wille et al. [47] deduced
the density of the discrete glide barriers. They put arguments forward that mainly
doublets and triplets of solutes represent the effective glide barriers in the solid so-
lution. The existence of a distribution of barrier strengths was revealed. This seems
to be reasonable because not only single solute atoms but also pairs, triplets and
multiplets of solutes can behave as different obstacles. Anisotropic barriers such
simple solute pairs will interact with dislocations with a strength depending on the
mutual orientation of both dislocation and obstacle. The question of whether small
clusters can play a role in SSH was addressed by AS in Ni(Al) [32] and Fe(Cu) [16].
It was shown that the strongest pairs which may be relevant to describe the SSH
rate differ from each alloys. In order to question again these features for Al(Mg)
system as well as to evolve toward a higher-scale model that will permit analysis of
the SSH at high Mg concentration, a systematic study of the dislocations/dimers
interaction was performed. The pinning strengths of the Mg dimers have been cal-
culated with distances between Mg atoms that correspond to first ((n-p) in Tab.1),
second ((k-m) in Tab.1) and some of the third neighbour ((i-j’) in Tab.1). Either
the dislocation interacts with pre-existing Mg dimers referred to as (c-h) in Tab.1
or else the dislocation passage modifies the Mg-Mg bond crossing the glide plane
(i-p) in Tab.1. For the non-crossing pairs, the (c-e) and (f-h) configurations corre-
spond to the planar dimer situated above and below the glide plane, respectively.
The interaction parameters for Mg pairs reported in Tab. 1 show a wide scatter
depending on the obstacle configuration and of the partial dislocation considered.
We will discuss in more detailed way their scaling relations in subsection 3.3.

3.2. Interaction range

To compute the interaction ranges the variation of the internal energy of the nano-
crystal is recorded during a simulation with a constant applied stress fixed to the
critical threshold that corresponds to the type of obstacle present in the simulation
cell. For both dislocation characters, such energy variation has been reported in
Figs. 6 (a) and (b) for an isolated Mg situated in the nearest (11̄1), either below or
above the glide plane. The internal energy is computed from the sum of the atomic
potential energy in the course of the enthalpy minimization procedure. During the
interaction between a dislocation and a solute atom calculated via an over-damped
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Table 1. Summary of different pinning obstacles for both the leading (subscript l) and the trailing partials

(subscript t) of the edge and screw dislocations, the bond orientation of the pair, their pinning force α

normalized by µb2, and their interaction range w.

Edge Screw
Nature Text pair αl and wl αt and wt αl and wl αt and wt

ref. orientation

Single (a) 0.0103/5.11b 0.0086/2.16b 0.0000/0.b 0.0102/1.81b
(b) 0.0020/0.24b 0.0064/3.69b 0.0073/2.96b 0.0028/2.38b

1st neighbor (c) [011] 0.0170/4.72b 0.0159/2.65b 0.0000/0.b 0.0228/1.74b
Noncrossing (d) [101̄] 0.0177/5.29b 0.0158/1.95b 0.0000/0.b 0.0224/1.61b
pair (e) [110] 0.0128/5.31b 0.0129/2.15b 0.0000/0.b 0.0228/1.54b

(f) [011] 0.0000/0.b 0.0103/3.94b 0.0080/1.48b 0.0051/2.87b
(g) [101̄] 0.0000/0.b 0.0122/3.66b 0.0081/1.63b 0.0060/2.83b
(h) [110] 0.0000/0.b 0.0082/4.18b 0.0152/1.96b 0.0086/2.27b

3rd neighbor (i) [721] 0.0062/0.74b 0.0139/2.83b 0.0138/0.69b 0.0026/1.21b
Crossing pair (j) [211] 0.0038/0.95b 0.0112/0.95b

(j’) [271̄] 0.0062/1.75b 0.0145/2.11b
2nd neighbor (k) [212] 0.0100/1.06b 0.0099/2.96b 0.0045/0.68b 0.0110/0.60b
Crossing pair (l) [1̄2̄2] 0.0102/1.87b 0.0103/1.86b 0.0064/0.98b 0.0062/0.85b

(m) [22̄1̄] 0.0064/0.98b 0.0025/1.83b
1st neighbor (n) [41̄1] 0.0067/2.18b 0.0120/2.59b 0.0043/1.06b 0.0119/0.61b
Crossing pair (o) [11̄4] 0.0061/1.06b 0.0086/2.93b 0.0054/0.68b 0.0141/1.09b

(p) [14̄1] 0.0065/1.15b 0.0106/1.83b 0.0032/0.84b 0.0033/0.94b

noiseless Langevin dynamics, the total energy of the system can be decomposed
into three parts: the elastic energy, the line energy and the energy of dislocation-
solute interaction. As the applied stress is constant, the energy variation shown
in Figs. 6 is due solely to the line and the interaction terms. The former is how-
ever negligible for the short dislocation segment simulated here. Figs. 6 represents
the energy landscape felt by a dislocation during the crossing of an obstacle. An
important point of this procedure is to choose a friction in the atomic equation
of motion well above the work due to the applied stress so that it does not cause
heating.
In Fig. 6 (a), for an Mg atom situated above the glide plane, the potential energy
shows two peaks that correspond to the successive passage of the two partials on
the obstacle. The same is also noticed for the screw dislocation and for different
positions of the solute atom. By contrast, for an Mg atom situated below the glide
plane, the interaction with the edge dislocation can no longer be separated in two
distinct contributions but the interaction spreads over the whole sacking fault rib-
bon. It is worth noticing that the interaction potential is not symmetric for an
obstacle ahead and behind the partials, mainly because of the stacking fault re-
gion.
Even though the shape of the interaction potential involves nonlinear atomic in-
teractions, the interaction can be qualitatively understood in terms of the linear
elastic theory of dislocations. As reported in Fig. 6 (a), an isolated solute situated
above the glide plane repeals edge dislocation whereas the same Mg atom below
acts as an attractive obstacle. Hence, it seems reasonable that hydrostatic stress
field dominates the interaction since Mg solute behaves as a dilatation center in Al
matrix. The same explanation holds for the screw dislocation in Fig. 6 (b) where
tensile and compressive regions alternate following the edge part of the Shockley
partial Burgers vectors. The internal energy is derived with respect to the average
position of the dislocation. In Figs. 7 (a) and (b), such quantity which corresponds
to the internal force of the crystal has been plotted against the mean dislocation
position. A negative value means that the dislocation is pushed forward while a
positive one corresponds to a force that retains the dislocation. Many different
maxima appears along a same curve indicating that for a given type of obstacle
different pinning configurations are possible and may contribute to anchor the dis-
location in a complete solid solution. In Figs. 7 (a) and (b), our estimate of the
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Figure 6. Internal energy of the simulation box versus the average position of the edge (a) and the screw
(b) dislocation core. The simulation box contains a single obstacle formed by one isolated Mg solute atom
situated either in the plane above the glide plane (full line) or the plane below the glide plane (dashed
line).
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Figure 7. Internal force versus dislocation average position: the derivative of the internal energy of figure
6 for an edge (a) and a screw (b) dislocation. The full and dashed lines correspond to obstacles formed by
one isolated Mg solute atom situated in the plane above (see w(a) in Tab. 1) and below (see w(b) in Tab.
1) the glide plane, respectively.

interaction extent is exemplified. The range of interaction is estimated from the
distance which separates the maximum of the force and the nearest position for
which the force vanishes. Our results for the interaction ranges have been reported
in Tab. 1 with same notations as in Ref. [18].
We obtain some interaction ranges in average larger for the edge dislocation than
for the screw one. The interaction extent, computed for the non-crossing pairs
((c-h) in Tab. 1) are roughly equal to the range of the isolated solutes while the
one of crossing pairs is smaller ((i-p) in Tab. 1). We examine how connect these
pair interaction ranges with some physical core features of dislocations in the next
subsection.

3.3. Scaling relations for the dimer interaction parameters

In order to identify the origin of the differences in SSH between Al(Mg) and Ni(Al)
alloys, it is of some interest to compare the dimer pinning strength in Al(Mg) with
those in Ni(Al) as the ordering energy of the latter is much higher and indicates
the possibility of an important chemical effect [48]. In fact, a dislocation shearing
a cluster by a Burgers vector shifts the solutes on either side of the slip plane,
which can lead solutes in a configuration less favourable energetically increasing
their pinning strengths. This is the case of alloys with a significant short-range
order. In the Ni(Al) alloy and through solute pair interactions, this effect has been
invoked in [13, 32] to tentatively explain the nearly linear CRSS against the solute
concentration. The comparison of the dislocation pinning strength of pairs could
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Figure 8. (a) Average pinning coefficient of solute dimers as a function of the linear combination of the
pinning strength of two isolated solutes which the superimposition corresponds to the dimer. The solute
dimers that cross the slip plane are represented by full symbols while open symbols are used for those
that do not cross the slip plane. (b) Normalized interaction range averaged over all the obstacle geometries
against the normalized dislocation core widths for both dislocation segments edge and screw. The results
for two different fcc alloys are presented: Mg solutes in Al (present work) and Al solutes in Ni from Ref.
[18, 32]. In each graph the straight dashed line represents equality between abscissa and ordinate.

then provide us some hint on how such chemical effect could modify the hardening
mechanism in the different alloys. To perform this comparison we use the data
relative to the dimer-dislocation interactions in Ni(Al) from Ref. [18, 32].
As in Ni(Al), the pinning strengths and the interaction ranges of Al(Mg) pairs

reported in Tab. 1 span on a wide spectrum of values making difficult to iden-
tify clearly some trends concerning the solute pairs effect. To rationalize the be-
haviour of dimers, we compare their pinning strengths with the ones of isolated
solute atoms. We compute the average pinning coefficient of solute pairs, ᾱpair,
and the corresponding linear combination of the isolated solute pinning coeffi-
cients,

∑

αsingle. For instance, the average pinning coefficient for first neighbour
pairs situated above the slip plane is compared with the twice of the pinning coef-
ficient for a single solute situated above the slip plane. For each partial dislocation
in both alloys and for edge and screw dislocations we thus compare:

ᾱ1st neighbour noncrossing pair above with 2αsingle above,

ᾱ1st neighbour noncrossing pair below with 2αsingle below,

ᾱcrossing pair with αsingle above + αsingle below.

(6)

The results of this comparison are shown in Fig. 8 (a). In both model alloys and
for both dislocation characters, we observe a fairly good correlation between the
average pair coefficients and their description in terms of isolated solute linear
combination. On average, the strongest pairs are merely formed by solutes that
have the largest pinning strengths in agreement with Ref. [16]. The largest pinning
strengths are found in both alloys for the noncrossing pairs located in the compres-
sive stress fields of dislocations. This result reflects the effect previously described
for isolated solute atoms for which the pinning strength magnitude differences can
be mainly attributed to the anharmonic effect.
On Fig. 8 (a), it is worthy to note that there is no apparent difference between
noncrossing (open symbols) and crossing pairs (full symbols) even for the Ni(Al)
alloy where the chemical effect is expected to have some influence. Such a result
points the lack of clear chemical strengthening effect at least if we reason in terms
of maximum pinning strength of obstacle, following the analytical models.
A second essential parameter used in the formulation of SSH analytical models

is the interaction range of obstacles. For obstacles formed by dimers of solute
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atoms, these ranges show a deviation from the classical estimate equal to b as
reported in Tab. 1. As for the pinning coefficients, we observe a broad range of
w, distributed around a typical value of 2b. We note that the interaction ranges
associated with the edge dislocations is on average greater than that for screw
dislocations. Similarly, for the same character of dislocation, they are larger
in Ni(Al) than in Al(Mg). To understand these trends, we choose to think in
terms of average ranges, W . For each dislocation type in both alloys, we define
the average range as W =

∑n
i=1 wi/n where the sum is performed on all the n

obstacle configurations. As we study the interaction between dislocations and
obstacles located in the vicinity of the slip plane, we choose to compare W
with the dislocation core widths 2ζ computed in Sec. 2 since the variation of
the internal energy is expected to arise mainly from the dislocation core-solute
interactions. The comparison between these two quantities is plotted on Fig.
8 and shows a satisfactory correlation. The fact that this correlation is ob-
served for the edge and screw dislocations in both alloys seems to indicate that
the dislocation core width is a relevant physical parameter to describe a typi-
cal length scale for the dislocation-solute interactions in the dislocation glide plane.

Despite some scatters, the present work shows that there is no significant dif-
ference between the solute pair interaction parameters in Ni(Al) and Al(Mg). In
both model solid solutions, the pinning forces and the interaction ranges of dimers
follow in average the same scaling relations. The dimer pinning forces are found
to derive on average from the linear superposition of the isolated solute force and
the dislocation pinning is found to have a short range contribution related to the
extent of Shockley partials. Such a result emphasizes that the mere consideration
of the input parameters of SSH analytical models, even extended for the dimers, is
not sufficient to distinguish a priori the SSH rates in Ni(Al) and Al(Mg). We thus
expect that the CRSS of both alloys increases similarly with the solute concentra-
tion.

4. Solid solution hardening statistics

We now address directly the SSH by computing the CRSS of a dislocation in the
solid solutions with different concentrations. We perform some static AS for the
edge and the screw dislocation gliding in a Al(Mg) random solid solution and we
derive from the statistical study of such AS the CRSS as a function of Mg contents.
The AS allow us to test the predictions from the analytical SSH theories in which
the impurities are assumed to be randomly distributed in the glide plane. For the
two dislocation characters, we compare our results with those obtained in Ni(Al)
[18, 32].

4.1. Molecular static computation of the solid solution pinning strength

In order to calculate the CRSS of a solid solution, we replicate the methodology
developed in [32] for the edge dislocation gliding in some random Ni(Al) solid
solutions. These static simulations are similar to those implemented for determining
the pinning force of a single obstacle. Once the dislocation is introduced into the
crystal, we substitute randomly the Al atoms of the matrix by Mg solute atoms to
achieve the desired concentration. The distribution of solute atoms is completely
random and, at the end of the substitution process, the probability of finding a
solute atom on an atomic site is equal to the Mg concentration, cMg. The lattice
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Figure 9. Variation of the critical resolved shear stress (CRSS), τc, for an edge dislocation (a) and for a
screw dislocation (b) against the Mg concentration, cMg, computed from the atomic-scale simulations (AS)
with different Mg random distributions (symbols). The error bars correspond to the standard deviation.
The estimations made from the analytical models (see Tab. 2) have also been reported: Fleischer-Friedel [3]
(dotted line), Mott-Nabarro-Labusch [51] (dot-dashed line), Friedel-Mott-Suzuki [4] (full line) and Butt-
Feltham [6] (dashed line).

parameter varies with the solute concentration following Vegard’s law. After an
initial relaxation of the potential energy of the system, we apply a stress on the
crystal surfaces by increments of 4 MPa. After each stress increment, the enthalpy
of the system is relaxed until the dislocation encounters a stable position or glides
in the solid solution. The flow stress decreases with the length of the dislocation
line. It converges toward an asymptotic flow stress of which dispersion is much
larger than its variation with Ly. To reach this asymptotic behaviour we simulate
extended dislocation segments up to Ly = 520b for the edge and Ly = 300b for
the screw dislocations. The dislocation crosses several times the simulation box
owing to the PBC in the glide direction. At each passage, the dislocation shears
the crystal by one Burgers vector creating a new configuration of solute atoms.
We therefore simulate the equivalent of a dislocation gliding in an extended solid
solution with random solute distribution.
For a certain stress level, the dislocation no longer encounters stable configurations
during its pseudo-dynamic and moves freely in the alloy. This stress corresponds
to the calculation of the critical flow stress, τc. However its level depends on the
distance travelled by the dislocation. Indeed, the longer is the dislocation travel the
higher is the probability to encounter a pinning configuration.[49, 50] We choose

a glide distance at least equal to 1000 Å. The CRSS is then considered as the
stress required for the dislocation to glide over this distance, corresponding to the
order of magnitude of one tenth of the average distance between dislocations in an
annealed polycristal. The applied stress increases sharply at the beginning of the
glide and quickly reaches a plateau near the CRSS. In practice, the stress does not
increase for a glide distance larger than 500 Å, equivalent to about 5 simulation
box lengths.
We study the variation of τc for the two types of dislocation as a function of

the solute concentration for an atomic concentration ranging from cMg = 2 at.%
to 10 at. %. The CRSS increases with cMg because of the increased density of
obstacles. Unlike the calculations for the interaction between a dislocation and an
isolated obstacle giving us τc deterministically, the SSH simulations require several
realizations. For each concentration τc is calculated from an average over a sampling
of five simulations. The CRSS of the Al(Mg) solid solution are reported for the edge
and screw dislocations in Fig. 9 (a) and (b), respectively. The average flow stress as
a function of concentration is monotonic and smooth. This variation is greater than
the standard deviation of the flow stress (see error bars on Fig. 9) except for the
screw dislocation at the highest concentration. Using the Peierls stress τp calculated
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Table 2. Summary of solid solution hardening (SSH) analytical models reviewed in [18]. The critical resolved shear

stress (CRSS), τc, is expressed as a function of the line tension, Γ, the pinning strength, fm, the interaction range,

w, the solute concentration, c, the Burgers vector, b, and the atomic surface in the (11̄1) dislocation slip planes, s.

Model: Fleischer-Friedel [3] Mott-Nabarro-Labusch [51] Friedel-Mott-Suzuki [4] Butt-Feltham [6]

τc :
f3/2
m

√
c

b
√
2sΓ

(

c22wf4

m

b3s2Γ

)1/3
fmwc
sb

4fmw
√
c

3b3

in Sec. 2, the phenomenological equation τc = τp + AcrMg has been used to fit the

CRSS computed from AS. The exponent that provides the best fit is r ' 2/3 for
the edge dislocation and r ' 4/5 for the screw dislocation. This result contrasts
with the one obtained in [18, 32] for Ni(Al) alloy which showed an almost linear
dependence on concentration with r close from unity for both dislocation types.
However, as in Ni(Al), the AS show that the pinning strength is of same order
for the screw dislocations and for the edge ones, in agreement with the pinning
strengths of isolated obstacles computed in Sec. 3. Even though we subtract the
Peierls stress to keep only the hardening effect of solutes, the screw dislocation
CRSS is at least twice smaller than τc of the edge dislocation. It is a remarkable
result because it confirms that the screw dislocations undergo a significant pinning
in the solid solution as already found in Ni(Al)[18].

4.2. Comparison between analytical models and atomic-scale simulations

The previous AS for the random solid solution correspond to the theoretical frame-
work of the SSH analytical models (see Tab. 2). The latter assume actually a per-
fectly random distribution of impurities at zero temperature which is also the case
in our simulations. The parameters of the different models, i.e., Γ, fm and w have
been determined through AS in Sec. 2 and 3.
Following our previous work [18], we adapt the analytical models to the fcc solid
solution where the dislocations are dissociated into 2 partial dislocations. As the
models apply to an undissociated dislocation, we assume that the partial dislo-
cations are tightly bounded. Moreover, the different models usually derived for a
square lattice assumes an atomic area in the slip plane equal to b2. In our sys-
tem, this quantity is changed to s = b2

√
3/2, i.e., the atomic surface in the (11̄1)

dislocation slip planes. The effective obstacle concentration corresponds to 4cMg

in order to take into account all the interactions of both partial dislocations with
the single solutes above and below the slip plane. In the derivation of the Mott-
Nabarro-Labusch model, the solutes above and below the slip plane are already
taken into account. In this particular case we must replace cMg by 2cMg.
The analytical models consider a single type of obstacle, thought of as an average
obstacle which would lie in the glide plane, disregarding the long range interac-
tions between the dislocation and the solute atoms. The manner how the average
obstacle is computed from the different atomic configurations is not stipulated in
the SSH theories. We saw in Sec. 2 and Sec. 3 that an important contribution to
the pinning strength stems from the obstacles situated in the (11̄1) planes that
bound the glide plane. Only the latter are considered in our estimation for the
strength and the interaction range that characterize the average obstacle. As pre-
viously mentioned, there are four possible interactions between a dislocation and
an isolated solute atom in accordance with its position and the partial dislocation
with which it interacts. To consistently compare the predictions of our AS with
the SSH models, the input parameters are determined from the average of the iso-
lated atoms interaction parameters (see obstacles (a) and (b) in Tab. 1). We get
an average pinning coefficient ᾱe = 0.0068, ᾱs = 0.005 and an average interaction
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range w̄e = 2.8b, w̄s = 1.8b for a single Mg solute atom situated in one (11̄1) plane
adjacent to the slip plane.
From the equations reported in Tab. 2, we plot in Fig. 9 the CRSS as a function

of the Mg concentration for the four SSH models. For both dislocation types the
Fleischer-Friedel (FF) model predicts the smallest flow stress. The predictions
from the Mott-Nabarro-Labusch (MNL) model are larger and those from the
Mott-Friedel-Suzuki (FMS) model and the Butt-Feltham (BF) model still larger.
Figure 9 shows that the BF and the FMS theories overestimate the CRSS whereas
MNL and FF theories underestimate it. In the Al(Mg) model solid solution studied
here, it seems that the MNL theory gives the best agreement with respect to our
AS for both dislocation types. However we observe that the agreement between
the MNL theory and the AS simulations is only qualitative. At high concentration,
the CRSS of the screw dislocation is particularly underestimated due to a
concentration exponent, r, larger than the one predicted in the MNL theory equal
to 2/3. Note that the dispersion of flow stress is well below the differences between
the predictions given by the different models. This justifies our method to com-
pare the evolution of flow stress calculated from simulations and analytical theories.

The purpose of this study is not to predict what would be the solution hardening
of the real Al(Mg) alloy, though we can expect it to be close to our atomistic
results, but rather to test the analytical models available. The atomistic simulations
are considered as a reference which the analytical model should reproduce to be
relevant for our typical system. If the MNL theory provides a fairly good description
of SSH in Al(Mg) it is not the case for Ni(Al) where the best theoretical description
is given by the FMS theory [18]. The comparison between the calculated CRSS in
AS and the one computed from the analytical models with no adjustable parameters
shows that it is necessary to change the model as a function of the fcc alloy which is
concerned. As a consequence, we are in an unsatisfactory situation where we choose
a posteriori the appropriate model to describe the SSH, being unable to justify this
choice. Such a result points the absence of a robust model able to quantitatively
describe the SSH in fcc metals with different physical properties. Furthermore,
as previously shown in the study bearing on dislocation-dimer interactions, the
chemical order effect can hardly be invoked to explain alone the different SSH
rates observed in Ni(Al) and Al(Mg). It therefore seems necessary to enrich the
analytical models and their input parameters in order to achieve a quantitative
description of SSH.

5. Summary and conclusions

The AS presented here show that in the Al(Mg) solid solutions the edge and the
screw dislocations experiment similar pinning strengths. This agrees with an earlier
work about the Ni(Al) solid solutions.[18] According to our informal discussions
with G. Saada and D. Rodney, this result would explain why the microstructures
in fcc solid solutions are isotropic, i.e., with an equivalent proportion of edge and
screw dislocations [52].
From the elementary interactions computed at the atomic-scale, we have deter-

mined the input parameters required in the analytical theories for SSH. We have
then compared the CRSS predictions from the different theories with the atomic-
scale simulations where a nano-crystal of random solid solution with different con-
centrations is crossed by a single dislocation. In the Al(Mg) solid solutions studied
here, the MNL theory describes qualitatively the variation of the CRSS with the
Mg solute concentration. This result contrasts with our previous work about Ni(Al)
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solid solutions for which the FMS model reproduced satisfactorily the AS. The two
models differ stringently on the CRSS rate against the solute concentration with
an effective CRSS concentration exponent r ' 2/3 in the former while r ' 1 in the
latter. A comprehensive study of the pinning strength and of the interaction range
associated with the different types of obstacle shows that this difference between
the two systems is certainly not associated with the solute dimers alone, as it was
proposed by one of us (LP) in [32]. Indeed, in the two systems, the pinning forces
behave roughly as a linear combination of the strengths of individual solutes. The
present study allows us to emphasize the absence of a robust analytical model, able
to predict quantitatively the SSH in fcc alloys. Alongside this analytical work, an
extended version of the line tension model has been proposed in order to account
for the dissociation of the dislocations and for the different types of obstacle [53].
The principle of such a model have already been applied successfully to different
problems [41, 54] in dislocation physics.
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Appendix A. Association of Peierls stress and obstacle forces for large Ly

In Fig. A1 we consider the case of an Mg atom situated in the plane just above the
glide plane in interaction with a screw dislocation for large Ly. For a metal with

negligible τp, a linear relationship between τc
µ and b

Ly
would have been obtained.

Here for the screw dislocation in Al it is clearly not the case and, in the region of
very large inter-obstacle distance, the results of simulations deviate from the linear
Eq. 5. Note however that the AS results for short Ly are correctly reproduced

by choosing a constant τ effp close to the lattice resistance τp. This allows us to
determine fm in the limit of small Ly via Eq. 5 as we did in section 3.1. In this
appendix, we propose to take into account the dislocation shape and the Peierls
stress in Eq. 5 in order to render more accurate the model in the range of large Ly.
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Figure A1. Normalized critical stress (square), τc/µ, that needs a screw dislocation to overcome an iso-
lated Mg solute atom situated in the (11̄1) plane just above the glide plane (see α(a) in Tab.1) versus the
normalized inverse distance between pinning centers along the dislocation line, b/Ly . The critical stresses
are computed under various assumptions regarding dislocation pinned shapes given by Eq. 2. A: flat dislo-
cation (dashed line), B: large bending (dot-dashed line) and C: small bending (continuous line) accounting
for the effective Peierls stress.

For large Ly, τ
eff
p depends on the critical profile of the dislocation and on the

Peierls stress. For a dislocation which crosses few Peierls valleys, the critical con-
figuration may have a larger segment on the ascent (descent) of the Peierls hills,

Page 18 of 37

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

November 19, 2010 14:20 Philosophical Magazine DraftPatinet3

REFERENCES 19

thereby increasing (decreasing) τc in Eq. 5. One can expect 0 < τ effp < τp where the
two bounds correspond to the two limiting cases, i.e., the depinning of a dislocation
crossing several Peierls valleys or a straight dislocation retained by the maximum
Peierls stress. We assume that the Peierls barrier can be roughly approximated
by a mere cosine function as V (x) = −τpba

′ cos (2πa′
[x+ φ])/2π where φ is a phase

shift and a′ is the repeat distance in the slip plane in the direction normal to the
dislocation. In the present case, a′e = b/2 for the edge dislocation and a′s =

√
3b/2

for the screw one. The physical reason for introducing a phase shift is that the
minimum of the interaction potential between the dislocation and the solute atom

does not necessary corresponds to a Peierls trough. In Eq. 5, τ effp results from the
sum of crystal resistance along the curved dislocation:

τ effp =

∫ Ly/2

−Ly/2
τpb sin (

2π

a′
[x(y, τ) + φ]dy, (A1)

where the dislocation mean profile x(y, τ) is determined by Eq. 2. The com-
putation of the integral A1 is realized numerically. φ is adjusted so that Eq.
5 reproduces τc for the shortest Ly in the case of a straight dislocation, i.e.,
with x(y) = 0. The phase shift is then kept constant to calculate τc for other
Ly. The critical threshold is determined as a function of Ly by finding the
maximum τc that balances the equilibrium Eq. 5. In Fig. A1, the computation of
τc has been reported following three different approximations depending on the
dislocation critical shape: a straight line with x(y) = 0 (model A), a large bending

given by x(y, τc) (model B) and a small bending given by x(y, τc−τ effp ) (model C).

Model A: As discussed above, for large Ly, the AS results deviate from a
linear relationship. The assumption of a straight dislocation leading to a linear

relationship and to a constant τ effp slightly overestimates τc calculated from AS.
Model B: For large Ly and for τc comparable with τp, the solution x(y, τc)
overestimates the dislocation bending since the effect of τp on the dislocation
shape have been disregarded in Eq. 2. Notably, this function gives dislocation
shapes which fully go into the next Peierls valleys. According to the comparison
with AS computations in Fig. A1, this model seems irrelevant since a dislocation
crossing several Peierls valleys yields to τc → 0 as Ly → ∞.
Model C: The effect of τp on the dislocation shape is tentatively taken into

account by subtracting τ effp to τc in Eq. 2. Despite this crude assumption of a
constant effective Peierls stress along the dislocation, it is clear from Fig. A1 that
the computation of τc through the model C provides a satisfactory estimate in
comparison with the AS results. We emphasize that no adjustable parameters are
introduced in the final form of τc since τp, φ and fm have been computed from
independent simulations.

The importance of this correction increases as the crystal Peierls stress. It thus
remains small for the edge dislocation. On the other hand, the same approach could
present some interest in body-centered cubic alloy for which the screw Peierls stress
can be much larger than in fcc alloys.
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Schematic view of the simulation cell with a dissociated edge dislocation (a) and a screw one (b). 

The dislocations interact with Mg obstacles (squares) forming with the periodic images a regularly 
spaced chain of obstacles.  
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Normalized disregistry function D (see text) for the dislocation cores projected on 
the slip plane in the glide direction, X, for an edge (circle) and a screw (square) dislocation. The 
symbols correspond to atomic calculations while the lines are the results of the adjustment of the 

Peierls-Nabarro equation 1.  
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Schematic view of the forces acting on a bowed-out dislocation between pinning centers.  
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Amplitude of bowing-out $h$ for the pinned dislocation against the external applied stress 
$\tau_{\textrm app}$, for different dislocation lengths, $Ly$. The circle (square) symbols 

correspond to the simulated edge (screw) dislocation while the lines are the adjustments of the line 
tension relation given in equation 5.  
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Comparison of the bow-out obtained by atomic-scale calculation (symbols) and line tension 
approximation (lines) given by Eq. 6 for edge (a) and screw (b) dislocations.  
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The normalized critical stress versus the normalized inverse distance between pinning centers along 
the dislocation line for Mg atom situated in the vicinity of the glide plane, and for edge (a) and 

screw (b) dislocations. According to Eq. 8, the linear interpolations of the critical stress associated 
with the leading and trailing partials are represented as continuous lines for the obstacle situated in 
the plane just above the glide plane whereas dashed lines correspond to Mg in the plane just below 

the glide plane.  
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Internal energy of the simulation box versus the average position of the edge (a) and the screw (b) 
dislocation core. The simulation box contains a single obstacle formed by one isolated Mg solute 

atom situated either in the plane above the glide plane (full line) or the plane below the glide plane 
(dashed line).  
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Internal force versus dislocation average position: the derivative of the internal energy of figure 6 
for an edge (a) and a screw (b) dislocation. The full and dashed lines correspond to obstacles 

formed by one isolated Mg solute atom situated in the plane above (see w(a) in Tab.1) and below 
(see w(b) in Tab. 1) the glide plane, respectively.  
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Average pinning coefficient of solute dimers as a function of the linear combination of the pinning 
strength of two isolated solutes which the superimposition corresponds to the dimer. The solute 
dimers that cross the slip plane are represented by full symbols while open symbols are used for 

those that do not cross the slip plane.  
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Normalized interaction range averaged over all the obstacle geometries against the normalized 
dislocation core widths for both dislocation segments edge and screw. The results for two different 
fcc alloys are presented: Mg solutes in Al (present work) and Al solutes in Ni from Ref.  [18, 35]  
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Variation of the critical resolved shear stress (CRSS)  for an edge dislocation (a) and for a screw 
dislocation (b) against the Mg concentration, cMg, computed from the atomic-scale simulations (AS) 
with different Mg random distributions (symbols). The estimations made from the analytical models 
(see Tab. 2) have also been reported: Fleischer-Friedel  (dotted line), Mott-Nabarro-Labusch (dot-

dashed line), Friedel-Mott-Suzuki  (full line) and Butt-Feltham (dashed line).  
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Normalized critical stress (square) that needs a screw dislocation to overcome an isolated Mg solute 
atom situated in the plane just above the glide plane versus the normalized inverse distance 

between pinning centers along the dislocation line. The critical stresses are computed under various 
assumptions regarding dislocation pinned shapes. A: flat dislocation (dashed line), B: large bending 
(dot-dashed line) and C: small bending (continuous line) accounting for the effective Peierls stress.  
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