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Abstract

We present a new strategy for RANSAC sampling named BetaSAC, in reference to

the beta distribution. Our proposed sampler builds a hypothesis set incrementally, select-

ing data points conditional on the previous data selected for the set. Such a sampling is

shown to provide more suitable samples in terms of inlier ratio but also of consistency

and potential to lead to an accurate parameters estimation. The algorithm is presented

as a general framework, easily implemented and able to exploit any kind of prior infor-

mation on the potential of a sample. As with PROSAC, BetaSAC converges towards

RANSAC in the worst case. The benefits of the method are demonstrated on the homog-

raphy estimation problem.

1 Introduction

RANSAC (RANdom Sample Consensus) [4] is a non-deterministic algorithm for the esti-

mation of a mathematical model from observed data which contains outliers. It is essentially

composed of two steps that are repeated iteratively.

• Hypothesize. A sample of size m among the N data points is randomly selected.

The model parameters are computed from this sample. m is the smallest sufficient

cardinality to determine the model parameters.

• Test. The hypothesis is verified against the rest of the data by counting the points

consistent with the estimated model parametrization.

These two phases are repeated until the probability of finding a better solution falls below a

pre-selected threshold. The number of necessary iterations increases very fast with the outlier

ratio and the model complexity m. Many evolutions of RANSAC have been proposed over

the last thirty years. In the following section, we evoke the most important improvements of

the hypotheses generation (sampling process). Then, we present our own proposed sampler.
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2 Non-uniform sampling

Numerous methods have been derived from RANSAC. Many of them change the sampling

to be faster. In this section, we distinguish between two types of non-uniform sampling:

biased sampling and reordered sampling.

2.1 Biased Sampling

Biasing the sampling can accelerate RANSAC by reducing the necessary number of itera-

tions. The bias is usually based on additional information giving an a priori on the correct-

ness of a datum.

Guided-MLESAC [12] uses prior probabilities of the validities of the data. Data points

having a high inlier probability are more likely to be selected to form minimal hypothesis

sets. Other methods use the results of the past iterations as an additional source of infor-

mation. This is the case of BaySAC and SimSAC [1] which select the hypothesis set the

most likely to be correct, conditional on the knowledge of those that have failed to lead to a

good model. NAPSAC (N Adjacent Points SAC [9]) uses heuristics that an inlier tends to be

closer to other inliers than outliers.

2.2 Reordered Sampling

A biased sampling has the risk of impairing the search if the information that is used is not

a good a priori or if the randomization is insufficient. Some methods overcome this risk by

limiting the guidance to a reordering of the generated samples. Thus, with a minimum of

hypothesis on the information used to guide sample drawing, PROSAC [2] and GroupSAC

[10] ensure not to be worse than a random selection. During the first TN iterations, samples

are generated beginning with the most probable and finishing by the least probable. After this

phase, each sample has had the same chance of being formed (property P1), but the samples

considered better are more likely to be drawn earlier (property P2). Then, the sampling is

uniform. Choosing TN as the average number of iterations needed by RANSAC to find a

good model ensures an identical worst-case behavior. As RANSAC methods stop as soon as

a good enough model is found, this reordered sampling has a good chance to lead to an early

stop. In this section, we unify these methods under a common framework, and we introduce

our own sampling strategy.

Let D = {d1, . . . ,dN} be a set of N data points and m the number of points needed to

estimate the model parameters. Equation 1 defines a random variable in D , depending on the

forming minimal sample s (|s|< m) and the iteration counter t. During the first TN iterations,

the selection is guided by X(t,s). Then, for t > TN , it is uniform, as in standard RANSAC. We

write dU{1,...,N} , the random variable returning dk with k drawn by the uniform random variable

U{1,...,N}. We deduce in Equation 2, a random variable in the space of minimal samples Dm.

To avoid the use of hypergeometric distributions, we make the common assumption that a

selection is done with replacement.

D(t,s) =

{
X(t,s), t ≤ TN

dU{1,...,N} , t > TN
(1)

S(t,m) = {s1 = D(t,{ /0}),s2 = D(t,{s1}), . . . ,sm = D(t,{s1, ...,sm−1}) } (2)



MELER et al.: BETASAC: A NEW CONDITIONAL SAMPLING FOR RANSAC 3

1 2 3 4

data point

selected data point

hypothesis

additional information

Figure 1: Different types of inlier samples for the line fitting problem. 1) inlier sample (all

sample points belong to a line). 2) consistent sample. 3) sample consistent with additional

information. 4) suitable sample. Thanks to its conditional sampling, BetaSAC is able to

generate suitable samples earlier than RANSAC and PROSAC would do.

BetaSAC and its inspiring methods [2, 4, 10] all differ essentially by the selection random

variable X(t,s). In standard RANSAC (Equation 3), the selection is uniform even for t ≤ TN .

In PROSAC (Equation 4), d(k) stands for the kth data point in a sorting. This sorting is

performed once and for all, based on an inlier prior associated to each data point. g(t)
is a growth function which limits a uniform selection in a progressively larger set of top

ranked data points. GroupSAC (Equation 5) makes a uniform selection in a configuration

defined as a union of predefined data groups G (t) = {Gi}i=1...k. As demonstrated by the

authors, configurations with fewer groups are more likely to give an all-inlier sample and are

therefor examined earlier. Our proposed sampling strategy (Equation 6) strongly depends

on the forming sample s. The realization of a random variable, Bi|s|(t)/n, gives the rank of

the selected datum in a sorting depending on s, written (.)s . We will detail in Section 4 the

constant n, the function i|s|(t) and the random variable Bi|s|(t)/n.

XRANSAC(t,s) = dU{1,...,N} (3)

XPROSAC(t,s) =

{
d(g(t)) if |s|= 0

d(U{1,...,g(t)−1}) otherwise
(4)

XGroupSAC(t,s) = dUG (t)
(5)

XBetaSAC(t,s) = d(Bi|s|(t)/n)s
(6)

We write E the expected value of a random variable and q(s) the a priori quality of a

sample s. Equation 7 is a reformulation of the properties P1 (each sample has the same

chance of being formed) and P2 (the ones considered better are more likely to be drawn

earlier) in the proposed framework.

P1 : E

[
TN

∑
t=1

(S(t,m) = s)

]

=
TN

Nm
, ∀s ∈D

m

P2 : t ≤ t ′ ⇒ E [q(S(t,m))]≥ E
[
q(S(t ′,m))

]

(7)

3 A New Conditional Selection

In this paper, we introduce an approach for a data point selection conditioned on the points

previously selected for the current hypothesis set. Contrary to previous methods, BetaSAC

does not assume that inlier probabilities of data points are independent. Breaking the inde-

pendence hypothesis allows the algorithm to generate samples having more potential. We

distinguish between four types of samples: inlier samples, consistent samples, samples con-

sistent with additional information and suitable samples. The last three require a conditional
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sampling to be generated. Figure 1 is a graphical exemplification of them.

{
inlier

samples

}

⊃
{

consistent

samples

}

⊃
{

samples consistent with

additional information

}

⊃
{

suitable

samples

}

⊃

independence dependence

Inlier samples are defined as samples containing only inlier data points. Most of the

guided sampling methods concentrate on generating inlier samples, which do not involve a

dependence on the data points. This is what PROSAC [2] does by using the matching score.

However, in presence of multiple model parametrizations in the data, an inlier sample has a

good chance of containing data from different ones, leading to an incorrect hypothesis.

Consistent samples are inlier samples passing some consistency constraints. Many kind

of such constraints have been studied. For the epipolar geometry estimation problem, many

of them come from oriented projective geometry [6, 11, 13]. In a similar manner, Zelnik-

Manor et al. [14] show that all relative homographies of a pair of planes across multiple

views spans an only 4-dimensional linear subspace. Other heuristics can be used as an a

priori consistency of a sample. NAPSAC (N Adjacent Points SAC) [9] uses the observation

that an inlier tends to be closer to other inliers than outliers.

Samples that are consistent with additional information have even more potential. A use-

ful and always available additional information in computer vision is the image signal itself.

This information is often underexploited while, as shown in Figure 2, it can be very useful

for distinguishing between inliers and outliers. GroupSAC [10] demonstrates how a selec-

tion depending on a segmentation of the image can be advantageous. Cues on the searched

parameters may also come from previous image frames, motion sensors or approximative

calibration.

Suitable samples are the type of samples one wants to generate. They are samples able

to lead to an accurate estimation of the target parametrization(s). In particular, they must

not be degenerate. Many degeneracy criteria have been studied for the problem of epipolar

geometry estimation. Such criteria are usually used to reject bad samples a posteriori [3, 5].

Suitable samples may also be less affected by the inevitable measurement noise. Towards

this goal, a sample spanning a big area is often preferable.

BetaSAC offers a conditional sampling which is able to generate more suitable samples

than pure random would do during the first iterations. The only hypothesis required is that

suitable samples can be built by successive data point selections.

4 Algorithm

4.1 The Selection Random Variable

BetaSAC is characterized by its random variable XBetaSAC(t,s) defined in Equation 6, where s

is the partial minimal hypothesis set, being built at iteration t. XBetaSAC(t,s) is the result of the

selection of the kth data point in a sorting depending on s, where k is a value in {1, . . . ,N}
drawn by the random variable Bil(t)/n. In previous section, we have presented many cues

usable to define a ranking of the data points with respect to a given sample s. In this section,

we define the random variable Bil(t)/n.
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Figure 2: Measured probability for the kth ranked data point to be an inlier when the ranking

is done with respect to a sample made of one inlier point. The task is homography esti-

mation and the ranking criterion is the distance between affine matrices associated to the

correspondences (see Equation 17 for details). We use the affine invariant feature detector

of Mikolajczyk and Schmid [8] and the SIFT descriptor [7]. Left: compared images. Right:

plots resulting of the 3 comparisons ➀→ ➁, ➀→ ➂ and ➀→ ➃. One can observe that top

ranked correspondences are much more likely to be inliers.

Bil(t)/n must allow to pick a data point in a desired region of the sorting. The first itera-

tions must draw top ranked data points while respecting P1 which ensure that each sample

has had the same chance of being drawn after TN iterations. Finding such random variables

is easy. We retained a subfamily of the beta probability law. The general beta distribution

of shape parameters (α,β ) is defined by the density function of Equation 8, with Beta(α,β )
the beta function defined in Equation 9.

fBeta(x; α, β ) =
1

Beta(α,β )
xα−1(1− x)β−1 (8)

Beta(α,β ) =
∫ 1

0
tα−1(1− t)β−1 dt (9)

The probability density function fBil (t)/n
of our random variable is defined from the beta

distribution on Equation 10 and plotted Figure 3.

fBil (t)/n
(x) =

1

N−1
fBeta(

x−1

N−1
; il(t) , n− il(t)+1 ) (10)

The parameter n is a constant in N
∗ and il(t) moves in {1, . . . ,n} over the iterations.

Their values will be discussed in Section 4.2.

The reasons why we chose the beta distribution are multiple. The first and most im-

portant is that it does not require a complete sorting of the data for a given sample s. This

rare property makes the additional computational cost of our sampling procedure negligible.

Furthermore, it is trivial to simulate and makes P1 and P2 easy to reach.

Simulation of the random variable. The beta distribution is the distribution of the order

statistics of a random sample from the uniform distribution. That makes it easy to simulate.

Given an iteration count t, a draw of a complete sample s of size m with our conditional

random variable is presented in Algorithm 1.

With the use of a linear selection algorithm for step 5, the computational complexity of

this sampling procedure is only O(m.n).
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n = 5

k

n
N−1

0
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fB1/5

fB2/5 fB3/5

fB4/5

fB5/5

n = 10

k

n
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0
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Figure 3: Probability density functions of the n random variables Bi/n, i ∈ {1, . . . ,n} for

n = 5 (left) and n = 10 (right). Darkest densities correspond to lowest values of i. With

a good ranking criterion, the first data points are the more likely to be inliers. Thus, Bi/n

selects more often inliers than pure random would do for small values of i.

Algorithm 1 Complete sample generation (one draw by S(t,m))

1: s←{ /0}
2: for l = 0 to m−1 do

3: Select n data points at pure random

4: Rank the n data points with respect to s

5: Find d, the il(t)
th among the n data points in the ranking

6: s← s∪d

7: end for

4.2 The Sampling Strategy

Each BetaSAC iteration starts with the computation of a selection vector [i0(t), . . . , im−1(t)],
as a function of the iteration counter t. We call these vectors the sampling strategy. In

this section, we design the sampling strategy in such a way that properties P1 and P2 of

Equation 7 are satisfied. As the randomization is assured by Bil(t)/n even for deterministic

values of il(t), il(t) can be randomized or not. However, we consider the general case of a

discrete random variable in {1, . . . ,n}.
Because the density of the uniform selection fU[1,N]

is identifiable with our random vari-

able as follows:
1

n

n

∑
i=1

fBi/n
= fU[1,N]

(11)

we have convenient sufficient conditions (a) and (b) on il(t) to ensure P1:

∀( j, j′) ∈ {1, . . . ,n}2, ∀(l, l′) ∈ {0, . . . ,m−1}2,

(a)
TN

∑
t=1

P(il(t) = j) =
TN

n
(equiprobability)

(b) l 6= l′ ⇒
TN

∑
t=1

P(il(t) = j)).P(il′(t) = j′)) =
TN

n2
(uncorrelation)

(12)

P2 involve a sample quality function q. There exists no general optimal function without

stronger hypothesis on the s-conditioned sorting (.)s. But we present a family of functions
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qp, p ∈ N
∗ which are a natural generalization of PROSAC a priori sample quality. Let ~rs =

[r1, . . . ,rm] be the vector of the ranks of the selected data points in a sample s of size m (~rs is

the m realizations of the random variables Bi0(t)/n, . . . ,Bim−1(t)/n ):

s = {s1 = d(r1){ /0} ,s2 = d(r2){s1}
, . . . ,sm = d(rm){s1,...,sm−1}

}

The quality function qp is defined as the opposite of the p-norm of the ranks vector:

qp(s) =−‖~rs‖p =− p

√
m

∑
l=1

r
p
l (13)

This definition of q has the advantage of allowing a reformulation of P2 in terms of sum

of the well known moments of the beta distribution (Equation 14, where symbol f (t)∼ g(t)
indicates the existence of an increasing function h such as f = h◦g).

E [qp(S(t,m))]∼−
m−1

∑
l=0

E

[

B
p

il(t)/n

]

∼−
m−1

∑
l=0

n

∑
j=1

P(il(t) = j)
p

∏
k=1

j + k−1

︸ ︷︷ ︸

def
= Ep ({il(t)}l=0...m−1)

P2 : t ≤ t ′ ⇒ Ep ({il(t)}l=0...m−1)≤ Ep

(
{il(t ′)}l=0...m−1

)

(14)

The best value for p depends on the quality of the sorting. If the sorting is supposed

perfect (the inlier data are top ranked), the best strategy is to minimize the maximum rank

in the sample. Thus, the maximum norm must be chosen (p = ∞). But in the case of a poor

sampling criterion, a sample containing many low rank values must be considered better than

an other with many high ranks, even if its maximum rank is greater. So, a lower value of p

can be used. Our experience shows that p = 3 is often close to the optimum. Note that for

(n, p) = (∞,∞), the sampling procedure becomes the same as PROSAC one. This is feasible

in practice but n = ∞ would require a complete sorting of the data at each selection.

Now we have a convenient reformulation of P1 and P2 (Equation 12 and 14), we can

define the function il(t) we use. Let u1(t), . . . ,um(t) be the m digits of ⌊ t
TN

nm⌋ in base n.

il(t) defined as follows:

il(t) = ul( f (t))+1, ∀l ∈ {0, . . . ,m−1} (15)

clearly satisfies properties (a) and (b) of Equation 12, for any permutation f of {1, . . . ,TN}.
The permutation f must be chosen in a way satisfying P2. f can be precomputed using any

sorting algorithm or computed online by means of the fast marching method as described in

Figure 4.

Choice of n. A key point is that n has not to be set as a function of the number of data

points N. It’s optimal value depends on the problem complexity (mainly the inlier ratio and

the number of different model parametrizations present in the data).

Let σBi/n
be the standard deviation of Bi/n (Equation 16). The value of σBi/n

determines

the accuracy of the selection localization in the ranking. It depends directly on n. A complex

problem requires an accurate selection as only a thin range of (hopefully) top ranked data are

inliers.

σBi/n
=

1

n+1

√

i(n− i+1)

n+2
(16)
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t

Figure 4: Ordering of the selection vectors [i0(t), . . . , im−1(t)] as a function of

Ep({i0(t), . . . , im−1(t)}) using the fast marching method (FMM), for m = 3, n = 3 and p = 3.

For any fixed i, σBi/n
is asymptotically equivalent to

√
i

n
as n increases. Thus, n must be

set proportionally to the inverse of the ratio of data points that would complete properly a

sample. For most typical computer vision problems, 10 is a sufficient value of n.

5 Results

5.1 Results on Simulated Data

In Section 3 we present many prior information on the potential of a sample. Here, we

evaluate the ability of our sampling algorithm to take this information into account.

We build three theoretical ranking results (as those presented Figure 2). The first is

perfect (the data best completing the sample are top ranked). The second is better than

random but imperfect (a suitable data point is more likely to be top ranked). The third is

purely random (suitable data points are randomly scattered in the ranking). For each one

of these ranking qualities, we measure the probability of drawing a suitable sample with

S(t,m) during the guided iterations (t ∈ {1, . . . ,TN}). Figure 5 shows that a ranking better

than random leads to a high ratio of suitable samples in the first iterations of BetaSAC. In

case of random ranking, BetaSAC sampler behaves exactly as the standard RANSAC one.

5.2 Results on Real Data

In this section we demonstrate the potential of our proposed conditional sampling on the

problem of homography estimation between two images (sample size m is 4). As we evaluate

the sampling only, we use pairs of images with known ground truth and we stop when a

model matching with 95% of the inliers is found. Each hypothesis is verified against all

data.

The use of BetaSAC requires the definition of a scoring function q. We used two different

functions. The first, qmatching(d), is simply the matching score of the correspondence d. This

is the function used in PROSAC. Let Pd , P′d and Ad be two end points and the associated

affine matrix of a correspondence d obtained with an affine invariant key point detector (we

used [8]). Given a partial hypothesis set s = {s1, . . . ,s|s|} and for any correspondence d, the

second scoring function, qa f f ine(d,s), is defined in Equation 17. As it depends on s, it could

not be used in the PROSAC framework. Figure 2 shows results of correspondence rankings
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r

1

1
2

0
1 N

r 7→ P(d(r)s suitable| s suitable )

Perfect ranking
Imperfect ranking
Random ranking

[
1111

] [
2311

] [
2322

] [
2411

] [
3313
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1423
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4232

] [
4411

] [
2442

] [
4432

] [
4444

]

t

1

0
1 TN

t 7→ P( S(t,m) suitable )

Figure 5: Probability of generating a suitable sample during the iterations of BetaSAC with

rankings of different qualities (perfect, imperfect and random). BetaSAC setting is n = 4 and

p = 3. The minimal hypothesis set size m is set to 4 and the inlier ratio is 50%. Selection

vectors [i0(t), . . . , im−1(t)] are indicated for some values of t.

obtained with qa f f ine.

qa f f ine(d,s) =

{
qmatching(d) if |s|= 0

−
(
‖P′s1
−AdPs1

‖+‖P′d−As1
Pd‖

)
otherwise

(17)

Results on four image pairs are presented in Table 5.2. BetaSAC with scoring function

qa f f ine is always significantly faster than RANSAC and PROSAC, which prove the benefit

of a conditional sampling.

6 Conclusion

This article proposes a unifying notation for the reordered RANSAC sampling methods and

introduces a new one, BetaSAC. These methods achieve a guidance of sample drawings

while preventing from impairing RANSAC. BetaSAC offers a selection conditional on the

previous data selected for a hypothesis set.

We propose to distinguish between four inlier samples types differing in terms of po-

tential to lead to a good model parameters estimation. We discusse how BetaSAC gives the

opportunity to generate samples with best potential.

Our algorithm is presented as a general framework in which any kind of information and

criteria can be used easily and with a negligible additional computational cost. The only

thing needed is a function able to decide between two candidate data points to complement,

at best, a forming hypothesis sample.

We demonstrated the benefits of the method on the homography estimation problem.

It appears that BetaSAC is equivalent to PROSAC when using the same correspondence

inlier prior. With the use of affine matrices associated to the correspondences, BetaSAC is

measured to be dozens of times faster.
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Sampling algorithm Mean iters. Min iters. Max iters. Time (ms) Speed-up

1

RANSAC 8181.9 39 40910 1595.5 1

PROSAC 1709.9 31 7628 333.3 4.79

BetaSAC with qmatching 1548.6 24 8142 289.3 5.51

BetaSAC with qa f f ine 287.0 3 1840 55.51 28.74

2

RANSAC 15858.5 338 90974 1447.4 1

PROSAC 6445.6 30 39564 587.5 2.46

BetaSAC with qmatching 6414.0 32 41183 602.3 2.4

BetaSAC with qa f f ine 636.9 1 6697 63.8 22.69

3

RANSAC 1302.8 9 6179 1293.0 1

PROSAC 1533.6 129 3990 1523.1 0.85

BetaSAC with qmatching 678.2 4 2601 677.9 1.91

BetaSAC with qa f f ine 30.8 1 157 30.9 41.85

4

RANSAC 687.2 1 4975 198.0 1

PROSAC 329.7 34 1156 94.9 2.09

BetaSAC with qmatching 242.8 2 976 71.0 2.79

BetaSAC with qa f f ine 7.1 1 29 2.12 93.41

Table 1: Homography estimation (m = 4). All the results are averaged over 100 runs. Be-

taSAC parametrization is n = 10 and p = 3. The number of guided iterations TN is set to

200000. Images pairs 1 and 2 are strong homographies. Pairs 3 and 4 are semi-synthetic

examples showing the benefit of our sampling in presence of repeated patterns and different

coexisting model parametrizations.
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