
Efficient Embedded System Development: A Workbench

for an Integrated Methodology

Nicolas Hili, Christian Fabre, Sophie Dupuy-Chessa

To cite this version:

Nicolas Hili, Christian Fabre, Sophie Dupuy-Chessa. Efficient Embedded System Development:
A Workbench for an Integrated Methodology. ERTS 2012 - Embedded Real Time Software and
Systems, Feb 2012, Toulouse, France. pp.1-10, 2012. <hal-00671966>

HAL Id: hal-00671966

https://hal.archives-ouvertes.fr/hal-00671966

Submitted on 20 Feb 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-CEA

https://core.ac.uk/display/52689049?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00671966

Efficient Embedded System Development:
A Workbench for an Integrated Methodology

Nicolas Hili*, Christian Fabre*, Sophie Dupuy-Chessa**, Stéphane Malfoy***
nicolas.hili@cea.fr – christian.fabre1@cea.fr – sophie.dupuy@imag.fr – smalfoy@telsys.ch

* CEA LETI, bât. CTL, 7 av. de palestine, ZI de mayencin, F-38610 GIÈRES, FRANCE.
** LIG, bâtiment IMAG C, 220 rue de la chimie, F-38400 SAINT-MARTIN-D’HÈRES, FRANCE.

*** Telecom Systems SA, En Budron E7, CH-1052 LE MONT SUR LAUSANNE, SUISSE.

ERTS2 2012, February 1st–3rd, Toulouse, France

Keywords : Process Methods & Tools, Model-
Based System Engineering, Project Management,
Progress Tracking, Co-Development, Traceability,
Engineering Refinements.

Abstract
The scientific foundations of embedded system
development associate two disciplines that have
largely grown on their own: computer science and
electrical engineering. This superposition of two
domains with little common ground raises a num-
ber of industrial issues in team work organisation,
sound progress tracking, and cooperation between
these different skills and cultures. In this paper
we introduce 〈HOE〉2, an integrated MDE method
for embedded system development that is organised
around a set of limited yet powerful artefacts. We
describe how 〈HOE〉2 can address the issues faced
during development of mixed HW/SW systems and
present the first version of a tool dedicated to its
instrumentation.

1 Introduction
Unlike other disciplines like civil engineering, em-
bedded systems is a very young domain from
both a scientific and an engineering point of view.
There is a lack of unifying scientific foundation,
as computer science and electrical engineering have
evolved mostly separately so far [7]. Embedded sys-
tem development teams have also to cope with the

usual constraints of industrial organisations whose
main target is efficiency of teamwork at large. Crit-
ical industrial concerns related to embedded system
development include the following. End-to-End
Engineering: The full development cycle goes
from requirement formalisation to the final integra-
tion and assessment of the application on its plat-
form. Hardware/Software Co-Development:
HW & SW do not require the same set of skills.
They are developed mostly independently while the
quality of the final product highly depends on the
smooth integration of both. Incremental & Col-
laborative: To organise efficiently the work of a
large team, it is critical to regularly show and mea-
sure progress towards the objectives.

This paper presents the Highly Heterogeneous,
Object-Oriented, Efficient Engineering method,
shortened in 〈HOE〉2. Highly Heterogeneous be-
cause it aims to address both software (applica-
tion code, middleware, operating systems, etc.)
and hardware (ASIC, FPGA, etc.) development.
Object-Oriented since 〈HOE〉2 models are made of
objects linked by association and communicating
through exchange of messages. Efficient Engineer-
ing as it addresses industrial issues like traceability
to requirements, team work synchronisation, in an
integrated fashion.

The rest of this paper is organised as follows: sec-
tion 2 presents related work. Section 3 introduces
〈HOE〉2. Section 4 applies it on a case study. And
finally section 5 presents a first version of a tool
that supports 〈HOE〉2.

1

mailto:nicolas.hili@cea.fr
mailto:christian.fabre1@cea.fr
mailto:sophie.dupuy@imag.fr
mailto:smalfoy@telsys.ch

Efficient Embedded System Development: A Workbench for an Integrated Methodology 2/10

2 Related Work
Seligmann, Wijers & Sol characterise a method in
four ways: a way of thinking (the approach), a way
of organising work (the process), a way of mod-
elling (the models) and a way of supporting work
(the tools) [20]. We will use their characterisation
throughout the paper.

Modelling Languages. The standard way to
model software systems is currently UML (Unified
Modeling Language) developed by the OMG (Ob-
ject Management Group) [17]. UML is a graph-
ical language that provides several kinds of dia-
grams, e.g. class diagram, sequence diagram, state-
machine diagram. It has its roots in software mod-
elling and is not bound to any specific domains.
One area where plain UML falls short is Real-Time
Embedded Systems (RTES). OMG proposed the
MARTE profile for RTES development [15], and an
extension for system engineering called SysML [16].

Several developments made with MARTE have
been published. In [4], Demathieu et al. present
first experiments using MARTE on the Josefil case
study. They highlight the lack of UML for mod-
elling RTES and present how MARTE was spec-
ified to fill the gap of UML. In [22], Vidal et al.
propose, among other things, a MARTE profile for
platform modelling and VHDL code generation.

Processes. Of the ever increasing complexity of
embedded systems, trend focused on combining
methodologies related to both software (language-
based methodologies) and hardware (synthesis-
based methodologies) development [8]. Many ac-
tors have contributed to this model-based trend.
OMG proposed a new approach called Model-
Driven Architecture (MDA) whose the three main
goals of MDA are portability, interoperability and
reusability [14]. MDA is based on the separation
between the declaration of the application and its
platform.

MDA is seen as a simplified vision of Model-
Driven Engineering (MDE). MDE defines a soft-
ware development approach which puts creation of
models forward essentially and focuses on simple,
transformable and manipulable models [5, 3]. MDE
uses open standards like UML, and is based on sev-
eral concepts (Executable models, transformations
towards a specific platform, weaving).

With this new trend whose model is the cen-
tral artefact, teams have to be organised through
new working methods and development life cycles.
Life cycles propose a defined number of phases and
guide the developer in its work. Numerous pro-
cesses have been proposed. The key properties
are iterative and incremental, reusability of com-
ponents, traceability across development from re-
quirement to implementation, etc. Typical life cy-
cles are Y life cycle, Waterfall life cycle or Twin
Peaks life cycle [12, 13, 2].

Most Y-shaped life cycles share the following or-
ganisation: the top-left branch represents the func-
tional or application-related aspects of the develop-
ment. The technical or platform-related aspects are
captured in the top-right branch. And the central
branch deals with integration of the application on
the platform.

Capretz proposes in [12] a component-based Y
life cycle which emphasises on the need of creat-
ing reusable components. This life cycle relies on
a separation between technical and functional as-
pects. It is built on ten planned phases which
are domain engineering, frameworking, assembly,
archiving, system analysis, design, implementation,
testing, deployment and maintenance. Its particu-
larity is to incorporate the concern of reusability
inside its life cycle.

In 1999, Unified Software Development Process
(USDP) was born [11]. USDP is an iterative and
incremental development process for software area.
It is generic framework customizable for specific
projects. Related to USDP are UP-based pro-
cesses like Rational Unified Process (RUP) and
Processus de Développement de Systèmes Indus-
triels (PDSI) [10, 18].

Based on UML, PDSI derives from USDP. It
was proposed for distributing and communicating
RTES and it is based on only four phases. PDSI
claims a code reusability rate around 30% for the
second project, and 50% for the third.

If these unified processes are the closest to our
needs, almost do not clearly describe the transitions
between each phase. Besides, no project manage-
ment is integrated into them. They shall define
regular checkpoints when it would be interesting to
measure working progress etc.

Iterative and incremental notions are particu-
larly important in Agile software development [1,
9]. Agile software development is a set of relevant

ERTS2 2012, Toulouse, France February 1st–3rd, 2012

Efficient Embedded System Development: A Workbench for an Integrated Methodology 3/10

practices for software development. It proposes
an iterative and incremental development and is
found on four values: team and interactions, work-
ing software, customer collaboration and respond-
ing to change. In Agile software development, cus-
tomers are an integral part of the development. Al-
though Agile software development has proved its
values in a Information System (SI) area, it is not
applicable to embedded systems where software can
not be independently developed without hardware.
Besides, Agile software development does not ex-
plain what artefacts have to be produced and how
they are produced. This shortcoming explains why
Agile methods are often coupled with another de-
velopment processes.

To summarise, some approaches propose well de-
fined concepts but there is no team organisation
whatever (e.g. life cycles). Others define the way
teams must be organised but do not explain what
artefacts have to be produced (e.g. Agile meth-
ods). Among those who say how the activities are
organised, the transitions between each phase are
not well described (e.g. USDP). Processes impre-
cision, lack of guidance and project management
inside current methods, processes non-applicable
to both application and platform, etc. led to the
proposition of new model-based methods.

Next section will present the 〈HOE〉2 method.

3 The <HOE>2 Method
For our model-based method, we decided to rely
on existing concepts used by others methods : an
incremental development through an iterative ap-
proach from Agile software development, reusabil-
ity of components from Y model, independence of
the platform by which MDE advocates that system
specification must be independent from a specific
platform.

This section presents the Highly Heterogeneous,
Object-Oriented, Efficient Engineering method.
The method is organised around four successive
models which branch off each other by three En-
gineering Refinements used to build those models
gradually – see Fig. 1. The basic 〈HOE〉2 approach
is the following one.

Requirement Model. The informal require-
ments are analysed and a Requirement Model is

Figure 1: The Four <HOE>2 Models

built. This static model includes the system, its
actors, its use cases and their scenarios. Fig. 2
presents the Requirement metamodel that covers
all notions defined above.

Figure 2: Requirement Metamodel

Analysis Model. This model is then refined
into an executable, platform-independent Analysis
Model. It is built through several, possibly recur-
sive, Hierarchical Openings of objects. This refine-
ment replaces an object with a set of objects that
collectively exhibit the same apparent behaviour –
see Fig. 4. Fig. 3 presents a piece of the Analysis
metamodel.

Design Model. The platform is introduced par-
tially by declaring its worlds. We define a platform
as – within the meaning of MDA [14] – a set of sub-
systems providing resources and hosting objects. A
world is an abstraction for an execution domain
that hosts objects – like a Digital Signal Processor
(DSP), a set of processors and their shared mem-
ory, a FPGA, or a future dedicated hardware IP.

ERTS2 2012, Toulouse, France February 1st–3rd, 2012

Efficient Embedded System Development: A Workbench for an Integrated Methodology 4/10

Figure 3: Analysis Metamodel

Figure 4: Hierarchical Opening

Figure 5: Container Injection

An executable Design Model is built, in which each
object from the Analysis Model is distributed over
the platform worlds – that is cut in slices with each
slice hosted in a world, as shown Fig. 5.

To summarise, in the design phase we introduce
a description of the platform limited to declaration
of the worlds it supports. Then we distribute the
analysis objects and associations on these worlds.

Implementation Model. On the occasion of
the implementation phase, the platform is now fur-
ther detailed: for each world, several containers are
provided. Each of them embodies a given trade-off
to implement object behaviour on the target exe-
cution domain. The Implementation Model is then
built by Injecting in a Container each object of the
Design Model – see Fig. 6.

In this paper, we do not discuss further the se-
mantics of container injection. But in a few words,
an injection is legit if and only if the behaviour of
the design model of an object is a proper abstrac-
tion of the behaviour of its implementation model.

4 The Camera Case Study
In order to illustrate the 〈HOE〉2 method, we will
introduce a sample embedded system: a camera.
This system covers the device that captures and
stores the image. So as to make the example as
simple and comprehensible as possible, we imag-
ine a simple camera which lets the photographer
take pictures and store that pictures into an inter-
nal memory. After taking a picture, the photog-
rapher can delete that picture, or list all pictures.
Problems about memory will be ignored, in order
to reject all use cases bound to the last one (“Store
a Picture” at applicative level, “Check Available
Memory Space” at platform level, etc.).

This section is organised as follows: first we will
apply for this paper the first two phases of 〈HOE〉2

method to the camera and its platform. Next, we
will show how it addresses industrial concerns. Fi-
nally, we will discuss industrial methods related to
〈HOE〉2.

4.1 The Camera as a Case Study
Requirement Model of Camera. Fig. 7 shows
the requirement model of the camera. We identi-
fied one actor, the photographer. Camera proposes

ERTS2 2012, Toulouse, France February 1st–3rd, 2012

Efficient Embedded System Development: A Workbench for an Integrated Methodology 5/10

Figure 6: Distribution

four identified use cases. Only “Take a Picture” and
“Toggle Flash” use cases will be studied in this pa-
per. We introduce here two stereotypes to classify
actors and use cases regarding the system. These
stereotypes are « Primary » and « Secondary ».
A use case is labeled “Primary” when it is a cause
of the system (the camera is designed to take pic-
tures) and “Secondary” when it is a consequence
of the system (the flash is a feature of advanced
cameras).

For each studied use case, we identify nominal
and error scenarios. A scenario is labeled “Nom-
inal” when it represents the nominal sequence of
message exchanges between the actor and the sys-
tem. An unexpected message or error causes the
identification of an error scenario. Fig. 8 below
shows a nominal (Fig. 8(a)) and error (Fig. 8(b))
scenarios of “Take a Picture” use case.

Note that both nominal and error scenarios from
a same use case are activated by the same triggering
event.

Use cases may have more than one nominal sce-
nario, as well as they may own no error scenario.
Fig. 9 presents two nominal scenarios of “Toggle

Figure 7: Requirement Model

Flash”. The second is an alternative of the first
one. Both have the same triggering event. The in-
ternal behaviour of the camera (more specifically
the flash) will let us know which scenario will be
played.

Analysis Model of Camera. We have now cap-
tured a piece of requirement model, we can further
extend our study. Fig. 10 shows the first hierar-

ERTS2 2012, Toulouse, France February 1st–3rd, 2012

Efficient Embedded System Development: A Workbench for an Integrated Methodology 6/10

(a) Nominal Scenario

(b) Error Scenario

Figure 8: Scenarios of “Take a Picture”

chical opening of the camera. Before opening, the
system appears as a black box (Fig. 10(a)). This
opening reveals new objects (Fig. 10(b)): a sen-
sor, images and also a flash. This opening might
be done in more than one iteration, first iteration
where we would have identified the sensor and im-
ages so as to answer three first use cases specifi-
cation, and a second iteration to discover a new
object, the flash.

After carrying out the first opening of the cam-
era, we can now refine all scenarios from the re-
quirement model. Fig. 11 shows the refinement of
the nominal scenario of “Take a Picture” use case.
We can see that both triggering event and final an-
swer from the system to the actor have not changed
regarding the scenario in requirement model.

Dynamic aspects of each object are described
from an analysis model by a Finite State Machine
(FSM). The FSM points out what messages can be
emitted or received by the object, and how the mes-
sages are interpreted. Due to space limitation, the
dynamic aspect are not addressed here.

(a) Nominal Scenario

(b) Nominal Scenario 2

Figure 9: Scenarios of “Toggle Flash”

Platform of the camera. The whole process of
〈HOE〉2 can be applied at application level as well
as platform level. In this paper, we will tackle only
the requirement model for the platform.

As shown in Fig. 12, we identify two use cases
for the platform of the camera. Only one is studied
here, the “Install New Firmware” use case. It lets
the identified primary actor – Administrator – in-
stall new firmware on the platform. Two scenarios
have been captured for this use case (see Fig. 13(a)
and Fig. 13(b)). The firmware to be installed is
described as an object and passed as parameter to
the platform, becoming a Shared Object of the re-
quirement model – shared between an actor and
the system. We can imagine several error scenar-
ios, like “Corrupted Firmware”, “Attempt to Install
Older Version of Firmware”, etc. The firmware is
captured as the design model of the camera, and
is the point of contact between the application and
the platform development tracks.

ERTS2 2012, Toulouse, France February 1st–3rd, 2012

Efficient Embedded System Development: A Workbench for an Integrated Methodology 7/10

(a) before opening

(b) after opening

Figure 10: 1st Opening of Camera

Figure 11: Refinement of Scenarios from Require-
ment Model

Figure 12: Requirement Model of Platform

4.2 How 〈HOE〉2 Addresses Indus-
trial Concerns

As we mentioned, 〈HOE〉2 has a small number of
refinements and its models are precisely ordered.
Three models out of the four are executable (i.e.
they can be simulated or used to generate code) –
only the requirement model is not. All this provides
a number of side effects that can be exploited to
address industrial concerns:

(a) nominal scenario

(b) error scenario

Figure 13: Scenarios of “Install New Firmware”

Traceability to Requirements: As the Anal-
ysis, Design and Implementation models are ex-
ecutable, they can be checked for conformance
against the Requirement Model’s scenarios.

Non-Functional Analyses through Simula-
tion: Instrumentation of models before and dur-
ing execution enables non-functional property anal-
yses, like performance analysis, through external
tools and simulation.

Team Work: The ability to execute and animate
models provide for a better understanding for all
stakeholders of the system under construction.

Iterations/Increments: The strict ordering of
models can be the basis of iteration planning strate-
gies. Fig. 14 shows the two axes involved in it-
eration planning: requirement depth and process
width.

Separation of Skills: The gradual introduction
of the platform – first a pure topological descrip-
tion, then extended with its containers – can be
the basis of divide and conquer project manage-
ment strategies. For instance, although application
architects can be involved from requirement to de-
sign, the fine grain details of implementation can

ERTS2 2012, Toulouse, France February 1st–3rd, 2012

Efficient Embedded System Development: A Workbench for an Integrated Methodology 8/10

be handed to specialists of the platform, and be
captured in containers definition and injection.

Toward a Platform Specific Model: 〈HOE〉2

defines notions of Platform independent model
(PIM) and Platform specific model (PSM) such as
those depicted in [14]. 〈HOE〉2 explains how we
hand PIM on to PSM.

Figure 14: Two Sets of Orthogonal Increments

4.3 Related Industrial Methods
〈HOE〉2 is loosely based on USDP. It shares com-
mon grounds with industrial processes for embed-
ded systems, like PDSI.

The most obvious similarities are the following:
a strict definition of what is a use case, in particular
its unique triggering event; the absence of internal
actors; the analysis phase where objects are purely
abstract and platform-independent, followed by the
design phase where objects are cut in pieces and dis-
patched onto worlds; the replay of scenarios as the
main evidence of progress; pervasive simulation to
ensure model consistency and sharing across team
members; a host of development traceability from
requirement to implementation; a host of oppor-
tunities for simulation to analyse various kinds of
properties on the model.

The main difference are: clear separation be-
tween design and implementation: first introduc-
tion of the pure topology of the platform in Design,
then of Container Injection for local code produc-
tion in Implementation; the claim that the three
refinements discussed below are necessary and suf-
ficient to develop and model embedded systems.

Although not presented in this paper, 〈HOE〉2 is
based on a key assumption: the four-phases process
can be applied to the application and its platform,
and the points of contact between the two mod-
els are limited and precise. This assumption opens
the door to a fully integrated process that would
cover the complete life cycle of embedded systems,
from requirement and exploration to implementa-
tion, and from application to dedicated IP develop-
ment. Such an integrated process is the ultimate
goal of 〈HOE〉2.

5 A Tool to Support the
Method

So as to take part in the good development of
〈HOE〉2, we decided to develop a tool to support the
key point of the method: tight integration of arte-
facts involved in development with those used to
build consistent and efficient project management
strategies. The tool will emphasise practical organ-
isation of iterations based on the three refinements
used in 〈HOE〉2 as a means for efficient project man-
agement.

This section is structured as follows: first part
will state our needs about modelling tools and plat-
form development while second part will present a
first version of the tool developed on the chosen
development platform.

5.1 Tool Design
Each level of model will have an editor dedicated
to its own refinement. Navigation in the models
will be based on the logical ordering of refinements
within models. The project management tool will
support consistent planning and definition of iter-
ations obeying the model refinement dependencies.
The iteration history will be navigable.

User interface of our tool has to be split into three
areas at a minimum:

Editor Area: An editor area which can be
shared by the different textual and graphical ed-
itors of each phase. For the graphical editors a
palette has to be displayed and we must be able to
drag and drop the entities from it. The information
about the entities may be modified graphically in
the editor, or in a property panel.

ERTS2 2012, Toulouse, France February 1st–3rd, 2012

Efficient Embedded System Development: A Workbench for an Integrated Methodology 9/10

Navigator Area: A navigator lets us navigate
inside our models. The navigator must be intuitive.

View Area: This area is dedicated to the project
management and team work tools. We need to
display some information like project management,
team work, or some views to display and modify in-
formation about the entities selected in the active
editor.

5.2 Tool Implementation
We chose to develop our tool on the Eclipse plat-
form. It lends itself rather well to our tool (Per-
spective Management, Common Navigator Frame-
work, Ecore Standard, etc.). It provides some tools
to easily display multi-editors in the editor area,
navigator and views.

The first step is to derive a well-formatted Ecore
metamodel from our canonical metamodel. This
step is fundamental since we need to consider the
Ecore and its associated tool specificities. Fig.15
shows our requirement metamodel conformed to
Ecore model.

Once we have produced our Ecore metamodel, we
can apply the whole process of editor generation
with the Graphical Modeling Framework (GMF)
tools. GMF is a way to easily develop graphical
editors binding Ecore model to the Graphical Edit-
ing Framework (GEF) architecture [6]. We chose
GMF rather than GEF for some reasons: defined
and guided GMF process, model-based develop-
ment, quick generation of graphical editors and re-
duction of coding errors.

Fig. 16 shows our tool. It provides an editor ded-
icated to the requirement model, a simple naviga-
tor on its left and a property panel below the edi-
tor area. The editor was generated from the GMF
dashboard [6], according to the Ecore Requirement
Metamodel defining in Fig. 15.

6 Conclusion & Future Work
We have described 〈HOE〉2, a method for embedded
systems development. We have detailed its organ-
isation in four models and three refinements. We
have also presented the first version of a tool that
implements a subset of the method.

From this point, we will improve our tool on pro-
cess width and requirement depth tacks. First in

Figure 15: Ecore Requirement Metamodel

Figure 16: The Workbench

process width, we will formalise the other stages of
the 〈HOE〉2 approach: design and implementation.
Next in requirement depth, we will extend our re-
quirement and system metamodels with scenarios,
objects, FSM, etc. and by implementing traceabil-
ity between the models.

We only focus on notions from UML. As we said
in section 2, UML is not well-suited for embedded
systems. We need to study the integration of no-
tions from MARTE, SysML and other profiles in-
tended to add notions about embedded systems.

On the longer term, one of the key asset of
〈HOE〉2 is its executable models. External tools
can provide feedback on the model, either through
static analyses or simulation. This is clearly a key
opportunity, as support for regular and systematic
feedback on the model through out the develop-
ment flow is not as pervasive in the embedded sys-
tem industry as it is in other industries, like civil
engineering and mechanics.

ERTS2 2012, Toulouse, France February 1st–3rd, 2012

Efficient Embedded System Development: A Workbench for an Integrated Methodology 10/10

7 Acknowledgements
Christian Fabre & Stéphane Malfoy would like to
thanks Bernard Rygaert, a former colleague from
Groupe SILICOMP / ORANGE Business Services.
Bernard was the leader and architect of PDSI, and
he introduced them to the basics of simple, elegant
and efficient object-oriented modelling.

The authors wish to thank Dominique Rieu for
her comments for the paper and the discussions
they have had around several modelling concepts.

Most pictures and diagrams presented in this pa-
per have been made with the Papyrus MDT model-
ing tool, developed by CEA LIST, now part of the
Eclipse Modeling Framework [21, 19].

Last but not least, the authors would like to
thank the reviewers of the extended abstract ver-
sion of this paper for their insightful comments and
suggestions.

References
[1] Kent Beck, Mike Beedle, Arie van Bennekum,

Alistair Cockburn, Ward Cunningham, Martin
Fowler, James Grenning, Jim Highsmith, An-
drew Hunt, Ron Jeffries, Jon Kern, Brian Marick,
Robert C. Martin, Steve Mellor, Ken Schwaber,
Jeff Sutherland, and Dave Thomas. Manifesto
for Agile software development, 2001. http://
agilemanifesto.org.

[2] B. W. Boehm. A Spiral Model of Software De-
velopment and Enhancement. Computer, 21(5):61
–72, May 1988.

[3] Jean Bézivin. On the Unification Power of Models.
Software and Systems Modeling, 4:171–188, 2005.
10.1007/s10270-005-0079-0.

[4] S. Demathieu, F. Thomas, C. Andre, S. Gerard,
and F. Terrier. First Experiments Using the UML
Profile for MARTE. In Object Oriented Real-Time
Distributed Computing (ISORC), 2008 11th IEEE
International Symposium on, pages 50–57, May
2008.

[5] Jean-Marie Favre, Jacky Estublier, and Mireille
Blay-Fornarino, editors. L’Ingénierie Dirigée par
les Modèles : au-delà du MDA. Informatique et
systèmes d’information. Hermes Lavoisier, 2006.

[6] Richard C. Gronback. Eclipse Modeling Project
A Domain-Specific Language (DSL) Toolkit. The
Eclipse Series. Addison Wesley, 2009.

[7] Thomas A. Henzinger and Joseph Sifakis. The Dis-
cipline of Embedded Systems Design. Computer,
40(10):32 –40, October 2007.

[8] Tom Henzinger and Joseph Sifakis. The embedded
systems design challenge. In Proceedings of the
14th International Symposium on Formal Meth-
ods (FM), Lecture Notes in Computer Science.
Springer, August 2006.

[9] Jim Highsmith and Martin Fowler. The Ag-
ile Manifesto. Software Development Magazine,
9(8):29–30, 2001.

[10] IBM. Rational Unified Process: Best Practices for
Software Development Teams, December 2003.

[11] Ivar Jacobson, Grady Booch, and James Rum-
baugh. The Unified Software Development Process.
Addison Wesley, February 1999.

[12] Luiz Fernando Capretz. Y: A New Component-
Based Software Life Cycle Model. Journal Of
Computer Science, 1:1, 2005.

[13] B. Nuseibeh. Weaving Together Requirements and
Architectures. Computer, 34(3):115 –119, March
2001.

[14] Object Management Group, Framingham, Mas-
sachusetts. MDA Guide Version 1.0.1, June 2003.

[15] OMG. UML Profile for MARTE: Modeling and
Analysis of Real-Time Embedded Systems v1.0,
November 2009.

[16] OMG. Systems Modeling Language Specification
v1.2, July 2010.

[17] OMG. Unified Modeling Language Specification
2.3, April 2010.

[18] Bernard Rygaert. PDSI: Processus de
Développement des Systèmes Industriels, 2002.
Marketing flyer from Silicomp.

[19] Sebastien Gerard. Papyrus Home Page. http:
//eclipse.org/papyrus.

[20] P.S. Seligmann, GM.M. Wijers, and H.G. Sol. An-
alyzing the Structure of I.S. Methologies, an Alter-
native Approach. In Proceedings of the First Dutch
Conference on Information Systems, 1989.

[21] Sébastien Gérard, Cédric Dumoulin nad Patrick
Tessier, and Bran Selic. Papyrus: A UML2 tool for
Domain-Specific Language Modeling, volume 6100.
Springer Verlag, 2010.

[22] J. Vidal, F. de Lamotte, G. Gogniat, P. Soulard,
and J.-P. Diguet. A Co-Design Approach for Em-
bedded System Modeling and Code Generation
with UML and MARTE. In Design, Automa-
tion Test in Europe Conference Exhibition, 2009.
DATE ’09, pages 226–231, April 2009.

ERTS2 2012, Toulouse, France February 1st–3rd, 2012

http://agilemanifesto.org
http://agilemanifesto.org
http://eclipse.org/papyrus
http://eclipse.org/papyrus

	Introduction
	Related Work
	The <HOE>2 Method
	The Camera Case Study
	The Camera as a Case Study
	How "426830A HOE"526930B 2 Addresses Industrial Concerns
	Related Industrial Methods

	A Tool to Support the Method
	Tool Design
	Tool Implementation

	Conclusion & Future Work
	Acknowledgements

