
Paravirtualizing Linux in a real-time hypervisor

Vincent Legout, Matthieu Lemerre

To cite this version:

Vincent Legout, Matthieu Lemerre. Paravirtualizing Linux in a real-time hypervisor. ACM
SIGBED Review, Association for Computing Machinery (ACM), 2012, 9 (2), pp.33-37.
<10.1145/2318836.2318842>. <cea-00713561>

HAL Id: cea-00713561

https://hal-cea.archives-ouvertes.fr/cea-00713561

Submitted on 2 Jul 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-CEA

https://core.ac.uk/display/52687888?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal-cea.archives-ouvertes.fr/cea-00713561

Paravirtualizing Linux in a real-time hypervisor

Vincent Legout and Matthieu Lemerre
CEA, LIST, Embedded Real Time Systems Laboratory
Point courrier 172, F-91191 Gif-sur-Yvette, FRANCE

{vincent.legout,matthieu.lemerre}@cea.fr

ABSTRACT
This paper describes a new hypervisor built to run Linux in a
virtual machine. This hypervisor is built inside Anaxagoros,
a real-time microkernel designed to execute safely hard real-
time and non real-time tasks. This allows the execution of
hard real-time tasks in parallel with Linux virtual machines
without interfering with the execution of the real-time tasks.
We implemented this hypervisor and compared perfor-

mances with other virtualization techniques. Our hypervisor
does not yet provide high performance but gives correct re-
sults and we believe the design is solid enough to guarantee
solid performances with its future implementation.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and Design—
Real-time systems and embedded systems

General Terms
Design, Security, Performance

Keywords
Linux, virtualization, hypervisor, real-time, hard real-time
system, microkernel

1. INTRODUCTION
Embedded systems have processing units often underuti-

lized, loosing processing time which could be used by other
applications. This is usually because a real-time system re-
quires determinism, guaranteed response times and keeping
the system as small as possible makes it easier to fulfill these
requirements.
The Anaxagoros microkernel has been designed to meet

these requirements. With security in mind, this system
is built to execute hard real-time and dynamic non real-
time tasks on the same hardware. But Anaxagoros
being a minimalist microkernel, it cannot directly execute

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

applications written for a fully-featured operating system
such as Linux. The Anaxagoros design prevent non real-
time tasks to interfere with real-time tasks, thus providing
the security foundation to build a hypervisor to run existing
non real-time applications. This allows current applications
to run on Anaxagoros systems without any porting effort,
opening the access to a wide range of applications.

Furthermore, modern computers are powerful enough to
use virtualization, even embedded processors. Virtualiza-
tion has become a trendy topic of computer science, with
its advantages like scalability or security. Thus we believe
that building a real-time system with guaranteed real-time
performances and dense non real-time tasks is an important
topic for the future of real-time systems.

Linux being as popular as it is, was our first choice when
choosing the operating system to be virtualized. It eases
the development of the virtualization process and with its
large hardware support offers many possibilities for our non
real-time tasks.

The remainder of this paper is structured as follows:
first, section 3 details the design and implementation of
our microkernel, Anaxagoros. Then section 4 dives into
the design of our hypervisor. Section 5 presents our
current prototype, the current version is able to run at
least two virtual machines with non real-time tasks. To
finish, section 6 presents the performance of our prototype.
We compared some characteristics of the virtualized Linux
system with the same Linux system without virtualization.

2. RELATED WORK
Virtualizing Linux has already been done by many,

for example KVM [8] and Xen [5], two open source
virtualization solutions. In KVM, Linux serves as the
hypervisor whereas Xen is the hypervisor and can run
on several operating systems including Linux. They both
support many guest operating systems. However, their focus
is not real-time systems and they do not offer real-time
guarantees.

Running Linux on top of a microkernel has for example
been done by L4Linux [2], a port of Linux to the L4
microkernel. Its purpose is also to run side-by-side Linux
and real-time tasks. MkLinux [3] is another solution to host
Linux on a microkernel. ChorusOS or Mach [4] can run
multiple OS personalities (e.g. Linux) but do not focus on
real-time.

And unlike L4Linux or KVM and Xen, Anaxagoros was
not designed to be a hypervisor but a secure microkernel
for hard real-time. And we use these security and real-time

features to build the hypervisor.
Efforts were also made to support hard real-time in Linux,

for example Xenomai [7] or Adeos [1], but these solutions
only enhance Linux while our solution allows the use of
multiple isolated Linux virtual machines together with real-
time tasks on top of a secure microkernel, without relying
on Linux.

3. ANAXAGOROS
Anaxagoros is an operating system kernel for safe execu-

tion of mixed-criticality hard real-time and non real-time
tasks on a single hardware platform. This system strictly
complies with resource-security principles. It has been de-
signed and implemented for the x86 architecture. Efforts
were made to make the kernel design small and secure, and
the kernel currently has only 2587 lines of C and 1155 lines
of x86 assembly (measured with sloccount).

Principles and global structure.
The goal of the system is to provide facilities to safely

share resources between tasks, i.e. using shared services.
It has strong security so as to prevent undesirable task
interference, and security covers protection of the real-time
requirements of the tasks. The use of shared services by
hard real-times tasks is secured and easy.
Various mechanisms have been built in order to ensure

that all the requirements are met, but there are out of the
scope of this paper. We redirect the reader to [9, 10, 11] for
more information about Anaxagoros.

Security and interface.
Anaxagoros is a microkernel, and thus comes with some

services (e.g. memory management service). However,
Anaxagoros can also be seen as an exokernel [6] because
it’s API is very low-level and does not abstract physical
resources. For example, an user task can create its own
address space and control how pages are managed inside this
address space. We use the low-level functions to virtualize
Linux.
Anaxagoros comes with built-in services (e.g vga, key-

board, . . .). These services can be used by any task and
respect all the security principles of the system.
Anaxagoros defines three independent entities : address

space (separates memory rights), threads (separates CPU
access rights), and domains (separates all other kinds of
rights). The usual task concept is obtained by combination
of one thread, one domain, and one address space.

4. DESIGN
This section details the design of our project. The

previous section dealt about Anaxagoros, and we used
Anaxagoros features to build a hypervisor in order to
run Linux virtual machines. The hypervisor is the piece
of software inside Anaxagoros that manages the virtual
machines, for example when one virtual machine wants to
communicate with the host system. Our contribution is to
paravirtualize Linux without changing Anaxagoros.

Paravirtualization.
Virtualization is the idea of creating a virtual operating

system that run on top of another operating system. The
virtual operating system is called a guest, the other one

Figure 1: Tasks and virtual machines cohabitation

being the host. In a paravirtualized environment, the guest
knows it does not run on hardware unlike full virtualization
where the guest behaves like it runs on real hardware.

When a system is virtualized, it does not have full access
to the hardware. In a x86 system, a guest usually does not
run in the most privileged ring (i.e. where the system needs
to be to access all the resources) and thus needs the host to
perform those operations. In a full virtualized environment,
the guest would try to perform the operation, it would fail
and the failure would be captured by the host. On the
contrary, a paravirtualized guest can directly tell the host
to perform an operation on its behalf, without the need to
try the operation first. A communication from the guest to
the host is called a hypercall.

We choose paravirtualization because it makes it easier to
build an hypervisor (no need to emulate all the hardware
in the host). However, it makes it impossible to run an
unmodified guest. Paravirtualization is also usually faster
than full virtualization.

In our system, the guest system runs in the same
protection ring as the user space application. But modern
processors (VT-x (vmx) for Intel and AMD-V (svm) for
AMD) introduced another ring to ease virtualization and
allowing the guest to have a better access to the hardware.
We do not use these technologies.

Figure 4 illustrates how native tasks and virtual machines
cohabit. Only the microkernel is in kernel space while
tasks and virtual machine are in user space and need to
communicate with the kernel. The root task is the task
responsible for creating the other tasks and the virtual
machines. This task, as Anaxagoros exports the definition
of the scheduling policy, is responsible for allocating CPU
time to the tasks.

Hypervisor.
Inside Anaxagoros, we designed a hypervisor to manage

the execution of the guests. This hypervisor is responsible
for the following tasks :

• Hypercalls: The hypervisor receives hypercalls from
the virtual machines and handle them. According to
the type of hypercall it receives, various operations are
performed. Once the hypercall is done, the execution
returns to the guest.

• Interrupts: When a guest is running, interrupts can
happen. It is the responsibility of the hypervisor
to redirect these interrupts to the correct interrupt
handler. Without virtualization, this task is done with
the Interrupt descriptor table (IDT), but the guest

cannot update the hardware IDT. When a guest wants
to update its IDT, it sends an hypercall to the host.
The host then updates the shadow IDT of the guest.
The host maintains a shadow IDT for each guest.

• Memory: The guest does not have a direct access to the
whole memory. At its creation, an amount of memory
pages are dedicated to the guest, pages the guest can
access. To build its mapping, the guest needs the
host, and thus hypercalls are responsible for creating,
updating or deleting page directories and pages tables.
The guest can update the CR3 register via a hypercall.
TLB flushes are possible with a hypercall and the TLB
is automatically flushed when switching between guest
and host or between two guests.

Security.
Each virtual machine must be isolated from another and

must not interfere with other tasks. To achieve this goal, we
put each virtual machine in its own domain, its own address
space and in its own thread. The root task, responsible
for creating the virtual machine, creates a new domain, a
new address space, then prepares the new address space by
mapping and copying the Linux code and the switch to the
new address space. Thus each virtual machine has its own
domain, and is clearly separated from the other tasks and
virtual machines.

5. IMPLEMENTATION
The section details the implementation of our hypervisor.

The focus of the current implementation was to make
it functional, to get insights on what needs to be done
in the Anaxagoros kernel and Linux port for an ideal
implementation.

5.1 Linux
When building our hypervisor, we wanted to run a

traditional operating system in the virtual machine. We
choose Linux because it is well-known, it is free software
and it offers various commodities to ease the development
of our prototype.
Paravirtualized Linux supports three open-source hyper-

visors: KVM [8], Xen [5] and lguest [12]. Their authors sat
down together and build an interface (named paravirt ops)
to make it easy to use Linux as a virtualized system. An-
other interface (Virtual machine interface) was earlier pro-
posed by VMware, but never went into the kernel.
We use paravirt ops to ease the development of our

hypervisor, thus changes in the Linux kernel are relatively
small. It provides function pointers to override functions
which must be updated when Linux is paravirtualized. For
example, write cr3() is not possible and must be overridden
to make a hypercall. Non-modified function pointers keep
the same behavior. paravirt ops is a useful interface to port
Linux to a new hypervisor, using it is simple and it keeps
the number of lines of code added small.
The current port of Linux is based on the lguest port. The

core modifications are located on a arch/x86/anaxagoros
folder with two files: boot.c and i386 head.S. boot.c contains
most of the paravirt ops functions and i386 head.S contains
anaxagoros entry(), the function called to initialize the
paravirt ops functions pointers. A header file located in
include/linux/ has also been added.

Others modifications are in arch/x86/kernel/head 32.S, to
add Anaxagoros as a possible host, and in kernel/printk.c
to tell printk() to use our own function to print a kernel
message (thus Linux needs to be built against a static library
provided by Anaxagoros).

We used Linux 2.6.36 without any additional patches
other than those needed to add Anaxagoros as a host.
Other versions of Linux may work if they provide par-
avirt ops. We introduced a new configuration option:
ANAXAGOROS GUEST which must be activated in order
to recognize Anaxagoros as a possible host. Building Linux
with make allnoconfig and adding manually the following
options is the easiest way to create a working configuration:
EMBEDDED, PHYSICAL START (0x400000), PHYSI-
CAL ALIGN (0x100000), CONFIG BLK DEV INITRD.

5.2 Boot
This paragraph explains how the virtual machine loads

Linux and starts. First, the root task creates a new domain
with its new address space. The Linux ELF executable
(vmlinux) is loaded into the address space at the correct
location. One page is filled with a boot params structure
containing the setup parameters. Finally, it jumps to the
Linux entry point (found in the ELF file).

Linux can then boot. During the boot, Linux will try to
perform lots of operations it is not authorized to do. This
is where the hypervisor enters the game.

The important part is to update the hdr.hardware subarch
entry in the boot params structure to tell Linux it is going to
be virtualized on an Anaxagoros host. Without this change,
Anaxagoros code in Linux will not be executed and Linux
will not boot. In order to recognize Anaxagoros as a po-
tential host, we added a new entry in the subarch entry list
(file arch/x86/kernel/head 32.S), and when Linux detects
that the hdr.hardware subarch field matches Anaxagoros, it
jumps to our own initialization function anaxagoros entry().
This function performs the initialization hypercall so that
the hypervisor can tell Linux which physical pages are acces-
sible. Linux can then initialize all the paravirt ops functions
so that paravirtualization is set up.

5.3 Hypervisor
This paragraph details how the hypervisor is implemented.

The userspace application (root task) is less than 600 lines
of code and the kernelspace hypervisor less than 450.

Hypercall.
When the guest cannot make an operation by itself, it

sends an hypercall to the host which does the operation and
returns to the guest. We have twelve hypercalls. Table 1
lists the most important ones.

A hypercall is a software interrupt. A new entry in
Anaxagoros’s IDT has been created, arbitrarily at 0x30
(48). This number is chosen arbitrarily and must be greater
than 31. A hypercall has five arguments (because the x86
architecture has five registers available: eax, ebx, ecx, edx
and esi). The first argument is the hypercall number, the
other depend on the hypercall. Once the hypercall finishes
its task, it returns to the virtual machine using the iret
instruction.

Interruption.
Interrupts are more complicated. Because we want to

Table 1: Hypercalls list
Name Description
CPUID Return processor information

LOAD IDT ENTRY Update shadow IDT
READ CR2 Return CR2 register content
READ CR3 Return CR3 register content
WRITE CR3 Update CR3 register
SET PTE Set page table entry

ALLOC PTE Allocate a new page table
RELEASE PTE Release a page table

SET PDE Set page directory entry
ALLOC PDE Allocate a new page directory

RELEASE PDE Release a page directory
FLUSH TLB Flush the TLB
DISABLE IRQ Disable guest interrupts
ENABLE IRQ Enable guest interrupts

Table 2: Linux segments
Index Macro Selector
12 KERNEL CS 0x63
13 KERNEL DS 0x6b
14 USER CS 0x73
15 USER DS 0x7b

know which virtual machine must receive the interrupt, we
need to analyze the interrupt. We do that by keeping in the
host which virtual machine is currently running, so that it
is easy to redirect the interrupt.
The hypervisor should also deal with the guest virtual

IDT, the IDT sets by the guest so that the host knows where
it must deliver the interrupt. When a guest wants to update
its IDT, the operation is replaced by an hypercall. A virtual
IDT is never loaded into the IDT, it is just kept inside the
host memory.

Segmentation.
Linux makes a limited usage of the segmentation, memory

protection is essentially done via pagination. Thus our
implementation of the segmentation is quite simple: Linux’s
segments are fixed offline and cannot change. Table 2 shows
the four segments used by Linux. The two first segments are
supposed to be on privileged ring zero but are here on ring
three (0x63 and 0x6b instead 0x60 and 0x68).
Other segments that must be handled are TLS segments.

They change on every context switch and a hypercall allows
Linux to update the Global Descriptor Table. TLS segments
are not necessary to boot Linux but are used for example by
the glibc to handle threads.

Pagination.
Linux must be configured to only use two-level paging (i.e.

PAE must be disabled).
Each guest has an arbitrary amount (n) of memory pages

for its own use. For the guest, these pages are numbered
from 0 to n − 1. From the host point of view, these pages
can be in different places in memory, because a translation
between guest physical page numbers and host virtual page
numbers is done each time a guest wants to update its page
table.
When the guest wants to update its mapping, it uses

hypercalls. To do so, we updated lots of functions located in
the pv mmu ops structure (e.g. write cr3 or set pte). The
host does not track how the guest manages its pages, there
are no virtual page directories or tables inside the host.

5.4 User space
User-space applications can use a ramdisk loaded into the

memory at runtime. Inside, we tested several applications
with success:

• Busybox: Statically built, busybox can be used inside
the ramdisk. It offers a shell and various utilities.

• Other applications can be built with the klibc, a
minimal standard C library.

• Services: Application can use Anaxagoros’s services
like the vga service. The Linux vga driver is not yet
functional.

• Network: Network support is partly provided. If linux
is built with the network driver, we can use the Linux
driver to communicate with the outside world even if
Anaxagoros does not support any network card yet. It
should be possible to extend this feature to support
other devices in the virtual machine. This feature is
much appreciated because Linux comes with a large
hardware support and it makes it possible to use the
drivers in a Anaxagoros system.

There are two options to load the driver, one can build
it inside Linux so that the Linux version running has
immediate support for the network card or ship the
module into the ramdisk. The module can then be
loaded if busybox is built to support modules (i.e. with
the modprobe utility).

5.5 Limitations
Some features are not yet available or do not work

properly on the guest Linux system:

• Clock: The clock management is minimal. Currently,
the clock of the virtualized Linux is not correct, it
starts at 0 and does not run fast enough because clock
interrupts are not always delivered.

• I/O: Our hypervisor currently does not support any
I/O virtualization. This feature could be added, but
not until Anaxagoros supports more hardware than it
does today.

6. PERFORMANCE
The status of the hypervisor and Anaxagoros is of a

functional prototype. The focus of this initial prototype
has been first security, second simplicity, but even if the
implementation of many parts is not optimized, many
operations already have correct performance.

We performed two kinds of tests, one to illustrate the
performance of the hypervisor and one to show the real-
time properties of Anaxagoros. We used both the Bochs
PC simulator and real hardware and we give performance
results for these two situations. However, we did not try the
network driver with real hardware.

Table 3: Virtualization performance
syscall rand ctx fork pipe tcc

Native 71 138 0.74k 91k 4.51k 231M
Virt. 308 141 1.59k 1969k 6.25k 284M

Native 490 167 13.83k 774k 33k 458M
Virt. 2640 188 17.1k 2589k 38.9k 563M

Table 4: Real-time performance
minimum maximum standard deviation

nop loop −1.2 ∗ 107 6.3 ∗ 107 1.2 ∗ 107
Linux VM −1.3 ∗ 107 7.8 ∗ 107 2.9 ∗ 107

6.1 Virtualization
The following results show how fast the virtualized Linux

is compared to an unvirtualized Linux running on bare
metal.
We used two configurations, the Bochs PC simulator

(Bochs does not simulate cache, and thus executes one
instruction per cycle) and a Dell Precision Workstation 650
with an Intel Xeon (3.06 GHz) (512 KB L2 cache, 1 MB L3
cache) and 4 Go of DDR-SDRAM (266 MHz).
In table 3, the five first columns are representative

lmbench tests, where each column gives the number of cycles
required for the operation. The tcc test consists in a shell
script executing the Tiny C compiler compiling itself 3 times.
The tests were run on Bochs (first two lines) and on the

Dell Workstation (last lines). For each configuration, we
tested two situations: first-line is with a non-virtualized
Linux and second is Linux running inside Anaxagoros. For
each simulation, we used the same Linux and userspace
applications.

6.2 Real-time
Anaxagoros is a real-time system, and one of the reasons

we build it is to have real time guarantees for the real-time
tasks when they run together with non real-time tasks (e.g.
Linux virtual machines).
To illustrate this point, we ran one real-time task and one

non real-time task. We dedicate a fixed amount of CPU
time to the real-time task on a periodic basis and this task
is incrementing a counter. For the behavior of this task to be
predictable, the final value of the counter must be the same
for each execution, or the difference as small as possible. We
ran this test in two situations, the non-real time task being
a nop loop or a Linux virtual machine.
Table 4 represents the difference of the minimum and

maximum counter increments relatively to the mean value
(which was ≈ 5 ∗ 108), and the standard deviation on the
Dell machine. For the 200ms timeslice, this represents an
average variation of 5%, and a 18% maximum variation.
However on Bochs, the minimum and maximum values of

the counter are respectively 3349028 and 3349102 (difference
is 74) while the mean value is 3349072. The standard
deviation is 29. The second thread workload had few effects
on the execution time of the first thread. The maximum
variation of workload relatively the 200ms timeslice is 22.1
ppm (22.1 ∗ 10−6), which is very low.
The high variations on the x86 can be explained by

the presence of caches, system management mode, etc.
But the Bochs measurements demonstrate that excellent

results could be achieved with deterministic hardware, which
validates our approach.

7. CONCLUSIONS
Paravirtualizing Linux in a real-time systems proved to

be not as difficult as we thought, mostly because Linux
has mechanisms to ease the porting on a new hypervisor.
We obtained a working prototype capable of running two
Linux virtual machines in parallel with non real-time tasks.
Tests have been run to compare the performance of the
virtualized Linux with a non-virtualized Linux and results
showed decent performance.

Future work will concentrate on improving the
Anaxagoros/Linux interface. For instance, currently
Linux uses a custom system call (with a custom software
interrupt) for many hypercalls, rather than the standard
capability invocation mechanism [10] used in Anaxagoros.
We need to extend Anaxagoros with a “virtualization
service” that Linux could use.

Also, we need to use and improve the Anaxagoros
mechanism to batch hypercalls. Currently, Linux needs to
do one hypercall per modification inside a page table, which
makes virtual memory operations extremely slow.

Finally, there are many work left to do with Anaxagoros;
among them is support for multicore computer, and an effort
we have started to use formal methods to prove the security-
related parts of Anaxagoros.

8. REFERENCES
[1] Adeos. http://home.gna.org/adeos.

[2] L4linux. http://os.inf.tu-dresden.de/L4/LinuxOnL4.

[3] Mklinux. http://www.mklinux.org.

[4] M. Accetta, R. Baron, W. Bolosky, D. Golub,
R. Rashid, A. Tevanian, and M. Young. Mach: A new
kernel foundation for unix development. 1986.

[5] P. Barham, B. Dragovic, K. Fraser, S. Hand,
T. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield. Xen and the art of virtualization. In
Proceedings of the nineteenth ACM symposium on
Operating systems principles, SOSP ’03. ACM, 2003.

[6] D. R. Engler. The design and implementation of a
prototype exokernel operating system. Master’s thesis,
Massachusetts Institute of Technology, 1995.

[7] P. Gerum. Xenomai - implementing a rtos emulation
framework on gnu/linux. 2004.

[8] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and
A. Liguori. kvm: the Linux virtual machine monitor.
In Ottawa Linux Symposium, July 2007.

[9] M. Lemerre. Intégration de systèmes hétérogènes en
termes de niveaux de sécurité. PhD thesis, Université
Paris Sud - Paris XI, 10 2009.

[10] M. Lemerre, V. David, and G. Vidal Naquet. A
communication mechanism for resource isolation. In
Proceedings of the Second Workshop on Isolation and
Integration in Embedded Systems, 2009.

[11] M. Lemerre, V. David, and G. Vidal Naquet. A
dependable kernel design for resource isolation and
protection. In Proceedings of the First Workshop on
Isolation and Integration in Dependable Systems
(IIDS’2010), Paris France, 2010. ACM.

[12] R. Russel. Lguest: Implementing the little linux
hypervisor. In Ottawa Linux Symposium, July 2007.

