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PREPROCESSING FOR CLASSIFICATION OF SPARSE DATA:
APPLICATION TO TRAJECTORY RECOGNITION

A. Mayoue, Q. Barthélemy, S. Onis and A. Larue

CEA, LIST, Gif-sur-Yvette, F-91191, France

ABSTRACT

On one hand, sparse coding, which is widely used in signal proces-
sing, consists of representing signals as linear combinations of few ele-
mentary patterns selected from a dedicated dictionary. The output is a
sparse vector containing few coding coefficients and is called sparse
code. On the other hand, Multilayer Perceptron (MLP) is a neural
network classification method that learns non linear borders between
classes using labeled data examples. The MLP input data are vectors,
usually normalized and preprocessed to minimize the inter-class cor-
relation. This article acts as a link between sparse coding and MLP
by converting sparse code into convenient vectors for MLP input. This
original association assures in this way the classification of any sparse
signals. Experimental results obtained by the whole process on trajec-
tories data and comparisons to other methods show that this approach
is efficient for signals classification.

Index Terms— Sparse coding, classification, multilayer percep-
tron, trajectories data

1. INTRODUCTION

In signal processing, sparse coding [1, 2, 3] consists of representing si-
gnals as linear combinations of few elementary patterns selected from
a dedicated dictionary. Firstly, a dictionary building algorithm empi-
rically learns the characteristic patterns associated to a representative
database of a signals set. Then, sparse approximation allows to decom-
pose any signals of the considered set with a low number of learned
patterns from the dictionary. The sparse representation results in spike
series which could be visualized in the form of a spikegram (see Sec-
tion 3.2). In literature, sparsity is usually considered to make emerge
from data elements containing relevant information for compression,
denoising and other processings but it lacks for appropriate discrimi-
nation tools in a machine learning point of view.

The well-known method Multilayer Perceptrons (MLP) can ap-
proximate any decision functions and therefore any forms of border
with a simple and effective learning method [4]. This classification
method is thus efficient for many supervised learning pattern recog-
nition process. However, classification methods such as MLP usually
make use of features in the form of standard vectors (i.e. normalized
and reduced sized) for analysis. So, it appears that these classical me-
thods are not suited to classify sparse code in the form of spike series.

This paper presents a preprocessing step to transform sparse code
into classifier input. This preprocessing is an original projection ba-
sed method which converts any sparse code from spikegram form into
convenient vectors adapted to the MLP input. The proposed approach
acts as a link between sparse coding and classical machine learning
methods and thus assures the classification of any sparse signals.

In Section 2, we introduce the Character Trajectories database
that is used throughout the paper to illustrate the different steps of our
recognition method. In this way, in Section 3, we explain sparse coding
principle which extracts useful primitives from data whereas Section 4
details the preprocessing, prior to classification, which converts sparse

code into MLP input vector. Finally, in Section 5 the complete recogni-
tion system is applied to the database and performances are compared
to those obtained by other classification methods.

2. CHARACTER TRAJECTORIES DATABASE

Experimentations have been done on the free available database UCI
Character Trajectories (UCI-CT) [5]. It is composed of 2858 pen tip
trajectories captured using a WACOM tablet. Three components were
kept : vx and vy the cartesian velocities, and the pen tip force p′. Only
characters without pen up were considered, that is why only 20 cha-
racters classes were used instead of 26. One example of each letter is
depicted on (Fig : 1). It is noted that velocity signals have been in-
tegrated to plot the associated trajectories and that pressure p′ is not
represented on the figure. In the following, the database has been split
in two subsets. Half of the database was used for training whereas the
remaining part was kept for the validation step.

Fig. 1. Examples of trajectories from the UCI-CT database.

3. SPARSE CODING METHOD

In this section, we briefly explain the principle of multivariate sparse
coding and we present the visualization of sparse code via a spikegram.

3.1. Multivariate Sparse Coding

A signal y∈RN of N temporal samples and a normed dictionary Φ∈
RN×M composed ofM elementary patterns {φm}Mm=1 are considered.
The sparse decomposition of y is done on the dictionary Φ such that :

y = Φ x+ ε =

M∑
m=1

xmφm + ε s.t. minx ‖x‖0 , (1)

with x∈RM the vector containing the coding coefficients and ε∈RN
the residual error. As explained in [3], the sparse approximation can
be successfully done by pursuit algorithms which select the K stron-
gest energy patterns present in the signal and compute their associated
coding coefficients. Thus, the sparse approximation provides a decom-
position with only K(<< M) active coefficients, indexed by k :

y =
K∑
k=1

xmkφmk + ε . (2)

Dictionary learning [1, 2, 3] is a process which selects and then
learns the strong energy patterns appearing in all signals from the stu-
died database. This learned dictionary Φ is thus adapted to the signals
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set we want to code. Dictionary learning is called sparse coding be-
cause, at the end of the learning process, each signal from the database
can be sparsely coded on the learned dictionary.

From now, we focus on the particular case of shift-invariance [1,
3]. In this case, patterns are shorter than the signal and are potentially
shiftable at all temporal positions of y(t), with t the temporal index for
each sample. Thus, the compact dictionary Ψ is only composed of L
kernels {ψl(t)}Ll=1 which can be translated at all positions τ . Notice
that a kernel characterized by a kernel index l and a temporal position
τ is named atom : ψl(t− τ). Each signal y(t) of the studied dataset is
approximated as a weighted sum of K atoms :

y(t) =

K∑
k=1

xlk,τk ψlk (t− τk) + ε(t) , (3)

with xlk,τk the coding coefficients and ε(t) the residue.
Moreover, through our application, studied signals are multiva-

riate, i.e. they are composed of several components acquired simul-
taneously (vx, vy and p′). Multivariate dictionary learning [3] is able
to deal with multivariate dataset, in such a way that y, ψl and ε are
multivariate signals in the following. A multivariate dictionary Ψ lear-
ned from the training set of the UCI-CT database is then displayed on
(Fig : 2). Each multivariate kernel is composed of the two cartesian
velocities vx (in dashed line) and vy (in dotted line) and of the pres-
sure p′ (in solid line). At the end of the learning process, the dictionary
contains the characteristic multivariate patterns of the database.

Fig. 2. The L = 11 kernels learned on the UCI-CT database. Each
kernel is composed of three components (vx, vy and p′).

3.2. Representation with a spikegram

The sparse decomposition of each Character Trajectories signal on
the learned dictionary given in (Fig : 2) provides coding coefficients
xl,τ . This sparse vector, named sparse code, is usually displayed by a
time-kernel representation called spikegram. It condenses three pieces
of information : the kernel temporal position τ (abscissa) and index l
(ordinate), and the coefficient amplitude xl,τ (spike color).

Four occurrences of sparse decomposition of the letter q are pre-
sented on (Fig : 3). Original (Fig : 3a) and reconstructed (i.e. approxi-
mated) (Fig : 3b) multivariate signals are displayed. The sparse code is
presented in spikegram form on (Fig : 3c). Spikegram can be viewed as
the result of the deconvolution of the signal on the learned dictionary.

By comparing the approximated signals to the original ones, we
can observe that only few atoms are enough to approximate signals
well. The few associated coefficients form the sparse code. Now, we
focus on largest amplitude coefficients, (i.e. spikes from kernels no 2,
7 and 9 (with hot color)) and their repetitions show the reproducibility
of the decompositions, due to the adapted learned dictionary. Thus,
sparsity and reproducibility prove that the representation can be used
with interest for a discrimination purpose.

However, the spikegram form is not suitable for standard classi-
fication methods such as MLP which usually need normalized vector
as input data. The purpose of this paper is to propose a data represen-
tation adapted to the Multilayer Perceptron classifier. Notice that the
introduced representation can be applied on all spike trains data and
not only on those provided by sparse coding methods.

Fig. 3. Original (a) and approximated (b) signals for 4 occurrences of
the letter q and the associated spikegram (c).

4. SPARSE DATA CLASSIFICATION

In this section, we briefly remind the properties of the Multilayer Per-
ceptron and then, we detail the preprocessing, prior to classification,
which converts sparse code into MLP input vectors to guarantee the
use of sparsity for a discrimination purpose.

4.1. Multilayer Perceptron

The Multilayer Perceptron is a flexible machine learning method [4]. It
is the most commonly used form of neural networks for classification
purpose. Such a network consists of a minimum of three layers : an
input layer containing the vector to classify, one or more hidden layers
and an output layer whose result vector allows to classify input vector.

Used as a classifier, MLP is able to learn non linear borders bet-
ween classes of a labeled database. The MLP input data are vectors,
usually normalized and often preprocessed to minimize the interclass
correlation. In this way, the spikegram representation, which is aL×N
matrix containing the values of the decomposition coefficients xl,τ , is
not adapted to be straight classified by MLP.

A first preprocessing method used to fit spikegram to the classi-
fication system would be to simply transform the spikegram matrix
into a LN × 1 vector by concatenating each line of the matrix. But,
the resulting vectors would be too huge to be reasonably processed by
classification methods such as MLP. Considering the small size of the
database (2858 signals set whose only the half is considered for the
training step), the classical methods seem indeed not to be adapted to
deal with all temporal shifts which could appear between the spikes
series of the same class. That is why the preprocessing method that
we present in the following reduces the size of the spikegram while
keeping the maximum information.

4.2. Preprocessing prior to classification

Our preprocessing is illustrated on (Fig : 4). In this section, we explain
it step by step. Firstly, the sparse code of one occurrence of the letter a,
put in the spikegram form, is considered on (Fig : 4a). Then, we define
a temporal Hanning window of fixed size T as :

Hanning(t) =

{
1
2

(
1 + cos

(
2π
T
t
))
, t ∈

[
−T

2
, T

2

]
0 otherwise

. (4)

The spikegram is paved using J temporal Hanning windows as shown
on (Fig : 4b). The center of the first window corresponds to the ap-
pearance of the first atom ψl1(t − τ1) and the following windows are
successively shifted by the half of the window size (i.e. with an over-
lapping of T/2). Zeros are added to each processed signal so that the
number of windows J stays the same whatever the initial length of the
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signal. After that, all signals have the length Nmax of the longest si-
gnal of the database. Parameter J is empirically chosen (see Section
5.2) and T = Nmax

0.5 J
where 0.5 means an overlapping of 50% between

the Hanning windows.
Next, we produce the reduced matrix Mr of size L× J displayed

on (Fig : 4c), with j = 1 .. J the window index. The element Mr(l, j)
corresponds to an atom projection of kernel index l on the Hanning
window centered at τ1 + (j − 1) × T

2
(where τ1 is the first atom

position). So, Mr(l, j) is defined by (Eq : 5) where τk is the position
of the kth atom and xlk,τk its associated coefficient :

Mr(l, j)=

K∑
k=1

Hanning
(
τk−τ1−(j−1)

T

2

)
xlk,τk s.t. lk = l. (5)

Fig. 4. Spikegram data preprocessing. (a) is a spikegram obtained for
one trial of the letter a, (b) represents the Hanning windows and (c)
the matrixMr(l, j) obtained by the projection of the spikegram on the
Hanning windows.

This representation presents several advantages. The data size is
small and fixed without significant loss of information. Indeed, accor-
ding to an hypothesis of sparsity, we can assume that, in practice, there
is only one atom from the same kernel ψl in each Hanning window.
Consequently, the exact atom position τk and the associated coefficient
xlk,τk can be recovered from the values Mr(l, j) and Mr(l, j + 1) .
It is noted that this last remark is only true for an overlapping of 50%
because the sum between the Hanning windows always equals 1 in this
particular case and so :

xlk,τk = Mr (l, j) +Mr (l, j + 1) , (6)

s.t. lk = l and τk ∈
[
τ1 + (j − 1)

T

2
, τ1 + j

T

2

]
.

Finally, each matrix Mr is horizontally vectorized into vector v
and normalized such that :

v((l − 1)J + j) = Mr(l, j) , and v =
v

‖v‖2
. (7)

The reduced vector v is the result of our preprocessing which trans-
forms spikegram representation without loss of information. In its fi-
nal form, it can now be used as input of a standard machine learning
system. Some examples of vector v are illustrated on (Fig : 5). One
occurrence of each letter is displayed on (Fig : 5a) whereas 40 occu-
rences of the same letter a show the repetition of the vectors v for the
same class (Fig : 5b).

Fig. 5. Reduced vectors v computed on sparse code from the UCI-
CT database. (a) Each row corresponds to the vector v representative
of one letter (from a to z). (b) Each row corresponds to the vector v
representative of one (among 40) occurence of the letter a.

5. EXPERIMENTATION

In this section, experimental context for classification is first presented.
Then, we explain how parameters are chosen. Finally, our approach is
evaluated and compared to other classification methods which have
been already applied to the UCI Character Trajectories database.

5.1. Experimental context

Experimentations have been done on the UCI-CT database. It is remin-
ded that 50% of the data were randomly used to train the dictionary Ψ
and the MLP (Training Set TS), while the other part was kept for the
test phase (Validation Set V S), repeating the randomly selection ten
times to increase the results precision. Data are divided in 20 classes
corresponding to the 20 letters. The class index is denoted by c.

In order to compare performance of the MLP classification method
on sparse data, we apply two other classification systems to the extrac-
ted vectors v : Mean Vectors and Perceptron methods. Both systems
are linear projections, i.e. each vector v is projected onto 20 reference
vectors Vc for each of the 20 letters from the database. The class with
the highest projection value is then the given system classification re-
sult : ĉ = arg maxc(Vc · v), where Vc · v is the inner product between
the c class reference vector Vc and the vector v to be classified.

The first projection method named ‘Sparse Coding + Mean Vector’
is a simple generative system which consists of describing each class
c as the mean of all training set vectors of the class c.

Vc = mean(v), v ∈ TS s.t. class(v) = c . (8)

The second projection method named ‘Sparse Coding + Percep-
tron’ consists of finding the reference vectors Vc which best discrimi-
nates the different classes c to each other. The vectors Vc are computed
using a Perceptron. This method is a two layers MLP (a MLP without
hidden layer and with linear borders). The Perceptron has 20 output
neurons, i.e. one neuron for each class c. The activation function is
ϕ = tanh(.). The Perceptron is trained (update of Vc and bias bc) on
TS so that the value zc of the cth output neuron equals 1 if the class of
the input vector v is c while other output neurons equal −1. Thus, the
Perceptron minimizes the quadratic error E between the Perceptron
output zc and the target value tc for a vector v of class c according to :

zc(v) = tanh(Vc · v + bc) , (9)

E =
∑
v∈TS

(zc(v)− tc)2 , (10)[
V̂c, b̂c

]
= arg min[Vc,bc]

(E) . (11)
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Finally, we evaluate the MLP classification system, with 20, 50
and 100 hidden neurons. The higher the number of hidden neurons
is, the more MLP can learn complex borders. However with the low
number of database examples, the overfitting risk increases. According
to Perceptron, MLP has 20 output neurons (one for each letter). The
MLP target output tc and input v are the same as for the Perceptron.

5.2. Parameters choice

We explain the choice of our parameters and see their influence on the
MLP recognition rate. We set the same spikegrams and feature prepro-
cessing parameters for all experimentations. As explained in [3], para-
meters for sparse coding are set in order to obtain a good compromise
between square error of signals approximation and the sparsity cha-
racterized by the number of kernel L and the number of active atoms
K. Following experiments on TS, we choose L = 11 kernels for the
dictionary and a maximum of K = 10 atoms for decompositions.

The only preprocessing parameter is the number of Hanning win-
dows J . It is set to maximize the recognition rate of the complete sys-
tem (see Table 1). In this way, we set J = 5 windows for each signal,
what gives L×J = 55 elements for each vector v. Moreover, as men-
tioned in Section 4.2, an overlapping of 50% between the Hanning
windows is the best choice to have no significant loss of information
during the preprocessing step. We validate this choice through experi-
ments carried out on the UCI-CT database with different values for the
overlapping (see Table 2).

Table 1. Recognition rates obtained by a MLP (20 hidden neurons) on
UCI-CT database for different numbers J of Hanning windows (with
an overlapping of 50%).

Nb of windows 3 4 5 6 7
Recognition rate (%) 94.5 95.2 96.3 96.2 96.1

Table 2. Recognition rates obtained by a MLP (20 hidden neurons)
on UCI-CT database for different values of overlapping between the
Hanning windows (with J = 5).

Overlapping (%) 30 40 50 60 70
Recognition rate (%) 95.9 96.1 96.3 95.9 95.7

5.3. Evaluation

On top of the classification methods (Mean Vector, simple Perceptron
and MLP) presented in Section 5.1 and applied on the sparse code,
three state-of-the-art classification methods have been evaluated on
this database (but without sparse coding) : a Top Kernel (TK) [6], a
Fisher Kernel (FK) [7] and a Hidden Markov Models (HMM) based
method [8]. Recognition rates obtained for all trajectories classifica-
tion systems on the Validation Set of the UCI-CT database are resumed
in Table 3. We can see that the association of Sparse Coding and a dis-
criminative method (Perceptron or MLP) outperforms other systems
with respectively 95.3% and 97.1% of good classification. Moreover,
we obtain better results than the state-of-the art (TK, FK and HMM)
with linear classification system (Perceptron) and a recognition rate
near to 80% with a simple ‘Mean Vector’ projection method. Thus,
sparse coding preserves discriminative information and preprocessing
provides convenient vectors for classification.

Concerning the projection classification methods, the ‘Perceptron’
and the ‘Mean Vectors’ approaches are quite different. The ’Mean Vec-
tors’ reference vectors Vc are learned to best describe each class. On
the contrary, the ’Perceptron’ learning phase provides reference vec-
tors Vc which best discriminate the different classes to each other. The
results prove that information used to describe the trajectories are less
relevant than those used to perform discrimination in a classification
purpose.

Regarding the number of hidden neurons for the MLP, we note
that the recognition rates are not very sensitive to this parameter. In-
deed, multiplying by 5 the number of hidden neurons improves the
results of only 0.8%. A number of 100 hidden neurons seems a good
compromise between the MLP complexity and the recognition rate.

Table 3. Recognition rates on UCI-CT database for the state-of-the-art
methods (TK, FK and HMM) and different settings of our method.

Methods Recognition rate
Sparse Coding (SC) + Mean Vector 78.3 %
SC + Perceptron 95.3 %
SC + MLP (20 Hidden Neurons) 96.3 %
SC + MLP (100 Hidden Neurons) 97.1 %
SC + MLP (200 Hidden Neurons) 96.7 %
TK [6] 93.67 %
FK [7] 89.26 %
HMM [8] 92.91 %

6. CONCLUSION

In this paper, we have presented an original trajectories classification
system based on a preprocessing method that is necessary to adapt
sparse code into convenient normalized vector for classification. The
sparse coding approach is explained, showing its relevance to describe
multivariate signals. Then, we have described an original preproces-
sing which keeps the sparse coding advantages while providing easily
exploitable inputs for standard classification methods. Finally, this sys-
tem has been applied to trajectories recognition and has been compared
to other classification systems. The results illustrate the efficiency of
preprocessed sparse coded data for multivariate signals classification
tasks, especially used as Perceptron or MLP input. With our original
preprocessing approach, this paper can be considered as a first step to
link classification methods to sparse coding.
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