
An Empirical Comparison of Learning Algorithms for

Nonparametric Scoring

Marine Depecker, Stéphan Clémençon, Nicolas Vayatis

To cite this version:

Marine Depecker, Stéphan Clémençon, Nicolas Vayatis. An Empirical Comparison of Learning
Algorithms for Nonparametric Scoring. 2011. <hal-00730434>

HAL Id: hal-00730434

https://hal.archives-ouvertes.fr/hal-00730434

Submitted on 10 Sep 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00730434

DRAFT manuscript No.
(will be inserted by the editor)

An Empirical Comparison of Learning Algorithms for

Nonparametric Scoring

The TreeRank Algorithm and Other Methods

Stéphan Clémençon · Marine Depecker · Nicolas Vayatis

the date of receipt and acceptance should be inserted later

Stéphan Clémençon · Marine Depecker

Télécom ParisTech

LTCI - UMR CNRS 5141

Paris, France

Tel.: +33-1-45817807

Fax.: +33-1-45817158

E-mail: stephan.clemencon@telecom-paristech.fr

Nicolas Vayatis

ENS Cachan & UniverSud

CMLA - UMR CNRS 8536 Cachan, France

 !"#$%&'($

DRAFT manuscript No.
(will be inserted by the editor)

An Empirical Comparison of Learning Algorithms for

Nonparametric Scoring

The TreeRank Algorithm and Other Methods

the date of receipt and acceptance should be inserted later

Abstract The TreeRank algorithm was re-

cently proposed in [1] and [2] as a scoring-based

method based on recursive partitioning of the

input space. This tree induction algorithm builds
orderings by recursively optimizing the Receiver

Operating Characteristic (ROC) curve through

a one-step optimization procedure called Leaf-

Rank. One of the aim of this paper is the in-
depth analysis of the empirical performance of

the variants ofTreeRank/LeafRankmethod.

Numerical experiments based on both artificial

and real data sets are provided. Further exper-

iments using resampling and randomization, in
the spirit of bagging and random forests are de-

veloped ([3], [4]) and we show how they increase

both stability and accuracy in bipartite rank-

ing. Moreover, an empirical comparison with
other efficient scoring algorithms such asRank-

Boost and RankSVM is presented on UCI

benchmark data sets.

Keywords Scoring rules · Ranking trees ·

ROC curve · AUC Maximization · Resampling ·

Feature randomization

1 Introduction

In the last decade, learning to rank signals, web

pages, individuals, organizations, has affected

critical aspects of modern society. But behind
the very concept of ’ranking’, very diverse se-

tups and numerous types of data may be con-

sidered. One of the subproblems in the rank-

ing literature which has drawn a lot of atten-

tion is known as ranking with bipartite feed-

back or bipartite ranking [5]. In short, bipar-

tite ranking can be cast as the problem of or-
dering instances x of a possibly high dimen-

sional space X based on a binary feedback in-

formation y ∈ {−1,+1} attached to every in-

stance x. The type of applications we have in
mind are those related to scoring high dimen-

sional observation vectors with binary labels,

such as medical diagnosis or credit-risk screen-

ing. Several methods and algorithms can be ap-

plied to produce scoring rules for bipartite rank-
ing: plain (or Kernel) Logistic Regression

[6], [7], LogitBoost [8],RankBoost (see [5]),

RankSVM [9], RankLS [10], RankNet (see

[11]), and many others. In the present paper, we
will mainly consider a promising tree-based pro-

cedure calledTreeRank recently developed and

described in [1], [2]. We will explain how it dif-

fers from other algorithms in its very princi-

ples and explore its performance by providing
an intensive experimental study, jointly with a

fair comparison with other methods available in

open source programming environments.

The guide for this study is the type of met-
rics used for performance assessment. In sig-

nal detection or medical diagnosis, the most

complete description of the performance of a

real-valued scoring rule is the ROC curve which

plots the true positive rate as a function of the
false positive rate as the detection threshold

varies. However, as a function-like criterion, it

only provides a partial order on the class of all

possible scoring rules and it is quite difficult

 !"#$%&%'()$*+,-#./

 !"#$%&'('%)*%+"',%!"-$'.%/'0'('-#'1

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

2

to optimize in practice. The mostly used ref-

erence performance measures are summaries of
the ROC curve and the most popular certainly

is the Area Under the ROC Curve, or AUC.

The drawback of this type of measure lies in

the fact that it is a global measure and does

not take into account the errors among the top
of the list (highest scores). Various approaches

for providing local measures of scoring perfor-

mance related to the ROC curve have been pro-

posed [12], [13], [14] or [15] and such metrics will
be considered for assessing performance. There

are numerous different criteria such as the Dis-

counted Cumulative Gain, the Hit Ratio@x%,

the Average Precision@n, and their variants (we

refer to [16] for an extensive enumeration and
discussion regarding all these criteria). Interest-

ingly, the main feature of modern learning al-

gorithms consists of performance maximization

(or risk minimization, equivalently) and one ex-
pects that the closer the optimization risk func-

tional is to the actual target risk functional,

the better the performance evaluated on test

data sets. This observation is the foundation

for many machine learning algorithms extend-
ing the principle of convex risk minimization

developed in the classification setup to the case

of data conceived as pairwise comparisons [17].

The answer to the standard questions of regu-
larized learning methods (choice of cost func-

tions, penalty or dynamics - boosting or SVM-

type) then determines specific ranking algorithms.

For instance,RankBoost implements AUC max-

imization in the spirit ofAdaBoost,RankSVM
proposes to fit an SVM algorithmwith the hinge

loss, RankLS uses the least-squares as a cost

function, and RankNet follows the spirit of

Neural Networks with an entropy-based cost
function. The common feature of these algo-

rithms is that they rely on pairwise compar-

isons (preferences) between labels and scoring

functions. We emphasize the fact that the prin-

ciple of performance maximization actually dif-
fers from the classical statistical methods used

in scoring applications. Indeed, it appears that

the mainstream scoring method of logistic re-

gression is based on the conditional maximum
likelihood maximization [6] and aims at model-

ing the unknown posterior probability

η(x) = P {Y = +1 | X = x} .

This makes sense since the function η actually

defines the optimal scoring rule in the sense of

the ROC curve [1]. Besides, statistical learn-

ing theory has established connections between
convex risk minimization with classification -

calibrated costs and logistic regression ([8]) and

this idea has been further developed in kernel

logistic regression algorithms ([7] and references

therein). In these algorithms, the parametric es-
timation step of logistic regression is replaced

by nonparametric estimation where an SVM-

type convex optimization problem is solved. Ev-

entually, an estimate of the function η is pro-
vided by plugging-in the solution of the opti-

mization step in a closed-form expression for η.

Such methods seem to offer reasonable competi-

tors to RankBoost. However, from the the-

oretical side, they present serious drawbacks.
Indeed, in case that the statistical model used

to represent the regression function is wrong,

there are no guarantees about the stability of

the estimated scoring rule. Such plug-in meth-
ods suffer from the curse of dimensionality and

convex risk minimization methods are known to

fail in the estimation of the regression function

([18],[19]). Hence, methods based on perfor-

mance, such as RankBoost offers more guar-
antees than statistical estimation methods in

leading to efficient ranking rules as their prin-

ciple relies on the very optimization of one of

the objective performance metrics for bipartite
ranking. On the other hand scoring-basedmeth-

ods provide a richer output as they give a finer

local description of the ’ranking’. Indeed, the

limitation of RankBoost lies in the fact that

AUC is a global criterion. Therefore there is no
reason why methods like RankBoost should

perform well on, say, the top 10% of instances

in X .

In the present paper, we propose to explore

the empirical performance of TreeRank and
a series of its variants (alternative splitting rule

called LeafRank, and Ranking Forests, see

[1], [2], [4]). The interesting feature of theTree-

Rank algorithm is that it takes the best of the
two approaches previously described. Indeed,

the TreeRank procedure uses decision trees to

build a scoring rule which estimates the optimal

ordering as induced by the regression function

η, while maximizing the Area Under the ROC
Curve (AUC) in a recursive manner. The one-

step AUC maximization is implemented with a

splitting rule called LeafRank which can be

seen as an algorithm resolving a cost-sensitive

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

3

classification problem with data-dependent cost

(see [2]). The reason why this method can po-
tentially perform better than RankBoost is

thatTreeRank/LeafRankmethod optimizes

the ROC curve in a stronger sense than the

AUC (in sup-norm namely, see [1]). It also avoids

the drawbacks of statistical estimation methods
as it does not aim at the direct estimation of the

regression function (only the ordering induced

matters here, and not the actual values of the

scoring rule).

The structure of the paper is the following.
In Section 2, the setup and the notations are

introduced. Section 3 presents the ranking al-

gorithms under study in this paper, including

TreeRank/LeafRank, Ranking Forests,
and competitors such as RankBoost, Ran-

kLS, or RankSVM. The main results can be

found in the numerical experiments described

in Section 4. The conclusions are gathered in

the discussion of Section 5.

2 The scoring problem in presence of

classification data

We first introduce concepts from probabilistic

modeling which describe the nature of the bi-

partite ranking problem. We shall refer here to

the optimal elements for bipartite ranking and

to the performance measures that can be re-
tained to capture the optimal decision rules.

2.1 Setup

Probabilistic model. The probabilistic setup for
bipartite ranking is the same as for binary clas-

sification. The data appear as a sample Dn =

{(Xi, Yi) : 1 ≤ i ≤ n}, and we assume that the

(Xi, Yi)’s are i.i.d. realizations of a random pair
(X,Y), where X lies in a feature space X and Y

is a binary label in {−1,+1}. The joint proba-

bility distribution of the pair (X,Y) can be de-

scribed, for instance, by PX the marginal distri-

bution of X and the regression function η(x) =
P (Y = +1 | X = x), ∀x ∈ X . We also use the

notation p = P(Y = +1).

Optimal scoring rules. It is well-known that the
target of binary classification is the level set

R∗ = {x ∈ X : η(x) > 1/2} ([20]). Indeed,

predicting y = +1 on any x ∈ R∗ and y = −1

otherwise is the best possible decision in this

case. Now, if the problem is how to order the

instances of X in such a way that positively la-
beled data appear on top of the list with high

probability, then the optimal decision rules con-

sist of real-valued scoring functions which imi-

tate the ordering induced on X by the regres-

sion function η. In previous works ([1],[21]), we
have showed that the following statements are

true:

• The class of optimal scoring functions are

strictly increasing transforms of the regres-

sion function.

They are of the form: s∗ = T ◦ η, for some

measurable function T : R → R, whose re-

striction to the range of η(X) is strictly in-

creasing.
• Optimal scoring rules can be obtained from

the entire collection of level sets of the re-

gression function η.

Indeed, they can be represented as: ∀x ∈ X ,

s∗(x) = c+
∫ 1

0 w(u) · I{η(x) > u} du, where
c ∈ R, w > 0.

• Bipartite ranking may be viewed as a con-

tinuum of classification problems.

This fact follows from the representation of
s∗. Finding optimal scoring rules boils down

to recovering the whole class of level sets:

{{η(x) > u}, u ∈ [0, 1]}.

• The ROC curve fully describes the perfor-

mance of scoring functions in the bipartite

ranking setup.

As a matter of fact, for a given distribu-

tion PX , optimal scoring rules s∗ have an

ROC curve above the ROC curve of any
other scoring rule s. An easy bipartite rank-

ing problem corresponds to the case where

class-conditional distributions (distribution

of X given the class label Y) are far from

each other. On the opposite, in the case when
there is an important overlap between the

two class-conditional distributions, the op-

timal ROC curve becomes close to the diag-

onal line.

2.2 Performance measures for scoring

Most of machine learning algorithms involve a

functional optimization step. One of the main
contributions of statistical learning theory has

been the understanding of the connection be-

tween the optimization performed and the per-

formance metrics for assessing the quality of

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

4

prediction ([17]). The choice of an objective cri-

terion determines the optimal elements for a
given problem and allows to have a baseline

to compare prediction results for various meth-

ods. In the case of binary classification, consid-

ering that performance of a classifier g : X →

{−1,+1} is measured with the misclassification
rate L(g) = P

(
Y 6= g(X)

)
implies that the opti-

mal classifier is the indicator of the level set R∗.

Now, if the criterion puts asymmetric weights

on the two types of error

Lw(g) = 2wP
(
Y = +1, g(X) = −1

)

+ 2(1− w)P
(
Y = −1, g(X) = +1

)
,

then the optimal classifier is the indicator of a
level set of the regression function whose level is

equal to w. In addition, most of the efficient al-

gorithmic approaches, such as boosting or Sup-

port Vector Machines, actually optimize sur-
rogate (convex) risk functionals. Under rather

weak assumptions, optimizing the surrogate cri-

terion actually optimizes the misclassification

rate and proving this fact was definitely one of

the major achievements in the recent years (see
[22]).

The ROC curve and the AUC. When it comes
to scoring applications, the golden standard def-

initely is the ROC curve ([23]) as it represents

the discrimination ability of a scoring rule at

all levels. The ROC curve of a scoring rule s

plots the true positive rate βs(t) = P
(
s(X) >

t | Y = +1
)
against the false positive rate

αs(t) = P
(
s(X) > t | Y = −1

)
as the threshold

t varies from −∞ to +∞. However, the ROC

curve is a complex object to optimize as it rep-
resents a function-like criterion. It mainly serves

as a visual display of performance used a pos-

teriori (i.e. after training the scoring rule). A

simpler object is the functional defined by the

Area Under the ROC Curve, known as the AUC
which can be interpreted as the probability of

concordant pairs:

AUC(s) = P
(
s(X) > s(X ′) | Y = 1, Y ′ = −1

)

+
1

2
P
(
s(X) = s(X ′) | Y = 1, Y ′ = −1

)
,

where (X,Y) and (X ′, Y ′) are i.i.d. pairs of ob-

servations.

Remark 1 In the case of preference-based rank-

ing, then individual labels are not available and

there exists no ROC curve for a preference func-

tion. However, it is possible to extend the def-
inition of AUC to this setup. Indeed, denote

preference data by triples of the form (X,X ′, Z)

where X,X ′ ∈ X , and Z ∈ {−1, 0,+1}. Then a

preference function π : X × X → {−1, 0,+1}

has an AUC defined by

AUC(π) = P
(
π(X,X ′) > 0 | Z = +1

)

+
1

2
P
(
π(X,X ′) > 0 | Z = 0

)
.

Note that a scoring rule s leads to the obvi-

ous choice for a preference function : π(x, x′) =
s(x)−s(x′) (see [24] for details and optimal ele-

ments for preference data). The converse is less

straightforward (see for example [25]).

An important limitation of the AUC is that

it only measures the quality of a scoring / or-

dering in a global manner. Two scoring rules

may present the same AUC and simultaneously
have a very different behavior. Indeed, the rel-

ative weight of a discordant pair (x, x′) is only

a function of the difference s(x) − s(x′) of the

scores between the two instances and not of
their position over the range of s. This is a

crucial remark, especially as in most applica-

tions involving ranking problems people often

focus on the instances with highest scores (cor-

responding to the part of the ROC curve close
to the origin). As highlighted in [13], page rank-

ing, credit risk screening or medical diagnosis

are good examples of fields in which priority is

given to observations among the top scores. In-
deed, in credit risk screening for instance, the

main objective will be to identify potential risks

among the best candidates for a credit. In a

similar way, main objective in medical diagno-

sis will be to ensure correct diagnosis among the
more risky patients of a cohort. There exist sev-

eral criteria which emphasize the highest scores

: the Average Precision (AP), the Predicted-

Rank-of-Top (PROT), the Coverage, the Dis-
counted Cumulative Gain (DCG), the p-norm

push ([15]). Most of these criteria can be re-

lated to linear rank statistics as shown in [13]

and [14], but they are not necessarily related to

specific algorithms maximizing them.

Local AUC. In [13], a truncation of the AUC

called the local AUC has been introduced which

examines performance in the sense of the AUC

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

5

but only at the top of the ranked list. The trun-

cation is shown to be consistent with the bipar-
tite ranking problem as the regression function

η or any strictly increasing transform of it is

still optimal. Fix u ∈ (0, 1) the rate of best in-

stances and let t∗ = t(s, u) be the corresponding

threshold: u = P
(
s(X) > t∗

)
. We take the nota-

tions: α∗ = αs(t
∗) and β∗ = βs(t

∗), which are

determined as the coordinates of the intersec-

tion of the control line du : u = pβ + (1 − p)α

in the ROC space with coordinates (α, β) with
the ROC curve (see Figure 1). Then, the Local

AUC is defined by:

LocAUC(s, u) = β∗(1− α∗)

+

∫ α∗

t=0

βs ◦ α
−1
s (t) dt,

where α−1
s (t) = inf{u ∈ (0, 1) : αs(u) ≥ t}

for all t ∈ (0, 1). Instead of putting more weight

on top-ranked instances, the local AUC only fo-

cuses on the top of the list with a truncation.

Fig. 1 The ROC curve, the control line and the
LocAUC criterion.

Other measures. The tree-based approach con-

sidered in this paper focuses on the ROC curve

and the AUC. In the experimental section, we

will also consider other criteria for complete-

ness. We shall provide the Average Precision as
well as the Hit Rate.

3 TreeRank and other scoring methods

Our focus in the paper lies in the scoring-based

method proposed in [1] and [2], using recursive

partitioning in the spirit of decision trees. In

the present section, we introduce the main ideas
and the algorithms in this approach, as well as

some of its competitors.

3.1 Presentation of TreeRank and its

variants

Ranking trees. Scoring rules output by Tree-

Rank/LeafRank can be described as oriented

binary trees, called ranking trees. Ranking trees

are defined by two elements: (i) a partition of
the input space X into cells, and (ii) a permu-

tation on the cells which indicates the ordering

induced by the rule. Denote by TD the binary

tree of depthD ≥ 0 which represents a recursive
partition of the input space X . Let us equip the

tree with a left-to-right orientation. We then ob-

tain a collection of scoring rules stored in a tree-

like structure (see Figure 2). The root of the tree

is C0,0 = X , and each internal node Cd,k, with
0 ≤ d < D and 0 ≤ k < 2d, corresponds to a cell

in X and splits into two non-empty cells Cd+1,2k

(left sibling) and Cd+1,2k+1 = Cd,k \ Cd+1,2k

(right sibling). Any subtree T ⊂ TD can then
be used to define a pre-order on X : all elements

in the same terminal cell will be considered as

ties, and the ordering is induced by the left-

to-right orientation of the subtree. The scoring

rule is then defined as:

sT (x) =
∑

Cd,k:terminal cell

2D(1−k/2d)·I{x ∈ Cd,k}.

Fig. 2 Ranking tree.

Recursive partitioning for ranking. The Tree-

Rank algorithm has been recently introduced

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

6

in [1] and its theoretical properties have been

discussed there in detail. We now recall the prin-
ciple of this method. The algorithm follows the

principle of CART proposed in [26], excepts that

it builds an oriented binary tree and uses a split-

ting rule which implements AUC maximization

at the node level (optimization step). Consider
(X1, Y1), . . . , (Xn, Yn), a sample of classification

data. One of the findings of the analysis is that

the optimization step corresponds to solving a

cost-sensitive classification problem. At a given
node, the cell C is split into two parts C+ and

C− = C \ C+ so that the weighted empirical

error

L̂C,ω(Γ) =
2(1− ω)

n

n∑

i=1

I{Xi ∈ C \ Γ}I{Yi = 1}

+
2ω

n

n∑

i=1

I{Xi ∈ Γ ∩ C}I{Yi = −1} .

is minimized at Γ = C+, for an adaptively cho-

sen value of the weight ω. Then the TreeRank

algorithm for the recursive optimization of the

ROC curve can be formulated as follows. We
point out that the class of candidate sets Γ is

determined by the choice of a splitting rule.

The TreeRank Algorithm

• Initialization. Start with C0,0 = X .

• Itérations. For d = 0, . . . ,D − 1 and
k = 0, . . . , 2d − 1 ,

1. Set nd,k =
∑

n
i=1 I{Xi ∈ Cd,k}. Compute

the rate of false positives in cell Cd,k:

α
(
Cd,k

)
=

1

nd,k

·

n∑

i=1

I{Xi ∈ Cd,k} · I{Yi = +1}.

2. Minimize L̂Cd,k,ω(Γ) with

ω = ωd,k = α(Cd,k) .

3. Set Cd+1,2k = C+ the minimizer, and
Cd+1,2k+1 = Cd,k \ Cd+1,2k.

• Output. Oriented binary tree

TD = {Cd,k : 0 ≤ d ≤ D, 0 ≤ k < 2d}.

Splitting rules. The choice of a splitting rule

relies on the the trade-off between efficiency
and computability. In plain decision trees, sim-

ple rules are retained such as orthogonal splits.

Here the task being more involved, more com-

plex splitting rules may be considered. In prin-

ciple, any classification algorithm with an easy
tuning of asymmetric costs can do the job. In

([2]), a specific splitting rule is proposed, called

LeafRank which uses the TreeRank algo-

rithm at the node level recursively to build a
partition and then splits the cells of this parti-

tion into two categories: one collection of cells

going to the left sibling node, and the rest going

to the right sibling node. The classification of

cells relies on a result which states that, for a
fixed partition, the optimal permutation in the

sense of the AUC is the one corresponding to a

monotone ordering of the ratio of true positive

rate over false positive rate per cell. The ad-
vantage of LeafRank is that it uses orthogonal

splits and hence preserves the interpretability of

the scoring rule. It is possible indeed to recover

measures of importance of the variables and of

dependence between them (see [2]). An alter-
native to LeafRank is to use a cost-sensitive

version of a SVM classifier (see [27]), which in-

creases the complexity of the scoring rule but

at the same time, interpretability of features is
lost.

Pruning.Decision trees are known to suffer from

overfitting as you can end up with one observa-

tion per cell. Beyond using arbitrary stopping
rules, more can be done with pruning. Pruning

consists in removing subtrees from the complete

tree grown with a given splitting rule. This can

be done in several ways and we consider here

the simple option of taking a linear penalty with
a constant calibrated through cross validation.

The penalized criterion is the following:

ÂUC(sτ) + λ ·#P(τ) ,

where τ is a pruned tree, sτ is the correspond-
ing scoring function, ÂUC(s) is the empirical

counterpart of the AUC, #P(τ) is the cardinal

of the partition induced by τ on the input space

X , and λ is a constant to be estimated through
cross validation.

Resampling and randomization. Aggregation pro-

cedures in machine learning are known to im-

prove both performance and robustness of de-

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

7

cision rules. This principle underlies numerous

algorithms derived from bagging and boosting
methods. Using the idea of resampling and ag-

gregation, a collection of scoring rules can be

built from many bootstrap samples in the spirit

of bagging methods. By adding the ingredient

of randomization an analogue to random forests
called Ranking Forests can be derived (a pre-

sentation is given in [4]). For completeness, its

description is provided in the box below.

The force of TreeRank. The strengths of the

TreeRank algorithm are numerous. First, it

possesses the main features of tree-based deci-
sion rules from the algorithmic point of view. It

is also straightforward to read the contribution

of latent variables when using decision trees as

splitting rules at each node. One ranking tree by
itself also suffers the same drawback as CART,

and that is instability. Variants based on ag-

gregation of many ranking trees, such as bag-

ging and ranking forests, lead to more robust

methods and improve performance significantly
as shown in the experimental section. Another

important feature of TreeRank lies in its the-

oretical soundness. Indeed, it can be shown (see

[1]) that the scoring rule output by TreeRank
produces near-optimal ROC curves in the sup-

norm sense.

3.2 Other learning methods for ranking and

scoring classification data

The optimization principles underlying several
algorithms used in bipartite ranking are of two

types: those which focus on the optimization

of the target performance measure and those

which aim at recovering the target regression
function η(x) = P{Y = +1 | X = x}, ∀x ∈ X .

In the first category belong methods with an op-

timization based on a pairwise criterion. This is

indeed the case with AUC maximization meth-

ods such as RankBoost, RankSVM, Ran-
kLS. Other algorithms like RankNet optimize

a nonconvex criterion but they also use pair-

wise cost functions. Among the methods which

focus on the optimal function to recover, we
consider classification methods which output a

real-valued scoring function such as Logistic

Regression,AdaBoost and LogitBoost, or

Kernel Logistic Regression among others.

RankBoost ([5]). This method mimics Ad-

aBoost in the pairwise setup. It boils down

to the optimization of the following criterion

2

n(n− 1)

∑

i<j

exp{(Yi − Yj)(f(Xi)− f(Xj))} ,

f being a linear combination of weak ranking
rules. Weak ranking rules involved are decision

stumps.

The functional above is a proxy to the empirical

AUC.

RankSVM and RankLS (resp. [9] and [10]).
These two methods are export the SVMmethod-

ology to set a pairwise criterion of the form

2

n(n− 1)

∑

i<j

d
(
Yi−Yj, f(Xi)−f(Xj)

)
+λ‖f‖K,

where f(x) =
∑n

i=1 αiK(x,Xi), λ is a smooth-

ing parameter and ‖f‖K is the RKHS norm of

f related to the kernel K.
In the case of RankSVM the loss function d is

the hinge loss d(u, v) = (1 − uv)+, while for

RankLS, it corresponds to the least-squares

criterion d(u, v) = (u− v)2.

RankNet ([11]). Here the cost function used is

based on cross entropy between the target value

of the probability of a pair and the estimated

probability

d
(
Yi − Yj , f(Xi)− f(Xj)

)
= −∆i,j log πi,j

−(1−∆i,j) log(1− πi,j),

where

∆i,j =
1 + (Yi − Yj)/2

2
∈ {0, 1/2, 1} , and

πi,j = π(f(Xi)− f(Xj)) =
ef(Xi)−f(Xj)

1 + ef(Xi)−f(Xj)
.

and the candidate functions f have the same

structure as neural nets.

Note that the cost function can also be written

as:

d
(
Yi − Yj , f(Xi)− f(Xj)

)
=

log
(
1 + ef(Xi)−f(Xj)

)
− ∆i,j

(
f(Xi)− f(Xj)

)
.

LogitBoost ([8]) and Kernel Logistic Re-
gression ([7]).

These two methods do not involve pairs of ob-

servations and therefore belong to classification

methods, except that they output a real-valued

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

8

The Ranking Forest Algorithm

1. Parameters.

– B number of bootstrap replicates,

– n∗ bootstrap sample size,

– tuning parameters of TreeRank - depth D and presence/absence of pruning,

– FR feature randomization strategy,

– d pseudo-metric over orderings.

2. Bootstrap profile makeup.

(a) (Resampling step.) Build B independent bootstrap samples D∗
1 , . . . , D

∗
B , by drawing with

replacement n∗ ·B pairs among the original training sample Dn.

(b) (Randomized TreeRank.) For b = 1, . . . , B, run TreeRank combined with the feature
randomization method FR based on the sample D∗

b , yielding the ranking tree T ∗
b , related to

the partition P∗
b of the space X .

The aggregation results from a median ranking rule over the largest subpartition P∗ extracted
from the collection of partitions implemented by the ranking trees. Indeed, every ranking tree T
induces an ordering �T over the cells of P∗ and the median ranking tree induces an ordering
defined as the solution of a distance minimization problem.

�∗= argmin
�∈R(P∗)

∑

T

d(�,�T) ,

where R(P∗) denotes all possible orderings of cells in the subpartition P∗, and d defines a distance
between orderings, such as the Kendall tau (count of concordant pairs when comparing the two
orderings), Spearman rule (L1 distance between the orderings seen as vectors) or Spearman
correlation coefficient (L2 distance between the orderings), for instance.

3. Aggregation. Compute the largest subpartition partition P∗ =
⋂

B
b=1 P

∗
b . Let �

∗
b be the ranking

of P∗’s cells induced by T ∗
b , b = 1, . . . , B. Compute a median ranking �∗ related to the bootstrap

profile Π∗ = {�∗
b : 1 ≤ b ≤ B} with respect to the metric d on R(P∗):

�∗= argmin
�∈R(P∗)

B∑

b=1

d(�,�∗
b) ,

as well as the scoring rule s�∗,P∗(x).

function which, in theory, is related to the tar-

get regression function η. The criterion used in

both methods is the following:

1

n

n∑

i=1

log (1 + exp{−Yi · f(Xi)}) ,

or (if Yi ∈ {0, 1})

1

n

n∑

i=1

(−Yi · f(Xi) + log (1 + exp{f(Xi)})) .

An iterative boosting-type procedure is used for

the optimization in LogitBoost, while Ker-

nel Logistic Regression relies on convex

risk minimization with a penalty proportional

to the RKHS norm of f .

P-norm Push ([15]). The criterion used in this
method is very similar to RankBoost but the
idea is to put more weight on the largest dis-
crepancies. The algorithm implements the opti-
mization of the following criterion:

2

n(n − 1)
·

n∑

i=1

n∑

j=i+1

exp {(Yi − Yj)(f(Xi)− f(Xj))}

p

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

9

with p ≥ 1, and f being a linear combina-

tion of weak ranking rules as in RankBoost.
We point out that in the case where p = 1, the

P-norm Push is the same algorithm as Rank-

Boost, larger values of p put more emphasis on

the largest scores.

In the present paper, we only consider those

methods for which there is a publicly available

implementation:KLR,RankBoost,RankLS,

RankSVM,AdaBoost and also P-norm Push.

4 Numerical experiments

4.1 Data sets

The methods presented in the paper have been

tested on several data sets, both real (10) and

artificial (3).

– Artificial data sets are gaussian mixtures, in

the space R20, called GaussEasy20d, Gauss-

Med20d and GaussHard20d. They have an

increasing complexity as the distance between
the centers decreases. The covariance matri-

ces for each class conditional distributions

can be different but both are diagonal.

– Real data sets are ten benchmark data from

the UCI repository and available at

<http://archive.ics.uci.edu/ml/>

with their characteristics given in Table 1.

4.2 Description of algorithms

In the series of experiments presented in this
section, several variants ofTreeRank have been

tested and compared among each other and to

their main competitors. More precisely, we first

compare twelve variants of TreeRank on the

three simulated toy examples. We then retain
eight of them for an insightful comparison on

the benchmark datasets from the UCI reposi-

tory. Eventually, we compare two well-performing

versions of the TreeRank algorithm with the
six methods previously cited :RankBoost,Ran-

kLS, RankSVM, KLR, AdaBoost and P-

norm Push.

Before specifying the TreeRank versions
considered in these experiments, we first state

some general observations and notations regard-

ing the parametrization of these algorithms.

As explained in 3.1, any classification method

can be used as splitting rule for growing a rank-
ing tree, the choice of it mainly depending on

the expectations of the user regarding the rank-

ing rule (interpretability, computational cost,

flexibility, etc.). In these experiments we have

been using both the LeafRank splitting rule
previously described and SVM classifiers. In

the latter case, the kernel involved is either lin-

ear or gaussian, the one leading to the best per-

formances being retained.

Besides, TreeRank variants based on re-

sampling involve an aggregation procedure, lead-
ing to the consensus ranking (see 3.1). Here,

we compute the median ranking rule using the

pseudo-distance between orderings induced by

the Spearman correlation coefficient.

Eventually, two additional parameters, d1
and d2, have to be considered when running

theRanking Forest algorithm. Both parame-
ters are related to feature randomization, affect-

ing respectively the master ranking tree output

by TreeRank and the subtrees output by the

LeafRank procedure. Precisely, d1 denotes the

number of predictors randomly chosen (among
the total number of dimensions) to optimize the

local AUC at each node of the master rank-

ing tree. At each step of the TreeRank proce-

dure, the best split will be chosen among those
d1 predictors. Similarly, d2 denotes the number

of predictors randomly chosen at each node of

the classification subtrees when the LeafRank

procedure is used as splitting rule. Again, at

each step of the latter, the best split will be
chosen among those d2 predictors. If we denote

by d the total number of explanatory variables

(which is also the dimension of the observa-

tion vectorsXi), the following inequality stands
true: d2 ≤ d1 ≤ d.

We now provide the specifications for each

variant of the TreeRank algorithm used in the
numerical experiments described below.

• TRKCART - single ranking tree with a split-

ting rule based on the LeafRank proce-

dure,

• TRKSVM - single ranking tree with a split-

ting rule based on a SVM classifier,

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

10

Name
Sample de Number of Rate of Categorical

Description
Size variables positives variables

GaussEasy20d 2000 20 0.5 no gaussian mixture

GaussMed20d 2000 20 0.5 no gaussian mixture

GaussHard20d 2000 20 0.5 no gaussian mixture

Australian Credit 690 14 0.44 yes
Credit risk

data

German Credit 1000 20 0.7 yes
Credit risk

data

Japanese Credit 690 15 0.45 yes
Credit risk

data
Breast Cancer

569 30 0.37 yes
Detection de

Diagnosis malignant tumors
Breast Cancer

683 9 0.35 yes
Detection of

Original malignant tumors

Heart Disease 270 13 0.44 yes
Detection of
heart illness

Hepatitis 112 18 0.17 yes
Detection
of hepatitis

Autos MPG 392 7 0.53 yes
Levels

of fuel consumption

Congressional Vote 232 16 0.53 yes
American Congress

voting results

Ionosphere 351 34 0.64 yes
Detection of
structures

Table 1 Description of synthetic and UCI benchmark data.

• BaggCART - bagged version based on the

aggregation of B = 50 resampled ranking

trees, which growth is based on the Leaf-
Rank procedure,

• BaggSVM - bagged version based on the ag-

gregation ofB = 50 resampled ranking trees,

which growth is based on a SVM classifier,

• RF1CART -Ranking Forest version based

on the aggregation of B = 50 resampled and

randomized ranking trees (with d1 = ⌊d/4⌋),
which growth is based on the LeafRank

procedure,

• RF1SVM - Ranking Forest version based

on the aggregation of B = 50 resampled and

randomized ranking trees (with d1 = ⌊d/4⌋),

which growth is based on a SVM classifier,

• RF2CART -Ranking Forest version based
on the aggregation of B = 50 resampled and

randomized ranking trees (with d1 = ⌊1⌋),

which growth is based on the LeafRank

procedure,

• RF2SVM - Ranking Forestversion based

on the aggregation of B = 50 resampled and

randomized ranking trees (with d1 = ⌊1⌋),
which growth is based on a SVM classifier,

• RF3CART -Ranking Forest version based

on the aggregation of B = 50 resampled and

randomized ranking trees (with d2 = ⌊d/4⌋),
which growth is based on the LeafRank

procedure,

• RF4CART -Ranking Forest version based
on the aggregation of B = 50 resampled and

randomized ranking trees (with d2 = ⌊1⌋),

which growth is based on the LeafRank

procedure,

• RF5CART -Ranking Forest version based

on the aggregation of B = 50 resampled and

randomized ranking trees (with d1 = ⌊d/2⌋

and d2 = ⌊d/4⌋), which growth is based on
the LeafRank procedure,

• RF6CART -Ranking Forest version based

on the aggregation of B = 50 resampled and

randomized ranking trees (with d1 = ⌊d/4⌋

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

11

and d2 = ⌊1⌋), which growth is based on the

LeafRank procedure.

4.3 Performance and stability metrics

Performance. In the following experiments we

measured the algorithms performances mainly

in terms of AUC and local AUC, but also with

other criteria. When running the ranking algo-
rithms on real datasets, these quantities are es-

timated using V -fold cross validation. We re-

call the principle of for a generic performance

measure Π : from the training set Dn, consider
V = 10 blocks {D(1), · · · ,D(V)} of equal size

which are randomly chosen and the expected

performance is estimated as follows:

Π =
1

V

V∑

v=1

Π̂(v),

where, for each v ∈ {1, · · · , V }, the quantity
Π̂(v) denotes the empirical estimate of Π for

the scoring rule ŝ(−v) trained on the data set

D(−v) = Dn \ D
(v) and computed over D(v).

We apply the cross validation to the following
criteria:

– AUC - Area Under an ROC curve,
– AUC@u% - Local AUC with values u =

5, 10, 20% for the proportion u of best in-

stances ([13]),

– AP - Average Precision,
– HR@x% - Hit Ratio with proportions x =

10%, 20%.

Additionally, in the case of the AUC and lo-

cal AUC, we also provide the standard type er-

ror σ̂2 of the collection of V -fold empirical esti-

mates.

Stability. Stability is another interesting indi-

cator to consider when comparing several algo-

rithms. We propose two different and comple-

mentary ways to evaluate it. As V -fold cross
validation is used on every dataset to provide

mean values of the AUC and Local AUC, we

provide for each algorithm an estimate of the

standard deviation of the considered performance

metrics. Moreover, on the simulated toy exam-
ples, we also consider an instability measure

given by

Instab(S) = E [d(�b,�b′)] ,

where d is a distance between orderings based

on Spearman correlation coefficient and the or-
derings �b and �b′ are respectively induced on

the largest subpartition of the feature space X

by two resampled ranking trees, meaning that

the scoring rules �b and �b′ are obtained by

running the TreeRank heuristic on two i.i.d.

learning datasets, resampled from the original

one Dn. Based on a resampling procedure, this

indicator can be easily estimated through the

following formula:

̂Instab =
2

B(B − 1)

∑

1≤b<b′≤B

d(�b,�b′),

where B is the total number of bootstrap sam-

ples drawn from Dn.

4.4 Results

Computational cost. Before going into the detail

of the experimental results, we give a first in-

sight into the computational cost of the Tree-
Rank variants. It is well known that tree-based

algorithms can yield high computational costs,

although in most cases, optimal trees are grown

through bottom-up greedy procedures, avoiding

a costly exhaustive search among the collection
of optimal trees.

In our experiments, the computational cost
mainly comes from the cross validation based

pruning stage within bothTreeRank and Leaf-

Rank procedures (see 3.1). Indeed, considering

the GaussEasy20d dataset (2000 observations
for 20 relevant dimensions), growing a ranking

tree through the TRKCART variant takes less

than 2 seconds when the sizes are settled as

input parameters. Yet, it takes about 20 sec-

onds when the size of both the subtrees and the
master ranking tree are automatically selected

through 5-fold cross validation. Thus, cross vali-

dation based pruning will yield heavy computa-

tional costs when running theRanking Forests
procedure, which will grow and aggregate B =

50 ranking trees. Indeed, growing a single rank-

ing tree through BaggCART or any other Rank-

ing Forest variant on theGaussEasy20d data-

set takes about 15 minutes with a 5-fold cross
validation based pruning. This computational

time depends on the randomization level: the

more randomized the algorithm, the less costly.

Yet, it can be reduced to 2 minutes when the

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

12

sizes of the grown trees are settled a priori.

Besides, making use of SVM based split-

ting rules yields heavier computational costs.

Thus, the BaggSVM procedure and its random-
ized counterparts need about 20 minutes to grow

an automatically pruned (5-fold cross valida-

tion) aggregated ranking tree, and about 4 min-

utes when the sizes of the trees are settled in ad-
vance. Eventually, the computational costs ob-

served on most of the benchmark datasets are

lower to those detailed above (or comparable in

some cases), due to the lower dimension and the

sparsity of the problems.

Comparison between the variants of TreeRank.
The main objective of this series of experiments

is to compare the behavior of several versions of

the TreeRank algorithm. We first run twelve

heuristics on three toy examples based on gaus-
sian mixtures:GaussEasy20d, GaussMed20d and

GaussHard20d. In order to provide mean val-

ues for the performance indicators, we run all

heuristics on N = 30 i.i.d. learning resamples

of Dn, with n = 1000 copies of the random pair
(X,Y) ∈ X × {−1,+1}, and test the output

scoring rules on a single test sample of n = 1000

observations. Given the computational costs de-

scribed previously, for this series of experiments
trees are not pruned automatically. For sake of

computational time, the sizes of the grown trees

(and subtrees) has been defined a priori: the

maximum depth of the master ranking trees has

been settled to d1 = 8 and the maximum depth
of the sub-ranking trees output by the Leaf-

Rank procedure to d2 = 6. Figure 3 gives a

global insight into the performances of Tree-

Rank variants on these toy examples. The av-
erage rank of each variant over the three toy

examples is displayed for the performance indi-

cators described in previous Subsection. More-

over, visual displays for each datasets are pro-

vided on Figure 4. The histograms representing
both performance (AUC) and standard type er-

ror (σ̂2). We also report the Local AUC measure

corresponding to a proportion u = 20% of best

instances. Eventually, the quantitative results
can be found in Tables 2, 3 and 4.

The overview given by Figure 3 shows that

RF1SVM clearly outperforms all other proce-

dures, except in terms of instability. We also

notice that resampling and randomization yield

Fig. 3 Average ranks of TreeRank variants on the
three toy example for several performance indicators.

better results, both in terms of learning perfor-
mance and robustness, while the level of ran-

domization remains reasonable. Indeed, highly

randomized procedures RF4CART, RF5CART and

RF6CART yield the worst results.

The graphs of Figure 4 allow to confirm our

first observations and to go more into details.

Thus, we notice that, when considering single

ranking trees, the best performance is achieved
by scoring rules using SVM classifiers as split-

ting rule, due to a superior representational ca-

pacity. As expected, performance is increased

when aggregating many ranking trees. It is also

interesting to notice that the choice of the split-
ting rule seems to have a weaker impact on the

performances of those heuristics. Another inter-

esting observation is related to the effect of fea-

ture randomization: it seems that randomiza-
tion does not affect significantly the heuristics

based on an SVM-type splitting rule. Moreover,

as already mentioned, the more important the

level of randomization, the worst the AUC per-

formance (and the less robust the estimation),
but we will see in the next experiment that

this is not necessarily the case when considering

real data sets. Actually, this phenomenon is not

really surprising and can be explained in two
different ways. As described in 3.1, Ranking

Forest is a combination of resampling, ran-

domization and aggregation. Although it is now

well known in Machine Learning that aggregat-

ing bootstrap versions of a classifier improves
both its performance and robustness, it is also

quite clear that picking up randomly a subset of

predictors to learn a model introduces some in-

stability. The underlying principle of Ranking

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

13

a. Sample GaussEasy20D

b. Sample GaussMed20D c. Sample GaussHard20D

Fig. 4 Comparison of TreeRank variants on simulated datasets.

Forests is precisely that randomization could
improve the learning capacity of a classifier by

focusing on subsets of most relevant predictors,

the instability introduced in the process being

compensated by the aggregation of several re-

sampled classifiers. A first explanation to the
results displayed on Figure 4 is that aggregat-

ing B = 50 ranking trees might not be sufficient

to compensate the instability introduced by the

different levels of randomization considered in
the experiment. Moreover, it seems reasonable

to state that randomization will perform better

when the optimal model is sparse than when

all predictors are of interest, which is the case

in the simulated toy examples. Indeed, on such
datasets randomization will lead to neglect rel-

evant information, while in sparse cases it will

improve the chances to select the most relevant

variables.

On these toy examples, best performances in

terms of total and local AUC and of standard

type error are achieved by the RF1SVM heuristic

and interestingly, the algorithms reaching the
best performance in terms of low variance are

the ones with high randomization (RF3CART,

RF4CART, RF5CART, RF6CART). Yet, given the

weaker ranking performance of these highly ran-

domized versions (in comparison to the others),
we discard the following heuristics RF2CART,

RF2SVM, RF4CART and RF6CART from the sub-

sequent comparisons.

In the following series of experiments, we fo-
cus on the eight remaining heuristics that we

compare on real benchmark data sets, gath-

ered from the UCI repository. This time, model

selection is conducted via the pruning proce-

dure introduced in 3.1. Therefore, the regular-
ization coefficient λ has been calibrated through

a nested stratified 5-fold cross validation proce-

dure. As previously, a global overview of the

performances overall the benchmark datasets is
provided by Figure 5. Visual displays are also

detailed for some of the datasets on Figure 6

below. Again, the histograms represent perfor-

mance and standard type error (AUC, σ̂2), as

well as Local AUC measure AUC@u% for a pro-
portion u = 20% of best instances.

The quantitative results can be found in Ta-

bles 5 and 6, gathering full and local AUC for

Fig. 5 Average ranks of TreeRank variants on the
10 benchmark datasets for several performance indi-
cators.

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

14

a. Dataset Congressional Vote b. Dataset Australian Credit

c. Dataset German Credit d. Dataset Autos MPG

e. Dataset Ionosphere f. Dataset Heart Disease

Fig. 6 Comparison of TreeRank variants on benchmark datasets.

proportions u = 20, 10, 5% of best instances in-

dicated together with their associated standard

type errors, given in parentheses, as well as hit

ratios for proportions 10% and 20%, and the av-
erage precision. All these values are computed

through a stratified 10-fold cross validation, as

described in 4.3.

The global picture displayed on Figure 5

clearly shows two dynamics. When consider-
ing the indicators related to learning perfor-

mances, we notice that randomized procedure

are among the most efficient. Moreover, differ-

ent behaviours appear when considering the ro-

bustness indicators. Indeed, the graph shows

that the algorithms with highest AUC, average

precision and hit ratios are also the ones hav-

ing highest standard deviations, and conversely.
This is due to the fact that these procedures

are randomized. Indeed, the only procedure pre-

senting both good learning performances and

robustness is BaggSVM.

Besides, as noticed on the simulated toy ex-
amples, we can see on the graphs of Figure 6

that in most cases, making use of SVM clas-

sifiers as splitting rule leads to more efficient

ranking rules, in terms of both full and Lo-

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

15

cal AUC, but also in terms of stability (lower

standard deviation). As explained previously,
SVM based classifier allow to capture the com-

plex geometry of the regression level sets in a

more flexible manner than CART based de-

cision rules. Yet, when focusing on the Heart

Disease dataset for instance, we can observe
that BaggSVM and RF1SVM perform worse on

the 20% best instances than their CART-based

counterparts BaggCART and RF1CART. This ob-

servation means that in this particular case, the
topology of the first level sets (corresponding

to the 20% of best instances) is better approx-

imated by linear partitions than by nonlinear

Gaussian partitions. Indeed, the geometry of

the level sets can be different from one dataset
to another, but also from one level set to an-

other. This example emphasizes the advantage

of using different splitting rules in the Tree-

Rank procedure, its performance being intrin-
sically related to the capacity of the latter to

recover the geometry of the level sets. More-

over, when comparing TRKCART and TRKSVM

with their resampled versions, the positive im-

pact of resampling and aggregation procedures
on the performances and the variance of the

output rules clearly appears.

Eventually, the main difference with the pre-

vious experiments lies in the impact of feature

randomization. Even if BaggSVM achieves very

good performances on several datasets, the best
results are generally provided by resampled and

randomized versions. Three heuristics perform

particularly better than the others: BaggSVM

and RF1SVM, which often get similar results,

and RF3CART. For the following series of ex-
periments we will retain only two (RF1SVM and

RF3CART), which we will compare to several

competitors.

TreeRank and some competitors. In this series

of experiments, both RF1SVM and RF3CART

heuristics are compared to six scoring algorithms:

RankBoost,RankLS,RankSVM,KLR,Ad-
aBoost and P-norm Push. We first consider

the performances of these heuristics on the three

toy examples previously described, before con-

sidering the benchmark datasets from the UCI

repository. As before, for the experiments based
on simulated datasets the maximum depths of

the (sub-) trees has been settled a priori respec-

tively to d1 = 8 and d2 = 6, while on the UCI

benchmark datasets model selection is based on

Fig. 7 Average ranks of TreeRank variants and
some competitors on the toy examples for several
performance indicators.

a nested stratified 5-fold cross validation proce-

dure. The quantitative results obtained on syn-

thetic data are summarized in Tables 7, 8 and

9. They are also displayed on Figure 8 and a
global overview of the performances of each al-

gorithm is displayed on Figure 7.

As in the previous series of experiments, we

notice that generally the algorithms with high-
est performances are also the less robust (see

Figure 7). Moreover, we can see on Figure 8 that

the performances of all heuristics in terms of

global and local AUC are very similar on these

data. Yet, we can observe that RankLS seems
to perform a little better on the GaussHard20d

data set. In the other cases the leadership goes

to a version of Ranking Forest with an SVM

classifier used as splitting rule. It is also in-
teresting to notice that the instability results

are much more variable than in previous ex-

periments. Indeed, there is a big difference be-

tween the algorithms and from a data set to an-

other. AdaBoost and RF3CART heuristics ap-
pear to be more stable than the others. We can

also underline that for several algorithms, vari-

ance increases with the complexity of the rank-

ing problem (from GaussEasy20d data set to
GaussHard20d). It is the case in particular for

RankBoost, RankLS,RankSVM andKLR.

Yet, differences between the several algorithms

appear more clearly on the real datasets. Perfor-

mance and robustness results are summarized
in Tables 10 and 11, detailed graphs per dataset

are displayed on Figure 10 and a global compar-

ison of the algorithms is given by Figure 9.

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

16

a. Dataset GaussEasy20D

b. Dataset GaussMed20D c. Dataset GaussHard20D

Fig. 8 Comparison of TreeRank and some competitors on simulated datasets.

We clearly see on Figure 9 that both Rank-

ing Forest algorithms, either based on the

LeafRank procedure or on a SVM classifier,

performmostly better than other methods. This
is particularly true regarding learning perfor-

mances, while both methods present lower ro-

bustness. When going into more detail, we no-

tice three exceptions: Australian, German and
Japanese credit datsets, on which RankBoost

Fig. 9 Average ranks of TreeRank variants and
some competitors on the 10 benchmark datasets for
several performance indicators.

achieves better performances than TreeRank

(see Figure 10). However, TreeRank heuris-

tics clearly provide better results on the best

instances for all the considered datasets. This
is related to the fact that TreeRank recur-

sively optimizes the AUC and thus estimates

the optimal ROC curve, while all other methods

optimize the AUC criterion in a global manner.

5 Discussion

The numerical experiments performed in the

present paper show that the three methodolo-

gies (Ranking trees, Pairwise SVM, Pairwise
Boosting) are very competitive for AUC max-

imization. It is shown that the ranking trees

heuristics take the lead when it comes to fo-

cusing on best instances. Theoretical evidence

supports this experimental fact. Indeed, in their
very construction, ranking trees derived from

theTreeRank/LeafRank algorithm actually

optimize the AUC locally. The present paper

illustrates the theoretical result introduced in

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

17

a. Dataset Congressional Vote b. Dataset Australian Credit

c. Dataset German Credit d. Dataset Autos MPG

e. Dataset Ionosphere f. Dataset Heart Disease

Fig. 10 Comparison of TreeRank and some competitors on benchmark datasets.

([1]) which states that, by using ranking trees,

convergence to the optimal ROC curve is per-

formed in a stronger sense than the AUC. In-
deed, AUC optimality corresponds to conver-

gence in L1-norm of the corresponding ROC

curve, while it can be shown that the recursive

construction of ranking trees guarantees conver-

gence in L∞-norm. This property explains the
improvement obtained with our method with

respect to local ranking performance measures.

Acknowledgments. We warmly thank Cyn-

thia Rudin who kindly provided the code for

the P-norm Push algorithm.

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

18

AUC
AUC@20% GaussEasy20d GaussMed20d GaussHard20d

AUC@10%
AUC@5%

0.626 (±0.015) 0.625 (±0.017) 0.539 (±0.018)

TRKCART
0.243 (±0.011) 0.244 (±0.013) 0.195 (±0.015)
0.130 (±0.010) 0.132 (±0.012) 0.102 (±0.009)
0.067 (±0.006) 0.068 (±0.006) 0.053 (±0.006)
0.752 (±0.009) 0.721 (±0.011) 0.562 (±0.017)

TRKSVM
0.292 (±0.011) 0.282 (±0.015) 0.201 (±0.015)
0.150 (±0.008) 0.145 (±0.009) 0.103 (±0.010)
0.075 (±0.004) 0.073 (±0.005) 0.052 (±0.006)
0.722 (±0.010) 0.714 (±0.013) 0.566 (±0.014)

BaggCART
0.300 (±0.007) 0.297 (±0.009) 0.214 (±0.011)
0.163 (±0.006) 0.163 (±0.006) 0.113 (±0.009)
0.085 (±0.005) 0.086 (±0.004) 0.060 (±0.007)
0.772 (±0.008) 0.739 (±0.009) 0.576 (±0.014)

BaggSVM
0.298 (±0.010) 0.287 (±0.012) 0.207 (±0.013)
0.156 (±0.007) 0.151 (±0.008) 0.107 (±0.010)
0.080 (±0.005) 0.078 (±0.005) 0.055 (±0.007)
0.747 (±0.010) 0.737 (±0.012) 0.569 (±0.013)

RF1CART
0.308 (±0.009) 0.308 (±0.009) 0.211 (±0.011)
0.167 (±0.005) 0.165 (±0.006) 0.113 (±0.008)
0.087 (±0.004) 0.087 (±0.004) ;0.060 (±0.006)
0.776 (±0.006) 0.760 (±0.006) 0.582 (±0.013)

RF1SVM
0.319 (±0.006) 0.316 (±0.005) 0.216 (±0.007)
0.172 (±0.004) 0.171 (±0.003) 0.115 (±0.007)
0.089 (±0.003) 0.089 (±0.003) 0.061 (±0.006)
0.718 (±0.011) 0.701 (±0.014) 0.557 (±0.012)

RF2CART
0.294 (±0.011) 0.289 (±0.011) 0.205 (±0.009)
0.162 (±0.007) 0.157 (±0.008) 0.109 (±0.007)
0.086 (±0.003) 0.083 (±0.004) 0.056 (±0.007)
0.697 (±0.015) 0.675 (±0.016) 0.539 (±0.016)

RF2SVM
0.280 (±0.012) 0.271 (±0.011) 0.197 (±0.009)
0.152 (±0.007) 0.145 (±0.008) 0.105 (±0.008)
0.081 (±0.005) 0.077 (±0.005) 0.055 (±0.007)
0.718 (±0.013) 0.698 (±0.016) 0.551 (±0.019)

RF3CART
0.289 (±0.010) 0.283 (±0.013) 0.203 (±0.012)
0.156 (±0.008) 0.155 (±0.006) 0.108 (±0.009)
0.081 (±0.005) 0.081 (±0.005) 0.057 (±0.007)
0.693 (±0.017) 0.670 (±0.015) 0.540 (±0.021)

RF4CART
0.278 (±0.013) 0.267 (±0.013) 0.200 (±0.013)
0.151 (±0.009) 0.144 (±0.009) 0.106 (±0.008)
0.080 (±0.006) 0.078 (±0.005) 0.055 (±0.005)
0.684 (±0.021) 0.662 (±0.028) 0.535 (±0.028)

RF5CART
0.269 (±0.014) 0.265 (±0.017) 0.195 (±0.016)
0.148 (±0.008) 0.144 (±0.010) 0.106 (±0.011)
0.078 (±0.005) 0.076 (±0.006) 0.054 (±0.008)
0.622 (±0.037) 0.592 (±0.029) 0.519 (±0.028)

RF6CART
0.244 (±0.019) 0.225 (±0.018) 0.189 (±0.017)
0.131 (±0.012) 0.123 (±0.014) 0.099 (±0.013)
0.068 (±0.007) 0.064 (±0.010) 0.053 (±0.008)

Table 2 Comparison of 12 variants of the TreeRank algorithm on simulated data. Performance is measured
through the AUC and Local AUC for three different values u = 20, 10, 5%, given in that order. Standard type
error σ̂2 for these values is indicated in parentheses.

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

19

HR@10% ; HR@20% GaussEasy20d GaussMed20d GaussHard20d

AP

TRKCART
68%; 66% 68%; 65% 54%; 55%

0.59 0.58 0.53

TRKSVM
79%; 78% 75%; 74% 54%; 56%

0.67 0.64 0.54

BaggCART
84%; 79% 82%; 77% 60%; 59%

0.68 0.66 0.56

BaggSVM
81%; 79% 77%; 75% 57%; 57%

0.69 0.66 0.55

RF1CART
86%; 80% 84%; 79% 60%; 58%

0.69 0.68 0.56

RF1SVM
88%; 83% 86%; 81% 61%; 59%

0.71 0.69 0.56

RF2CART
84%; 77% 79%; 75% 58%; 57%

0.67 0.65 0.55

RF2SVM
79%; 74% 74%; 71% 56%; 55%

0.66 0.63 0.53

RF3CART
81%; 76% 79%; 73% 57%; 56%

0.67 0.65 0.54

RF4CART
78%; 74% 74%; 70% 57%; 55%

0.65 0.62 0.53

RF5CART
77%; 72% 74%; 69% 56%; 54%

0.64 0.62 0.53

RF6CART
69%; 66% 64%; 60% 53%; 53%

0.60 0.57 0.52

Table 3 Comparison of 12 variants of the TreeRank algorithm on simulated data. Performance is measured
through the hit ratios for proportions 10% and 20%, respectively given in that order, and the average precision
indicated below.

̂Instab GaussEasy20d GaussMed20d GaussHard20d

TRKCART 137.5 141.7 149.5

TRKSVM 56.5 64.5 108.2

BaggCART 15.3 16.3 16.3

BaggSVM 24.4 27.8 41.3

RF1CART 6.5 7.2 7.9

RF1SVM 5.5 6.4 9.6

RF2CART 4.5 4.8 5.7

RF2SVM 5.6 6.1 7.2

RF3CART 3.5 3.5 3.6

RF4CART 3.1 3.3 3.2

RF5CART 3.4 3.3 3.3

RF6CART 3.0 3.2 3.1

Table 4 Comparison of 12 variants of the TreeRank algorithm on simulated data in terms of instability,
computed with B = 20 bootstrap samples.

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

AUC
AUC@20% TRKCART TRKSVM BaggCART BaggSVM RF1CART RF1SVM RF3CART RF5CART

AUC@10%
AUC@5%

0.749 (±0.096) 0.991 (±0.024) 0.905 (±0.06) 0.991 (±0.026) 0.985 (±0.028) 0.987 (±0.024) 0.992 (±0.015) 0.988 (±0.021)

Congressional Vote
0.261 (±0.060) 0.595 (±0.105) 0.359 (±0.049) 0.650 (±0.112) 0.473 (±0.061) 0.477 (±0.054) 0.495 (±0.059) 0.474 (±0.053)
0.128 (±0.052) 0.186 (±0.004) 0.232 (±0.075) 0.186 (±0.004) 0.217 (±0.064) 0.201 (±0.042) 0.201 (±0.042) 0.204 (±0.054)
0.069 (±0.046) 0.093 (±0.002) 0.11 (±0.031) 0.093 (±0.002) 0.094 (±0) 0.094 (±0) 0.094 (±0) 0.094 (±0)
0.577 (±0.057) 0.921 (±0.032) 0.852 (±0.038) 0.925 (±0.034) 0.882 (±0.026) 0.926 (±0.031) 0.934 (±0.031) 0.939 (±0.031)

Australian Credit
0.257 (±0.050) 0.414 (±0.024) 0.419 (±0.014) 0.423 (±0.016) 0.771 (±0.059) 0.425 (±0.012) 0.429 (±0.014) 0.429 (±0.014)
0.134 (±0.023) 0.256 (±0.082) 0.235 (±0.031) 0.252 (±0.040) 0.663 (±0.075) 0.248 (±0.039) 0.273 (±0.059) 0.278 (±0.061)
0.068 (±0.011) 0.115 (±0.028) 0.141 (±0.041) 0.115 (±0.012) 0.543 (±0.081) 0.111 (±0.002) 0.122 (±0.031) 0.129 (±0.038)
0.711 (±0.071) 0.771 (±0.034) 0.737 (±0.045) 0.794 (±0.024) 0.771 (±0.031) 0.793 (±0.022) 0.769 (±0.029) 0.775 (±0.044)

German Credit
0.237 (±0.031) 0.254 (±0.017) 0.245 (±0.022) 0.269 (±0.009) 0.264 (±0.016) 0.266 (±0.012) 0.260 (±0.020) 0.263 (±0.017)
0.123 (±0.019) 0.133 (±0.018) 0.128 (±0.020) 0.146 (±0.016) 0.146 (±0.021) 0.148 (±0.020) 0.144 (±0.022) 0.147 (±0.027)
0.061 (±0.014) 0.065 (±0.004) 0.063 (±0.008) 0.098 (±0.033) 0.075 (±0.014) 0.081 (±0.021) 0.083 (±0.029) 0.077 (±0.015)
0.789 (±0.053) 0.924 (±0.049) 0.839 (±0.048) 0.926 (±0.044) 0.887 (±0.038) 0.923 (±0.038) 0.931 (±0.042) 0.930 (±0.043)

Japanese Credit
0.373 (±0.043) 0.423 (±0.050) 0.406 (±0.024) 0.416 (±0.026) 0.416 (±0.015) 0.414 (±0.020) 0.417 (±0.023) 0.418 (±0.027)
0.220 (±0.059) 0.232 (±0.053) 0.250 (±0.047) 0.245 (±0.052) 0.256 (±0.063) 0.256 (±0.068) 0.260 (±0.073) 0.274 (±0.081)
0.106 (±0.024) 0.105 (±0.005) 0.131 (±0.035) 0.127 (±0.030) 0.125 (±0.033) 0.125 (±0.032) 0.141 (±0.047) 0.123 (±0.035)
0.927 (±0.049) 0.961 (±0.041) 0.967 (±0.022) 0.982 (±0.017) 0.978 (±0.014) 0.978 (±0.016) 0.972 (±0.016) 0.964 (±0.021)

Autos MPG
0.420 (±0.011) 0.462 (±0.144) 0.523 (±0.112) 0.584 (±0.109) 0.418 (±0.039) 0.433 (±0.058) 0.421 (±0.016) 0.418 (±0.046)
0.229 (±0.081) 0.184 (±0.010) 0.190 (±0.002) 0.190 (±0) 0.244 (±0.087) 0.238 (±0.079) 0.240 (±0.08) 0.236 (±0.076)
0.092 (±0.007) 0.092 (±0.005) 0.094 (±0.004) 0.095 (±0) 0.095 (±0) 0.095 (±0) 0.095 (±0) 0.095 (±0)
0.926 (±0.042) 0.943 (±0.049) 0.966 (±0.026) 0.985 (±0.014) 0.971 (±0.026) 0.990 (±0.013) 0.968 (±0.032) 0.966 (±0.032)

Ionosphere
0.360 (±0.127) 0.352 (±0.129) 0.408 (±0.116) 0.477 (±0.072) 0.411 (±0.099) 0.494 (±0.062) 0.392 (±0.086) 0.391 (±0.032)
0.146 (±0.007) 0.149 (±0.008) 0.181 (±0.052) 0.156 (±0) 0.179 (±0.048) 0.156 (±0) 0.178 (±0.044) 0.179 (±0.038)
0.074 (±0.003) 0.074 (±0.004) 0.078 (±0) 0.078 (±0) 0.078 (±0) 0.078 (±0) 0.078 (±0) 0.081 (±0.008)
0.958 (±0.02) 0.989 (±0.008) 0.986 (±0.016) 0.990 (±0.015) 0.990 (±0.009) 0.994 (±0.008) 0.988 (±0.007) 0.990 (±0.007)

Breast Cancer Diagnosis
0.503 (±0.015) 0.565 (±0.063) 0.578 (±0.036) 0.680 (±0.071) 0.548 (±0.025) 0.595 (±0.047) 0.528 (±0.005) 0.527 (±0.006)
0.314 (±0.059) 0.341 (±0.102) 0.319 (±0.106) 0.290 (±0.070) 0.403 (±0.121) 0.317 (±0.103) 0.453 (±0.036) 0.444 (±0.037)
0.131 (±0.004) 0.133 (±0.003) 0.134 (±0) 0.134 (±0) 0.134 (±0) 0.134 (±0) 0.135 (±0) 0.134 (±0)
0.984 (±0.017) 0.995 (±0.005) 0.990 (±0.009) 0.994 (±0.007) 0.995 (±0.005) 0.995 (±0.006) 0.993 (±0.006) 0.993 (±0.006)

Breast Cancer Original
0.568 (±0.024) 0.566 (±0.027) 0.565 (±0.014) 0.570 (±0.027) 0.558 (±0.009) 0.559 (±0.010) 0.556 (±0.012) 0.555 (±0.010)
0.375 (±0.101) 0.364 (±0.107) 0.441 (±0.106) 0.399 (±0.133) 0.430 (±0.085) 0.442 (±0.076) 0.407 (±0.078) 0.409 (±0.087)
0.154 (±0.039) 0.139 (±0.006) 0.157 (±0.044) 0.157 (±0.043) 0.148 (±0.016) 0.146 (±0.010) 0.142 (±0.002) 0.156 (±0.042)
0.794 (±0.061) 0.868 (±0.048) 0.798 (±0.074) 0.908 (±0.049) 0.869 (±0.067) 0.917 (±0.032) 0.911 (±0.034) 0.907 (±0.048)

Heart Disease
0.376 (±0.054) 0.401 (±0.057) 0.372 (±0.047) 0.407 (±0.050) 0.397 (±0.042) 0.416 (±0.027) 0.415 (±0.026) 0.408 (±0.033)
0.237 (±0.092) 0.238 (±0.090) 0.221 (±0.056) 0.278 (±0.099) 0.261 (±0.064) 0.273 (±0.070) 0.272 (±0.070) 0.289 (±0.076)
0.109 (±0.037) 0.101 (±0.011) 0.139 (±0.058) 0.114 (±0.030) 0.118 (±0.033) 0.118 (±0.017) 0.121 (±0.031) 0.120 (±0.032)
0.771 (±0.171) 0.813 (±0.154) 0.813 (±0.132) 0.872 (±0.14) 0.850 (±0.141) 0.864 (±0.139) 0.868 (±0.162) 0.842 (±0.17)

Hepatitis
0.405 (±0.146) 0.547 (±0.202) 0.470 (±0.132) 0.629 (±0.213) 0.551 (±0.24) 0.572 (±0.240) 0.625 (±0.230) 0.562 (±0.233)
0.25 (±0.139) 0.306 (±0.129) 0.279 (±0.172) 0.412 (±0.131) 0.327 (±0.178) 0.413 (±0.138) 0.346 (±0.162) 0.277 (±0.187)
0.174 (±0.142) 0.188 (±0.137) 0.202 (±0.177) 0.339 (±0.157) 0.251 (±0.196) 0.269 (±0.190) 0.342 (±0.154) 0.277 (±0.187)

Table 5 Comparison of eight variants of the TreeRank algorithm on benchmark data. Performance is measured through AUC and Local AUC for three different values
u = 20, 10, 5%, given in that order. Standard type error σ̂2 for these values is indicated in parentheses.

1

2

3

4

5

6

7

8

9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

6
4

6
5

2
1

HR@10% ; HR@20% TRKCART TRKSVM BaggCART BaggSVM RF1CART RF1SVM RF3CART RF5CART

AP

Congressional Vote
92%; 92% 100%; 98% 100%; 96% 100%; 98% 100%; 100% 100%; 100% 100%; 100% 100%; 100%

0.75 0.80 0.80 0.82 0.84 0.84 0.85 0.84

Australian Credit
68%; 59% 100%; 100% 100%; 100% 100%; 100% 100%; 100% 100%; 100% 100%; 100% 100%; 100%

0.48 0.72 0.71 0.75 0.73 0.75 0.76 0.76

German Credit
87%; 84% 94%; 91% 90%; 88% 99%; 96% 96%; 93% 98%; 94% 99%; 92% 99%; 93%

0.80 0.84 0.82 0.87 0.85 0.86 0.86 0.86

Japanese Credit
78%; 83% 97%; 95% 98%; 92% 99%; 95% 98%; 97% 95%; 95% 97%; 95% 97%; 95%

0.64 0.68 0.70 0.71 0.70 0.71 0.71 0.72

Autos MPG
89%; 92% 87%; 92% 98%; 99% 100%; 100% 100%; 100% 100%; 100% 100%; 100% 100%; 100%

0.74 0.72 0.78 0.77 0.79 0.80 0.79 0.80

Ionosphere
100%; 100% 100%; 97% 100%; 99% 100%; 100% 100%; 100% 100%; 100% 100%; 99% 100%; 99%

0.85 0.87 0.91 0.93 0.92 0.94 0.92 0.92

Breast Cancer Diagnosis
98%; 97% 98%; 99% 100%; 100% 100%; 100% 100%; 100% 100%; 100% 100%; 100% 100%; 100%

0.57 0.60 0.69 0.67 0.69 0.70 0.70 0.70

Breast Cancer Original
100%; 99% 99%; 99% 100%; 99% 99%; 99% 100%; 99% 100%; 99% 99%; 99% 100%; 100%

0.52 0.50 0.60 0.55 0.64 0.65 0.64 0.64

Heart Disease
71%; 72% 90%; 89% 93%; 86% 90%; 90% 93%; 94% 97%; 94% 93%; 96% 93%; 94%

0.59 0.67 0.66 0.74 0.69 0.73 0.75 0.72

Hepatitis
75%; 40% 65%; 47% 45%; 35% 75%; 47% 45%; 43% 65%; 40% 85%; 42% 65%; 42%

0.25 0.31 0.29 0.41 0.31 0.33 0.43 0.31

Table 6 Comparison of eight variants of the TreeRank algorithm on benchmark data. Performance is measured through the hit ratios for proportions 10% and 20%,
given in that order respectively, and the average precision given below.

1

2

3

4

5

6

7

8

9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

6
4

6
5

22

AUC
AUC@20% GaussEasy20d GaussMed20d GaussHard20d

AUC@10%
AUC@5%

0.776 (±0.006) 0.760 (±0.006) 0.582 (±0.013)

RF1SVM
0.319 (±0.006) 0.316 (±0.005) 0.216 (±0.007)
0.172 (±0.004) 0.171 (±0.003) 0.115 (±0.007)
0.089 (±0.003) 0.089 (±0.003) 0.061 (±0.006)
0.718 (±0.013) 0.698 (±0.016) 0.551 (±0.019)

RF3CART
0.289 (±0.010) 0.283 (±0.013) 0.203 (±0.012)
0.156 (±0.008) 0.155 (±0.006) 0.108 (±0.009)
0.081 (±0.005) 0.081 (±0.005) 0.057 (±0.007)
0.716 (±0.009) 0.714 (±0.010) 0.565 (±0.015)

AdaBoost
0.286 (±0.007) 0.289 (±0.008) 0.209 (±0.010)
0.152 (±0.005) 0.158 (±0.006) 0.111 (±0.008)
0.080 (±0.005) 0.083 (±0.004) 0.057 (±0.005)
0.754 (±0.007) 0.746 (±0.008) 0.577 (±0.015)

RankBoost
0.306 (±0.009) 0.307 (±0.009) 0.577 (±0.015)
0.163 (±0.006) 0.166 (±0.004) 0.111 (±0.007)
0.087 (±0.006) 0.086 (±0.004) 0.058 (±0.005)
0.740 (±0.004) 0.737 (±0.007) 0.578 (±0.011)

RankSVM
0.282 (±0.005) 0.288 (±0.007) 0.213 (±0.010)
0.147 (±0.003) 0.153 (±0.005) 0.112 (±0.008)
0.075 (±0.003) 0.081 (±0.004) 0.056 (±0.005)
0.742 (±0.004) 0.719 (±0.015) 0.581 (±0.010)

RankLS
0.283 (±0.005) 0.278 (±0.008) 0.216 (±0.008)
0.147 (±0.003) 0.151 (±0.006) 0.112 (±0.007)
0.075 (±0.003) 0.080 (±0.005) 0.057 (±0.005)
0.700 (±0.017) 0.701 (±0.014) 0.566 (±0.016)

P− norm push
0.271 (±0.010) 0.272 (±0.009) 0.208 (±0.011)
0.142 (±0.006) 0.146 (±0.006) 0.109 (±0.008)
0.071 (±0.004) 0.076 (±0.005) 0.056 (±0.005)
0.742 (±0.002) 0.740 (±0.005) 0.582 (±0.011)

KLR
0.284 (±0.004) 0.286 (±0.006) 0.215 (±0.010)
0.147 (±0.004) 0.155 (±0.004) 0.112 (±0.008)
0.075 (±0.003) 0.082 (±0.005) 0.057 (±0.005)

Table 7 Comparison of TreeRank and some competitors on simulated data. Total AUC and Local AUC
for three different values u = 20, 10, 5% are given in that order. Standard type error σ̂2 for these values is
indicated in parentheses.

HR@10% ; HR@20% GaussEasy20d GaussMed20d GaussHard20d

AP

RF1SVM
88%; 83% 86%; 81% 61%; 59%

0.71 0.69 0.56

RF3CART
81%; 76% 79%; 73% 57%; 56%

0.67 0.65 0.54

AdaBoost
79%; 76% 80%; 75% 59%; 58%

0.66 0.66 0.55

RankBoost
84%; 80% 84%; 79% 59%; 59%

0.69 0.68 0.56

RankSVM
72%; 62% 70%; 55% 55%; 49%

0.53 0.51 ; 0.56

RankLS
77%; 76% 77%; 73% 60%; 60%

0.67 0.65 0.56

P− norm push
74%; 72% 75%; 72% 60%; 57%

0.64 0.64 0.55

KLR
77%; 76% 79%; 75% 60%; 59%

0.67 0.67 0.56

Table 8 Comparison of TreeRank and some competitors on simulated data. Performance is measured
through the hit ratios for proportions 10% and 20%, respectively given in that order, the average precision,
given below.

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

23

̂Instab GaussEasy20d GaussMed20d GaussHard20d

RF1SVM 5.5 6.4 9.6

RF3CART 3.5 3.5 3.6

AdaBoost 2.6 2.9 3.8

RankBoost 9.2 11.4 20.8

RankSVM 4.2 5.0 12.5

RankLS 3.1 11.2 10.9

P− norm push 19.3 16.2 21.9

KLR 2.8 3.4 10.3

Table 9 Comparison of TreeRank and some competitors on simulated data in terms of instability, computed
with B = 20 bootstrap samples.

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

2
4AUC

AUC@20% RF1SVM RF3CART AdaBoost RankBoost RankSVM RankLS P− norm push KLR
AUC@10%
AUC@5%

0.987 (±0.024) 0.992 (±0.015) 0.935 (±0.048) 0.937 (±0.049) 0.935 (±0.048) 0.934 (±0.048) 0.947 (±0.017) 0.935 (±0.048)

Congressional Vote
0.477 (±0.054) 0.495 (±0.059) 0.332 (±0.025) 0.333 (±0.025) 0.333 (±0.025) 0.332 (±0.025) 0.337 (±0.011) 0.332 (±0.025)
0.201 (±0.042) 0.201 (±0.042) 0.168 (±0.012) 0.169 (±0.012) 0.17 (±0.013) 0.168 (±0.012) 0.171 (±0.006) 0.169 (±0.012)
0.094 (±0) 0.094 (±0) 0.084 (±0.006) 0.084 (±0.006) 0.084 (±0.006) 0.084 (±0.007) 0.085 (±0.004) 0.084 (±0.006)

0.926 (±0.031) 0.934 (±0.031) 0.928 (±0.024) 0.937 (±0.023) 0.92 (±0.028) 0.929 (±0.036) 0.924 (±0.043) 0.929 (±0.036)

Australian Credit
0.425 (±0.012) 0.429 (±0.014) 0.411 (±0.017) 0.412 (±0.014) 0.404 (±0.024) 0.405 (±0.024) 0.409 (±0.015) 0.411 (±0.022)
0.248 (±0.039) 0.273 (±0.059) 0.201 (±0.013) 0.206 (±0.013) 0.204 (±0.013) 0.199 (±0.014) 0.206 (±0.012) 0.204 (±0.015)
0.111 (±0.002) 0.122 (±0.031) 0.101 (±0.006) 0.103 (±0.011) 0.103 (±0.010) 0.096 (±0.013) 0.102 (±0.008) 0.102 (±0.012)
0.793 (±0.022) 0.769 (±0.029) 0.784 (±0.032) 0.781 (±0.030) 0.737 (±0.036) 0.775 (±0.024) 0.761 (±0.024) 0.775 (±0.022)

German Credit
0.266 (±0.012) 0.260 (±0.020) 0.250 (±0.021) 0.254 (±0.016) 0.254 (±0.012) 0.257 (±0.013) 0.245 (±0.015) 0.254 (±0.016)
0.148 (±0.020) 0.144 (±0.022) 0.127 (±0.013) 0.130 (±0.010) 0.130 (±0.004) 0.13 (±0.008) 0.125 (±0.010) 0.130 (±0.011)
0.081 (±0.021) 0.083 (±0.029) 0.063 (±0.009) 0.067 (±0.005) 0.065 (±0.005) 0.065 (±0.003) 0.062 (±0.006) 0.066 (±0.005)
0.923 (±0.038) 0.931 (±0.042) 0.922 (±0.038) 0.930 (±0.040) 0.904 (±0.046) 0.910 (±0.047) 0.897 (±0.040) 0.916 (±0.039)

Japanese Credit
0.414 (±0.020) 0.417 (±0.023) 0.395 (±0.021) 0.395 (±0.025) 0.38 (±0.043) 0.383 (±0.053) 0.383 (±0.035) 0.393 (±0.032)
0.256 (±0.068) 0.260 (±0.073) 0.198 (±0.015) 0.199 (±0.017) 0.188 (±0.023) 0.188 (±0.026) 0.200 (±0.016) 0.197 (±0.020)
0.125 (±0.032) 0.141 (±0.047) 0.098 (±0.014) 0.095 (±0.010) 0.094 (±0.017) 0.091 (±0.018) 0.101 (±0.009) 0.099 (±0.015)
0.978 (±0.016) 0.972 (±0.016) 0.955 (±0.014) 0.955 (±0.012) 0.95 (±0.014) 0.942 (±0.025) 0.951 (±0.014) 0.951 (±0.016)

Autos MPG
0.433 (±0.058) 0.421 (±0.016) 0.354 (±0.005) 0.354 (±0.005) 0.353 (±0.008) 0.350 (±0.011) 0.355 (±0.008) 0.354 (±0.008)
0.238 (±0.079) 0.240 (±0.08) 0.180 (±0.006) 0.178 (±0.006) 0.177 (±0.005) 0.177 (±0.006) 0.175 (±0.004) 0.175 (±0.005)
0.095 (±0) 0.095 (±0) 0.09 (±0.005) 0.09 (±0.006) 0.09 (±0.003) 0.089 (±0.006) 0.089 (±0.003) 0.091 (±0.004)

0.990 (±0.013) 0.968 (±0.032) 0.930 (±0.015) 0.933 (±0.013) 0.872 (±0.081) 0.875 (±0.055) 0.754 (±0.048) 0.872 (±0.062)

Ionosphere
0.494 (±0.062) 0.392 (±0.086) 0.285 (±0.008) 0.288 (±0.005) 0.263 (±0.044) 0.263 (±0.029) 0.224 (±0.039) 0.256 (±0.040)

0.156 (±0) 0.178 (±0.044) 0.143 (±0.004) 0.144 (±0.003) 0.131 (±0.024) 0.126 (±0.023) 0.105 (±0.026) 0.123 (±0.032)
0.078 (±0) 0.078 (±0) 0.073 (±0.003) 0.072 (±0.003) 0.065 (±0.014) 0.062 (±0.016) 0.050 (±0.015) 0.060 (±0.018)

0.994 (±0.008) 0.988 (±0.007) 0.983 (±0.003) 0.982 (±0.004) 0.98 (±0.005) 0.982 (±0.008) 0.969 (±0.016) 0.983 (±0.005)

Breast Cancer Diagnosis
0.595 (±0.047) 0.528 (±0.005) 0.505 (±0.013) 0.507 (±0.012) 0.502 (±0.013) 0.506 (±0.013) 0.501 (±0.013) 0.50 (±0.009)
0.317 (±0.103) 0.453 (±0.036) 0.255 (±0.010) 0.253 (±0.007) 0.253 (±0.006) 0.253 (±0.012) 0.252 (±0.011) 0.259 (±0.010)
0.134 (±0) 0.0135 (±0) 0.130 (±0.009) 0.125 (±0.008) 0.126 (±0.010) 0.130 (±0.010) 0.128 (±0.008) 0.131 (±0.011)

0.995 (±0.006) 0.993 (±0.006) 0.981 (±0.007) 0.983 (±0.006) 0.983 (±0.003) 0.984 (±0.004) 0.984 (±0.005) 0.984 (±0.004)

Breast Cancer Original
0.559 (±0.010) 0.556 (±0.012) 0.536 (±0.022) 0.534 (±0.018) 0.537 (±0.017) 0.537 (±0.010) 0.531 (±0.011) 0.539 (±0.011)
0.442 (±0.076) 0.407 (±0.078) 0.259 (±0.013) 0.265 (±0.012) 0.271 (±0.009) 0.265 (±0.008) 0.268 (±0.010) 0.264 (±0.008)
0.146 (±0.010) 0.142 (±0.002) 0.131 (±0.011) 0.132 (±0.014) 0.137 (±0.012) 0.134 (±0.011) 0.136 (±0.012) 0.136 (±0.014)
0.917 (±0.032) 0.911 (±0.034) 0.879 (±0.041) 0.885 (±0.037) 0.883 (±0.034) 0.891 (±0.032) 0.876 (±0.040) 0.892 (±0.044)

Heart Disease
0.416 (±0.027) 0.415 (±0.026) 0.358 (±0.037) 0.361 (±0.041) 0.371 (±0.035) 0.371 (±0.033) 0.366 (±0.039) 0.377 (±0.025)
0.273 (±0.070) 0.272 (±0.070) 0.180 (±0.024) 0.176 (±0.027) 0.188 (±0.022) 0.187 (±0.020) 0.183 (±0.024) 0.189 (±0.017)
0.118 (±0.017) 0.121 (±0.031) 0.090 (±0.015) 0.089 (±0.017) 0.094 (±0.011) 0.094 (±0.01) 0.092 (±0.012) 0.096 (±0.010)
0.864 (±0.139) 0.868 (±0.162) 0.831 (±0.138) 0.798 (±0.168) 0.812 (±0.158) 0.803 (±0.166) 0.828 (±0.153) 0.826 (±0.152)

Hepatitis
0.572 (±0.240) 0.625 (±0.230) 0.544 (±0.205) 0.504 (±0.225) 0.526 (±0.248) 0.543 (±0.231) 0.561 (±0.234) 0.543 (±0.230)
0.413 (±0.138) 0.346 (±0.162) 0.284 (±0.103) 0.263 (±0.115) 0.272 (±0.125) 0.280 (±0.116) 0.289 (±0.118) 0.281 (±0.116)
0.269 (±0.190) 0.342 (±0.154) 0.143 (±0.051) 0.133 (±0.057) 0.137 (±0.062) 0.141 (±0.057) 0.145 (±0.058) 0.141 (±0.057)

Table 10 Comparison of TreeRank and several competitors on benchmark data. Total AUC and Local AUC for three different values u = 20, 10, 5% are given in that
order. Standard type error σ̂2 for these values is indicated in parentheses.

1

2

3

4

5

6

7

8

9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

6
4

6
5

2
5

HR@10% ; HR@20% RF1SVM RF3CART AdaBoost RankBoost RankSVM RankLS P− norm push KLR
AP

Congressional Vote
100%; 100% 100%; 100% 100%; 100% 100%; 100% 100%; 100% 100%; 100% 100%; 100% 100%; ; 100%

0.84 0.85 0.85 0.84 0.84 0.84 0.84 0.85

Australian Credit
100%; 100% 100%; 100% 100%; 100% 100%; 100% 100%; 100% 100%; 100% 100%; 100% 100%; 100%

0.75 0.76 0.75 0.78 0.76 0.76 0.76 0.77

German Credit
98%; 94% 99%; 92% 95%; 92% 96%; 93% 97%; 94% 98%; 94% 93%; 92% 96%; 93%

0.86 0.86 0.86 0.87 0.84 0.86 0.85 0.84

Japanese Credit
95%; 95% 97%; 95% 95%; 95% 97%; 96% 97%; 91% 94%; 92% 95%; 93% 95%; 95%

0.71 0.71 0.71 0.71 0.69 0.70 0.70 0.71

Autos MPG
100%; 100% 100%; 100% 100%; 100% 100%; 100% 100%; 100% 100%; 99% 100%; 100% 100%; 100%

0.80 0.79 0.77 0.77 0.77 0.76 0.77 0.78

Ionosphere
100%; 100% 100%; 99% 100%; 99% 100%; 100% 94%; 93% 89%; 94% 79%; 84% 94%; 92%

0.94 0.92 0.92 0.92 0.87 0.87 0.78 0.86

Breast Cancer Diagnosis
100%; 100% 100%; 100% 100%; 100% 100%; 100% 100%; 99% 100%; 100% 100%; 100% 100%; 100%

0.70 0.70 0.69 0.69 0.70 0.69 0.68 0.71

Breast Cancer Original
100%; 99% 99%; 99% 97%; 98% 100%; 99% 100%; 99% 100%; 99% 100%; 98% 100%; 99%

0.65 ;0.64 0.64 0.63 0.65 0.65 0.65 0.65

Heart Disease
97%; 94% 93%; 94% 93%; 92% 93%; 90% 97%; 94% 97%; 92% 93%; 92% 97%; 92%

0.73 0.75 0.73 0.71 0.73 0.74 0.85 0.75

Hepatitis
65%; 40% 85%; 42% 45%; 38% 45%; 42% 65%; 37% 85%; 47% 65%; 42% 65%; 42%

0.33 0.43 0.48 0.33 0.33 0.42 0.37 0.35

Table 11 Comparison of TreeRank and several competitors on benchmark data.Performance is provided here in terms of hit ratios for proportions 10% and 20%
respectively (figures on top) and also in terms of average precision (figure on bottom).

1

2

3

4

5

6

7

8

9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

6
4

6
5

26

References

1. S. Clémençon, N. Vayatis, (2009), Tree-based
Ranking Methods, IEEE Transactions on Informa-
tion Theory, 9:4316-4336.

2. S. Clémençon, M. Depecker, N. Vayatis, (2011),
Adaptive Partitioning Schemes for Bipartite Rank-
ing, Machine Learning Journal, 43(1):3169.

3. S. Clémençon, M. Depecker, N. Vayatis, (2009),
Bagging Ranking Trees, In Proceedings of ICMLA.

4. S. Clémençon, N. Vayatis, (2010), Ranking
Forests, To be published.

5. Y. Freund, R.Iyer, R.E. Schapire, Y. Singer,
(2003), An Efficient Boosting Algorithm for Com-
bining Preferences, Journal of Machine Learning
Research, 4:933-969.

6. T. Hastie, R. Tibshirani, (1990), Generalized Ad-
ditive Models, Chapman & Hall/CRC.

7. J. Zhu, T. Hastie, (2005), Kernel Logistic Re-
gression and the Import Vector Machine, Jour-
nal of Computational and Graphical Statistics,
14(1):185-205.

8. J. Friedman, T. Hastie, R. Tibshirani, (2000), Ad-
ditive Logistic Regression: a Statistical View of
Boosting, Annals of Statistics, 28(2):337-407.

9. T. Joachims, (2002), Optimizing Search En-
gines using Clickthrough Data, Proceedings of the
eighth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 133-142.

10. T. Pahikkala, E. Tsivtsivadze, A. Airola, J.
Boberg, T. Salakoski, (2007), Learning to Rank
with Pairwise Regularized Least-Squares, Proceed-
ings of SIGIR 2007 Workshop on Learning to Rank
for Information Retrieval, 27-33.

11. C. Burges, T. Shaked, E. Renshaw, A. Lazier, M.
Deeds, N. Hamilton, G. Hullender, (2005), Learn-
ing to Rank using Gradient Descent, Proceedings
of the 22nd International Conference on Machine
Learning, 89-96.

12. L. Dodd, M. Pepe, (2003), Partial AUC Estima-
tion and Regression, Biometrics, 59(3).

13. S. Clémençon and N. Vayatis, (2007), Ranking
the Best Instances, Journal of Machine Learning
Research, 8:2671-2699.

14. S. Clémençon, N. Vayatis, (2008), Empirical per-
formance maximization for linear rank statistics,
Proceedings of NIPS’08, 305-312.

15. C. Rudin, (2009), The P-Norm Push: A Simple
Convex Ranking Algorithm that Concentrates at
the Top of the List, Journal of Machine Learning
Research, 10:2233-2271.

16. S. Robertson, H. Zaragoza, (2007), On rank-
based effectiveness measures and optimization, In-
formation Retrieval, 10(3):321-339.

17. P. Bartlett, M. Jordan, J. McAuliffe, (2006),
Convexity, classification and risk bounds, Jour-
nal of the American Statistical Association,
101(473):138-156.

18. P. Bartlett, A. Tewari, (2007), Sparseness vs Es-
timating Conditional Probabilities: Some Asymp-
totic Results, Journal of Machine Learning Re-
search, 8:775-790.

19. D. Mease, A. Wyner, (2008), Evidence Contrary
to the Statistical View of Boosting, Journal of Ma-
chine Learning Research, 9:131-156.

20. , Devroye, L., L. Györfi, G. Lugosi, (1996),
A Probabilistic Theory of Pattern Recognition,
Springer-Verlag.

21. S. Clémençon, N. Vayatis, (2010), Overlaying
classifiers: a practical approach for optimal scor-
ing, Constructive Approximation, 32(3):619-648.

22. S. Boucheron, O. Bousquet, G. Lugosi, (2005),
Theory of classification: a survey of recent ad-
vances, ESAIM: Probability and Statistics, 9:323-
375.

23. J. Hanley, J. McNeil, (1982), The Meaning and
Use of the Area Under a ROC curve, Radiology,
143:29-36.

24. S. Clémençon, G. Lugosi, N. Vayatis, (2008),
Ranking and Empirical Risk Minimization of U-
statistics, The Annals of Statistics, 36:844-874.

25. N. Ailon and M. Mohri, (2010), Preference-based
learning to rank, Machine Learning Journal, 80,
2:pp. 189–211.

26. L. Breiman, J. Friedman, R. Olshen, C.
Stone, (1984), Classification, Regression Trees,
Wadsworth and Brooks.

27. F.R. Bach, D.Heckerman, Eric Horvitz, (2006),
Considering cost asymmetry in learning classifiers,
Journal of Machine Learning Research, 7:1713-
1741.

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

