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Abstract

Being able to detect reliably functional activity in a population of subjects is crucial in human
brain mapping, both for the understanding of cognitive functions in normal subjects and for
the analysis of patient data. The usual approach proceeds by normalizing brain volumes to a
common three-dimensional template. However, a large part of the data acquired in fMRI aims
at localizing cortical activity, and methods working on the cortical surface may provide better
inter-subject registration than the standard procedures that process the data in the volume.
Nevertheless, few assessments of the performance of surface-based (2D) versus volume-based (3D)
procedures have been shown so far, mostly because inter-subject cortical surface maps are not
easily obtained. In this paper we present a systematic comparison of 2D versus 3D group-level
inference procedures, by using cluster-level and voxel-level statistics assessed by permutation, in
random e�ects (RFX) and mixed-e�ects analyses (MFX). We consider di�erent schemes to perform
meaningful comparisons between thresholded statistical maps in the volume and on the cortical
surface. We �nd that surface-based multi-subject statistical analyses are generally more sensitive
than their volume-based counterpart, in the sense that they detect slightly denser networks of
regions when performing peak-level detection; this e�ect is less clear for cluster-level inference and
is reduced by smoothing. Surface-based inference also increases the reliability of the activation
maps.

Keywords: Cortical surface mapping, fMRI, statistical inference, cluster-level tests, random
e�ects analysis, mixed e�ects analysis, between-subject variability.

1. Introduction

Studying the localization and variability of brain activity across subjects are two crucial aspects
of neuroimaging data analysis. This is important both for building models of brain activation
organization and to relate inter subjects activity variations to factors of interest, such as behavioral
and genetic measurements. In particular, many neuroscience results depend on the the precise
localization of the Blood Oxygen-Level Dependent (BOLD) signal changes measured by functional
Magnetic Resonance Imaging (fMRI). Controlling the variability of activation position across
individuals is essential in order to grant enough sensitivity in activation detection, and to ensure
that one-sample group-level inference, that deals with between-subject mean activation, is indeed
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representative of the true population pattern. Both co-registration and activity detection are
most commonly performed in 3D space, by applying linear and non-linear warps to match the
anatomical and functional images to a common template, often chosen to be the MNI template
[24]. Brain activations are then described through the positions of local maxima of activation
maps in template space, and these locations are then interpreted in terms of brain regions using
standard atlases (see e.g. [39, 37]).

Activity localization. Once the data are in the common template space, the only information
available on the localization of the BOLD signal are the coordinates (x,y,z) in this space. This
view precludes a deep understanding of brain organization, which should consider the details of
anatomical structure in order to de�ne properly activity localization [7]; in general, functional
regions should be characterized by their relative position with respect to anatomical landmarks,
their extent or their connections to other regions [3]. Imperfect spatial registration procedures
probably induce an additional blur that is detrimental to the accuracy of brain mapping and to
sensitivity.

Activity detection. The standard approach to activation detection [13] consists in comparing the
images from the di�erent subjects on a voxel-by-voxel basis, and to compute a statistical map
to test the presence of an activation in each voxel of the standard space. The ensuing multiple
testing problem can be addressed directly at the voxel-level [26] or by testing the size of clusters
de�ned above a user-chosen threshold [17].

1.1. Volume- and surface-based spatial normalization

Spatial normalization is therefore crucial to de�ne accurately the position of functional regions,
and thus to detect positive activation at the population level. Many works have been carried out
to improve these volume-based co-registration procedures (see [21] for a review of most of these
procedures). Yet, as a very large part of the data originates from the cortex, methods that work
on the cortical surface may be more sensitive than those using the full brain volume. It is well
known that volume-based normalization may introduce inaccuracies in anatomical positioning of
functional data, estimated up to 1cm in several cortical regions [18, 35]. For instance, it is di�cult
to account for the inter-subject variability of gyri size, shape or position in a 3D referential and
such di�erences may correspond to the displacement of a functional focus to a di�erent gyrus in
some subjects.
Surface-based spatial normalization proceeds from a di�erent perspective: it consists in the

de�nition of coordinate systems on the cortical surface that match corresponding regions across
individuals. This is done by using geometric descriptors of the surface, such as the main sulci [9, 4]
or smoothed curvature maps [11]. A review of these techniques has recently been performed in [22].
Surface-based methods do not guarantee that a perfect match will be found across individuals, in
particular because sulcal patterns are known to be partly inconsistent even in standard populations
[30]. However, these surface-based methods are probably more accurate for aligning cortical
folds than volume-based methods, and they have been shown to correctly align cyto-architectonic
boundaries [10]. Several studies have shown that a co-registration algorithm based on the cortical
surface may better align the functional signal across subjects [11, 2, 6, 1], but none of these studies
used standard group-level random-e�ects inference procedures, such as a one-sample t-test across
individuals.
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More generally, besides the fact that non-cortical regions are not analyzed by a surface-based
procedure, this analysis su�ers from an important limitation: it requires that functional data has
been accurately projected on the cortical surface, i.e. that the correspondence of functional data
with anatomical data is correct. This is a real challenge in practice, as the cortical thickness, but
also the distance between the banks of a given sulci or the width of a gyrus are small, in view of the
typical resolution of fMRI data [27]. Moreover, fMRI data are artefacted by geometric distortions
related to EPI acquisition. These distortion are not systematically and fully corrected during
pre-processing [19]. In the present work, we do not focus on the evaluation of the main steps that
are necessary to perform adequate surface-based analysis, such as the comparison of functional
data projection techniques or EPI distortion correction, but propose di�erent methods to compare
the results of various group-level inference procedures applied on the cortical surface and in the
volume. For these comparisons, we use state-of-the-art group analysis statistical approaches. A
procedure has recently been proposed in [16] to assess the quality of the co-registration between a
cortical mesh and fMRI data, and is expected to optimize the spatial match between anatomical
structures and functional information. However, to the best of our knowledge, there has been no
recent comprehensive investigation on the impact of 2D versus 3D activation detection on fMRI
group analysis.

1.2. An empirical comparison of volume- and surface-based alignment for functional brain map-
ping

In this paper, we investigate whether surface-based approaches, that rely on a cortical surface
referential, provide better constraints about the position of functional activity, and more precisely,
whether this is re�ected in state-of-the-art inter-subject statistical procedures. Following [11], we
perform functional analysis on the cortical surface for a group of 25 subjects. The inter-subjects
analysis relies on matching the subjects cortical surface [11, 12]. Then we systematically compare
the results of surface- and volume-based statistical analysis and provide results on the di�erence
in sensitivity of the two approaches for di�erent tests, for a given control of the type I error. More
speci�cally, we use for the comparison mixed- and random-e�ects inference at the voxel and at
the cluster level [25] and assess their reproducibility with bootstrap.
This raises a di�cult question: how should we compare group results obtained in the volume to

those obtained on the cortical surface? In the present work we explore and detail three possibilities,
that are based either on the relative activated volume, or the choice of surface- or volume- based
spatial referential to compare the results of either kind of analysis. We also address the impact of
choosing a surface- or a volume-based smoothing kernel on the results, as this is known to have an
important e�ect on detection and localization in group analysis. We consider an fMRI protocol
designed to map quickly several cognitive functions [28] from which we use several contrasts to
compare the surface and volume analyses, and provide to cognitive neuroscientists comprehensive
information on the sensitivity of those analyses.
The remainder of this paper is organized as follows: in section 2 we �rst present the data used in

our experiments, and then the processing and inference procedures tested; we describe the results
of these tests in section 3 and discuss our results in section 4.
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2. Materials and methods

2.1. Dataset used in our experiments

Data were acquired from 25 subjects who performed a functional localizer protocol as described
in [28]. This protocol is intended to activate multiple brain regions in a relatively short time (128
brain volumes acquired in 5 minutes) with ten experimental conditions, allowing the computation
of many di�erent functional contrasts: left and right button presses after auditory or visual
instruction, mental computation after auditory or visual instruction, sentence listening or reading,
passive viewing of horizontal and vertical checkerboards. The subjects gave informed consent and
the protocol was approved by the local ethics committee.
Functional images were acquired on an 1.5T General Electric Signa System scanner (General

Electric Medical Systems, Milwaukee, WI, USA) using an EPI sequence (TR = 2400ms, TE =
60ms, matrix size = 64×64, FOV = 24cm×24cm, echo spacing = 608µs). Each volume consisted
of 40 3mm-thick axial slices without gap. A session comprised 132 EPI scans, of which the �rst
four were discarded to allow the MR signal to reach steady state. The slices were acquired in
interleaved ascending order. Anatomical fSPGR T1-weighted images were acquired on the same
scanner, with a slice thickness of 1.2 mm, a �eld of view of 24 cm and an acquisition matrix of
256 × 256 × 124 voxels, resulting in 124 contiguous double-echo slices with voxel dimensions of
(0.9375× 0.9375× 1.2)mm3.

2.2. Pre-processing

The functional data were �rst corrected from the EPI distortions using �eld maps and the SPM
toolbox; the ensuing image resolution was 3.75× 3.75× 3mm3. Note that the fMRI were consid-
ered as initially aligned with the B0 map, and thus were not re-interpolated prior to distortion
correction; the application of the correction in itself induced a re-interpolation of the data. Next,
a standard pre-processing (correction of di�erences in slice timing, rigid-body motion correction
and anatomo-functional co-registration) was performed using the SPM5 software on all subjects.
The FreeSurfer software [11, 5], version 4.0.2 was used to segment and reconstruct the cor-

tical surface from T1 MRI data of each subject, and obtained the white matter mesh for both
hemispheres. This provides a common spherical coordinate system for each hemisphere in each
subject. Pre-processing of the data includes i) segmentation of the white matter, yielding triangu-
lar meshes for grey-white and grey-csf (cerebro-spinal �uid) interfaces, ii) detection of the deepest
sulci, iii) in�ation of the white surface onto a sphere, iv) deformation to match the deepest sulci
positions on the template model.
All data are then converted to the standard GIFTI format for further processing. In order

to obtain a node-by-node correspondence, the mesh of each subject was then resampled : i) a
regular sphere (icosphere) of diameter equal to the brain-sphere with a reduced number of nodes
(about 40k nodes) was created, ii) this sphere was refolded onto the original cortical surface of
each subject while preserving node-to-node correspondence with the original icosphere mesh. This
corresponds to resampling the individual meshes to match a template mesh, as is usually done
in volume-based normalization procedures. Downsampling to 40k nodes entails a minor loss of
resolution when compared to fMRI resolution, and provides a four-fold speed gain in the ensuing
statistical procedures with respect to the full mesh resolution.
An average cortical model across 25 subjects was created for visualization of the results. Each

resampled mesh was embedded into the MNI space, then an average brain was obtained by
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computing the mean 3D position of each node through all subjects in that space. It is important
to notice that this mesh is used only for visualization purpose and not in the actual statistical
analyses.
Functional images were then projected onto the resampled gray/white interface mesh of each

subject using the method described in [27]. This projection relies on the geometry of the local
anatomy: for each node of the mesh of the grey/white interface, a projection kernel is computed,
so that it yields a weighted average of the neighboring voxels, where the weights decrease sharply
along the normal direction outside of the cortical ribbon, and more smoothly in the tangent
plane at the surface. The projection is then performed by convolution of the functional 3D map
with the kernels of each node. The parameters of the decay are 5mm in the tangential direction
and 2mm in the normal direction. For all subjects and hemispheres, we visually checked that
there was no spatial mismatch between the brain mesh and the functional volume. A General
Linear Model (GLM) analysis was applied for the volume- and surface-based data using the same
analysis code, namely the nipy package http://nipy.sourceforge.net/. The model included
the ten conditions of the experiments convolved with a standard hemodynamic �lter and its time
derivative, a high-pass �lter (cuto�:128s) and the procedure included an estimation of the noise
auto-correlation using an AR(1) model [31]. Activation maps were derived for the following six
functional contrasts (we give short names in italic): i) left-right : left versus right button presses,
ii) right-left : right versus left button presses, iii) audio-video: sentence listening versus sentence
reading, iv) video-audio: sentence reading versus sentence listening, v) computation-sentences :
computation versus sentence reading, vi) reading-visual : reading versus passive checkerboard
viewing. These contrasts are expected to reveal di�erent aspects of the functional organization of
the brain, at di�erent localizations, and show di�erent sensitivity and reproducibility levels (see
[36] for a detailed discussion).
In parallel, the fMRI data was also analyzed, using the same linear model, after non-linear spa-

tial normalization, which was performed with the SPM5 software using the new segment method.
This normalization was based on the coregistration with the T1 image that had been warped to
the SPM T1 template. Before the linear model application, we used di�erent levels of smoothing
on the cortical surface and in the volume, corresponding to 0, 4, 8 and 12mm full width at half
maximum (fwhm) for the 3D data and 0 or 8mm on the surface, in order to check the impact of
smoothing kernel. We also segmented the grey matter in the individual anatomy using SPM5, and
created a population-level mask of the voxels that belong to the grey matter with a probability
greater than .5; this masked was resampled to the fMRI resolution.

2.3. Experiments

2.3.1. Statistical model for group analysis

In this work, S = 25 subjects are considered. For each subject i, and at any location of
the domain under consideration (cortical mesh or brain volume), let β̂i be the estimation of the
BOLD e�ect related to some functional contrast of interest (for notational simplicity, we drop
explicit references to the contrast under consideration). β̂i is distributed around the true e�ect
βi: β̂i = βi+ ei with ei ∼ N (0, s2i ) where the estimation variance s2i is assumed to be known from
the �rst-level General Linear Model (GLM)1. As is traditionally done in neuroimaging, we further

1As there are often many degrees of freedom at the �rst level the error made here is likely to be small.
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assume that βi = βG+ εi, where εi ∼ N (0, σ2) and βG is the population-level e�ect [32]. We thus
have :

β̂i = βG + ε′i, ε′i ∼ N (0, σ2 + s2i ), (1)

where σ2 is the between-subject variance. This is a generalization of the Random E�ects (RFX)
model in [13] which neglects the β̂i estimation variance, i.e. it assumes s2i ≡ 0. Both βG and
σ2 are then estimated by maximizing the log-likelihood of the model speci�ed in Eq. (1) using
the Expectation-Maximization (EM) algorithm in [20]. The following log-likelihood ratios are
computed to test the positivity of βG:

LMFX = log
supσ2,βG>0

∏S
i=1N (β̂i; βG, σ

2 + s2i )

supσ2

∏S
i=1N (β̂i; 0, σ2 + s2i )

, (2)

LRFX = log
supσ2,βG>0

∏S
i=1N (β̂i; βG, σ

2)

supσ2

∏S
i=1N (β̂i; 0, σ2)

(3)

Note that computing LRFX is equivalent to performing a t-test.

2.3.2. Statistical calibration

The distribution of the statistics in Eq. (2-3) under the null hypothesis (βG = 0) is unknown,
but can be estimated very simply through a randomization procedure, in which the statistics are
recomputed after a sign swap of the observed e�ects β̂i. Under the hypothesis that the distribution
of the true e�ects is symmetric about zero everywhere in the brain �which is our null hypothesis�
this procedure yields an exact (possibly conservative) speci�city for the test. In order to control
the family-wise error rate (FWER), i.e. the probability of detecting one false positive region over
the search domain, we consider the distribution of the maximal statistic under the null hypothesis.
For a chosen FWER α, this yields a voxel- or vertex- level corrected threshold.
A more sensitive approach to detect extended regions consists in �rst thresholding the statistics

map at a given level (corresponding e.g. to p < 10−3 uncorrected), and then to estimate the
distribution of size (area (in mm2) or volume (in mm3)) of the supra-threshold clusters under
the null hypothesis. To solve the multiple comparison issue, the size of the maximal cluster is
tabulated under the null hypothesis. Once again, the quantile α of this simulated distribution
yields a cluster-level corrected threshold.
In summary, we use the following statistics: voxel-level/vertex-level random e�ects test (VRFX)

and mixed e�ects test (VMFX), cluster-level random e�ects test (CRFX) and mixed e�ects test
(CMFX). We will always refer to surface-based or volume-based statistics to make the underlying
spatial model explicit.

2.4. Comparison of surface-based and volume-based results

Next we discuss how to compare the di�erence in sensitivity between the spatial- and volume-
based analyses. One �rst challenge is that this comparison is performed in the absence of a
ground truth, so that it is di�cult to characterize the correctness of surface- or volume-domain
detections. However, the procedure that we use has the theoretical guarantee of providing the
same rate of false detections (type I error) for each test. This holds separately for univariate tests
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on the one hand, and cluster size tests on the other hand (the sensitivity of both tests are not
easily compared directly as they do not have the same regional speci�city). In these conditions,
the fact that a spatial procedure yields the detection of more regions means that this procedure
is better suited to detect the functional activity related to this contrast. The di�culty is thus to
quantify the relative amount of detections performed in either domain, as the results are observed
and characterized in two di�erent spaces. In this work, we describe and perform three possible
comparisons:

• The �rst one is to consider the test sensitivity, i.e. the relative amount of activated regions in
either domain (surface or volume). This can give an indication on the performance of either
domain to outline active regions, but this is confounded by the fact that 3D maps include
sub-cortical regions, in which activations may (cerebellum, deep nuclei) or may not (white
matter) be found. We have tried to remove this confound by running also the volume-based
analysis on a mask of the grey matter.

• A second possible comparison is to project the result of group-level volume-based analyses
onto the cortical surface of each subject, and then to report the activated surface (in mm2)
obtained, as compared to the surface declared active after full surface-based analysis. In the
absence of a satisfactory population-level model of the cortical surface, we iteratively took
each individual surface as reference space, and report the mean and standard deviation of
the activated surface across these models. This avoids the confounds previously described,
but it is di�cult to decide which vertices are active when we recombine the projection of
the group results on a given individual anatomy: in this work, we decided to declare active
all nodes that reached a signal level of .5 after projection of a binary activation maps (0 for
inactive, 1 for active voxels) onto the cortical surface, corresponding to a 50% con�dence
that the node is indeed active.

• Finally, a third solution consists in embedding the activated regions obtained on the cortical
surface into the MNI space, and then to compare the two sets of positions in MNI space.
The position comparison procedure is de�ned using a kernel-base metric that measures the
discrepancy between di�erent sets of positions, and is described in Section 2.4.1. Again,
as the embedding depends on the chosen cortical surface, we used the grey/white interface
mesh of each subject and average the result across all 25 subjects.

The embedding and projection approaches are illustrated in Fig. 1. Finally, we also considered
the impact of choosing the medial cortical surface instead of the grey-white matter interface in
the projection approach.

2.4.1. Kernel similarity between active regions

Here we de�ne the similarity measure used to compare the coordinates obtained from surface-
and volume-based analysis in the MNI space: Let tsurf = (tsurfi )i=1..N and tvol = (tvoli )i=1..V be
the set of coordinates of supra-threshold positions obtained from surface-based and volume-based
analysis respectively, N and V being the number of nodes and voxels under consideration. We
de�ne the two quantities:

ψ(tvol; tsurf ) = mean
v=1..V

max
n=1..N

exp

(
−‖t

vol
v − tsurfn ‖2

2δ2

)
(4)
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Embedding approach

(a)

Projection approach

(d)

(d)

(b)

(c) (b)Subject s ∈[1..S]

Subject s ∈[1..S]

Figure 1: Illustration of the two main methodologies for the comparison of surface-based and volume-based group
analysis results. In the projection approach (top), the activation found in MNI space (d) are projected onto
the the cortical surface of each individual (c), and thus compared to the active areas found in the surface-based
analysis, then represented in the cortical geometry of the same subject (b). In the embedding approach (bottom)
the activations obtained on the surface in the common space represented by a sphere (a), are embedded in the 3D
space related to the cortical geometry of each individual in the MNI space (b), and then compared to the volume
activation found in MNI space (d).
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and

ψ(tsurf ; tvol) = mean
n=1..N

max
v=1..V

exp

(
−‖t

vol
v − tsurfn ‖2

2δ2

)
, (5)

where δ is a �xed distance (δ = 6mm in our experiments). ψ(tsurf ; tvol) and ψ(tvol; tsurf ) quantify
how well the values in (tvol) and (tsurf ) correspond to each other: A high value of ψ(tsurf ; tvol)
indicates that, for each supra-threshold region on the surface, a close active region can in general be
found in the volume. Reciprocally, a high value of ψ(tvol; tsurf ) indicates that each supra-threshold
voxel in the volume is closely matched by a supra-threshold node on the surface. Put di�erently
1
2

(
ψ(tvol; tsurf ) + ψ(tsurf ; tvol)

)
∈ [0, 1] provides a concordance index of the supra-threshold region

on both domains, while a positive di�erence ψ(tvol; tsurf ) − ψ(tsurf ; tvol) indicates that volume-
based activations are more frequently found in the vicinity of surface-based activations than the
converse, i.e. that surface-based analysis is more sensitive.
Regarding the choice of δ, the meaning of this parameter is that, whenever the distance between

one node and it nearest voxel is larger that 2× δ, the contribution to ψ is close to 0, meaning that
the node has no corresponding active voxel in the volume. δ measures the admissible discrepancy
of the position of activations in MNI space, and we found δ = 6mm to be a reasonable choice.
However, our evaluation metric varies smoothly with respect to this parameter, so that the results
are stable with respect to this choice too.

2.5. Bootstrap reproducibility of the active regions

Finally, we performed an analysis of the reproducibility of the active regions in 2D and 3D
using a bootstrap procedure: we draw S subject with replacement from the initial population B
times, perform the statistical analysis, and compute a replication map RB which yields the counts
of activation of each site. A reproducibility index is derived below from this replication map.
Although a measure based on a binomial mixture has been proposed previously for this purpose
[15, 23, 36], we use here a direct estimation of the conditional probability ρ that a supra threshold
voxel in one particular dataset will also be above threshold in another sample. This was simply
obtained by counting the average number of co-activations across pairs of experiments, divided by
the average number of activation detections across experiments. Let h be the histogram of RB:
(hb)1≤b≤B counts the number of times a voxel/node has been declared active among B replications;
then let

ρ =
1

B − 1

∑B
b=1 b(b− 1)hb∑B

b=1 bhb
(6)

ρ ∈ [0, 1] measures the probability that a given active site will in average, be reproduced in a
following experiment. In our experiments, we use B = 10 and S = 25.
For visualization, we used the Anatomist software.

3. Results

A summary of the active regions activations found for the six contrasts under investigation are
given in Fig. 2.
We successively report the results of the following tests for six di�erent functional contrasts

studied in the protocol:
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Figure 2: Activations found in the six contrasts under investigation. The results are represented for a mixed-e�ects
model tested with cluster-level inference. The left plots show the active regions on the cortex, for the left and right
hemisphere, using inner and outer views. The rights plot shows the volume maps centered at the map-level peak,
and all the maps are thresholded at the p < .05 corrected, level.
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Contrasts computation-
sentences

reading-
visual

left-
right

right-
left

audio-
video

video-
audio

VMFX, volume 0.126 0.975 0.287 0.317 1.018 0.755
VMFX, surface 1.298 3.571 1.754 1.114 3.562 5.474
CMFX, volume 2.075 4.172 1.337 1.25 3.193 4.906
CMFX, surface 9.221 8.96 3.731 2.326 5.907 11.965

Table 1: Relative volume (in percent) of activated areas for di�erent statistical inference procedures performed
either on the surface or in the volume. The tests are performed for 6 di�erent contrasts (in column), and the
results are provided with voxel/vertex-level mixed e�ects inference (VMFX) and cluster-level mixed e�ects inference
(CMFX). The threshold p-value is 0.05, corrected.

• Comparison of the relative amount of activated regions found in surface- and volume-based
analysis.

• Comparison of surface-based and volume-based supra-threshold regions through kernel-based
similarity.

• Reproducibility of the supra-threshold regions in the surface of in the volume.

The level of smoothing can have a confounding e�ect on the conclusions that might be drawn
from these experiments. We thus systematically considered di�erent levels of smoothing: 0, 4, 8
and 12 mm fwhm in the volume, 0 or 8 mm on the cortical surface. We report all or part of these
results in the following experiments. Surface-based smoothing was performed on the mesh, using
a tool from the Brainvisa toolbox http://brainvisa.info/index.html.

3.1. Relative sensitivity

3.1.1. Rate of signi�cantly active regions

The proportion of supra-threshold surface or volume is given in Table 1 for mixed-e�ects in-
ference, and in supplementary material for random-e�ects inference (see Table A.3). We observe
that: i) cluster-level statistics systematically yield more extended supra-threshold regions than
voxel- or node-level statistics; ii) mixed-e�ects statistics are more sensitive than random-e�ects
statistics; iii) surface-based analysis systematically yields a larger relative portion of activated
regions than volume-based analysis. Results i) and ii) are common �ndings, while iii) provides a
�rst empirical con�rmation of the advantage of surface-based analyses.
In the sequel, we no longer report results with VRFX/CRFX, since they are qualitatively

similar to those obtained with VMFX and CMFX respectively, with a general tendency toward
less sensitivity and reproducibility.
Next, we consider the impact of the level of smoothing on these quantities; to simplify the

presentation, we only consider here a smoothing kernel of 8mm fwhm, applied on the surface or
in the volume. The results are given in Table 2 using mixed-e�ects inference at the voxel/node
(VMFX) level only. We also include the result in the volume, but limited to the grey matter,
without smoothing. This should be compared with the results provided in Table 1, that gives
corresponding results without smoothing.
We observe that the tendency observed previously still holds after smoothing the data: the

proportion of activations is larger on the surface, and that smoothing increases this proportion.
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Contrasts computation-
sentences

reading-
visual

left-
right

right-
left

audio-
video

video-
audio

volume, 8mm smoothing 1.312 3.887 1.133 1.287 3.409 3.846
surface, 8mm smoothing 5.802 6.966 2.9 1.951 5.687 9.602
GM volume, no smoothing 0.204 1.516 0.447 0.483 1.634 1.166

Table 2: Relative volume (in percent) of activated areas using voxel/vertex-level mixed e�ects inference (VMFX),
on the surface and in the volume, for a smoothing kernel of 8mm fwhm. The tests are performed for 6 di�erent
contrasts (in column). The last row yields results on volume data, restricted to the grey matter and without
smoothing.

Restricting the volume analysis to grey matter increases the values, but it still remains below
surface-based results.

3.1.2. Spatial extent of signi�cantly active regions on the cortical surface (projection approach)

The spatial extent of the supra-threshold regions after surface-based analysis is compared with
the extent of the 3D active regions of the volume-based group map, reprojected onto each indi-
vidual surface. The average activated region is reported, as explained in section 2.4. The results
are shown in Fig. 3 for the six contrasts under study, using the voxel-level mixed e�ects statistics
(VMFX). We also consider the impact of smoothing the data in the volume or on the surface.
We also ran the experiment on a mask of the grey matter in the volume, but did not �nd any
di�erence with respect to a full-volume study.
As expected, we clearly see that surface-based analysis yields a larger portion of the cortical

surface, and that smoothing the data tends to increase the relative size of active regions. It is also
important to note that the amount of activated surface after re-projection depends only weakly
on the individual anatomy used for projection, as illustrated by the relatively low variability of
the area of the projection.

3.2. Kernel-based sensitivity analysis (embedding approach)

Next, we investigate the similarity of the surface and volume-based patterns by considering
the natural embedding the cortical surface in MNI space, and then assessing the similarity of the
positions of active regions using the metric detailed in section 2.4.1. The results are shown in Fig.
4 for six contrasts, using CMFX and VMFX inference, and with two levels of smoothing: 0mm
and 8mm.
We observe a very high similarity overall, with similarity values close to .8, meaning that on

average, an active voxel can be found within d = 4mm ((exp− d2

2δ2
= .8) yields d ' 4mm, given

that δ = 6mm) of an active node, and conversely. However, some di�erences can be noted,
and in particular between voxel-based and cluster-based inference: without additional smoothing
ψ(tsurf ; tvol) is similar to ψ(tvol; tsurf ) in cluster-level inference, while ψ(tvol; tsurf ) > ψ(tsurf ; tvol)
in voxel/vertex-level inference; when an 8mm smoothing kernel is applied to volume and surface
data, ψ(tsurf ; tvol) > ψ(tvol; tsurf ) in cluster-level inference, while ψ(tvol; tsurf ) ' ψ(tsurf ; tvol) in
voxel/vertex-level inference. This readily means that, in peak-level inference, the surface-based
pattern seems to reveal more details (activation peaks) than voxel-based analysis. This e�ect
vanishes in cluster-level inference, or when the level of smoothing is increased. The combination
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Figure 3: Comparison of the extent (in mm2) of supra-threshold regions on the surface after full analysis on the
surface or after re-projection of the 3D results onto the surface. The results are shown using the VMFX statistics
on the six contrasts and for various smoothing kernel sizes, on the surface and in the volume. Similar trends are
observed using other statistics, cluster-level inference, and stronger smoothing. Error bars represent the variability
associated with the choice of the individual cortical surface as projection space.
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Figure 4: Kernel-based similarity of surface-based and volume-based activated regions. The bars in blue indicate
how close the position of supra-threshold voxels is to nearby supra-threshold cortical nodes in average; reciprocally,
the bars in red indicate how close supra-threshold nodes are to nearby supra-threshold voxels on average. The
results are shown for six contrasts, using voxel-level analysis (a, b) and cluster-level (c, d) inference with the mixed-
e�ect model, without smoothing (a, c) or after 8mm smoothing (b, d). Di�erences at the p < 0.05 uncorrected
level, are highlighted with one star, and results signi�cant at p < 0.001 level are highlighted by two stars. The
error bars correspond to the choice of the individual surface chosen to embed active regions into MNI space.
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of large smoothing and cluster-level inference shows regions in the volume that are not matched
with surface-based analysis.
Note that we also investigated the use of the medial cortical surface of the grey-white matter

interface when embedding the surface activation into individual space, but the di�erence with
respect to the use of the grey-white matter interface is barely noticeable, as the distance between
the two surfaces is much smaller than δ. We also considered using the activations found in grey-
matter volume only, but the e�ect is also negligible.

3.3. Qualitative comparison

In order to compare more qualitatively the output of surface-based versus volume-based infer-
ence, we present both types of results on the same �gure in Fig. 5. We present results for mixed
e�ects analysis, given that random-e�ects yield very similar results, albeit with less sensitivity. We
present volume-based and surface-based inference results for two contrasts, computation-sentences
and reading-visual.
With the computation-sentences contrast, some active surface portions are relatively far from

active voxels (but not the converse) in voxel-level inference (Fig. 5, rows 1 and 3), but not in
cluster-level inference (Fig. 5, rows 2 and 4). This is consistent with the fact that ψ(tvol; tsurf ) >
ψ(tsurf ; tvol) in peak-level inference. This is one of the cases, where surface-based analysis can
be viewed as more sensitive than volume-based analysis. This e�ect is less obvious with the
reading-visual contrast.
In cluster level inference, we obtain a greater consistency, i.e. all the supra-threshold locations

in either domain correspond to supra-threshold location in the other domain. The most striking
result is that, in the case of reading-visual contrast, volume-based analysis yields a huge cluster
that gathers the superior temporal, Broca's and pre-central gyri, while these appear as distinct
clusters in surface-based analysis. This e�ect can be considered as problematic, as the huge
volume-based region clearly results from the agglomeration of spatially distant active foci observed
in di�erent subjects. Our interpretation is that the spatial variability of these foci creates a very
large region where the average signal across subjects is positive; when many subjects are observed
(here S = 25), the mean deviation to zero becomes statistically signi�cant, and a very large
supra-threshold cluster appears. Surface-based analysis nicely avoids this e�ect, as it produced
spatially distant active regions on the cortical surface.

3.4. Reproducibility analysis

Finally the reproducibility statistic has been computed, based on a bootstrap procedure de-
scribed in section 2.5. The results are given in Fig. 6 in the case of cluster-level or voxel-level
inference, using the MFX statistic, for the six contrasts of interest.
First of all, the reproducibility values are in the [.4, 1] range, re�ecting that there is a relatively

high probability of reproducing the results at the voxel/vertex level when sampling a new group in
the same population; this overall reproducibility level depends on the contrast under investigation,
as motor and auditory activations yield the most reproducible activity patterns. As could be
anticipated, smoothing increases the level of reproducibility. It can be seen that in all cases,
surface-based analysis yields higher reproducibility scores than volume-based inference. There is
a simple geometric reason for this: projecting the data from 3D to 2D removes one dimension
of data variability (the dimension that is perpendicular to the surface), so that the apparent
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Figure 5: Volume-based versus surface-based results comparisons for the computation-sentences (rows 1 and 2)
and the reading-visual contrasts (rows 3 and 4), using voxel-level (rows 1 and 3) or cluster-level (rows 2 and 4)
inference. Surface activations are plotted as a red-yellow texture on the mesh and active voxels are printed in blue.
Note the overall correspondence of both detection procedures in each contrast, and the dissociation between peak
statistics, where the surface representation yields a wider network, and cluster size inference, where the volume
representation yields extended, but non-speci�c networks. Maps are thresholded at the p < 0.05, corrected level.
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Figure 6: Reproducibility index for a voxel-/node-level inference on the surface or in the volume, after di�erent
amounts of smoothing, based on a bootstrap procedure. We can observe that surface-based inference systematically
yields more reproducible results than volume-based inference for all levels of smoothing considered.
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cross-subject variance is reduced after projection. Additionally, the better correspondence of
cortical structures in the surface-based coordinate system should further decrease the variability
of supra-threshold patterns.

4. Discussion

The results obtained can be summarized as follows. In all our experiments, we observed that:

• Cluster-level statistics systematically yield more extended supra-threshold regions than voxel-
or node-level statistics. This was expected, as cluster-level statistics that test the size of
supra-threshold regions take advantage of the intrinsic smoothness of the data that is ig-
nored by peak statistics [17]. This advantage of cluster level inference is mitigated by two
important drawbacks: i) it relies on an arbitrary cluster-forming threshold for which there
is no straightforward or simple optimal choice (see [34] for a more complete discussion on
this topic); ii) it provides a weak control on false detections, i.e. no guarantee on the true
status (active or inactive) of each voxel or vertex within supra-threshold regions.

• Mixed-e�ects statistics are more sensitive than random-e�ects statistics. Although this in-
creased sensitivity is not guaranteed in theory, it is often observed that mixed e�ects statis-
tics, that take into account both intra-subject and one inter-subject variance terms, use
more information from the input data, and thus allow more sensitive inference [32]. In par-
ticular, these approaches down-weight the observations that are less reliable (i.e. with high
�rst-level variance), and are thus less sensitive to artefactual values.

• Surface-based analysis systematically yields a larger portion of supra-threshold regions than
volume-based analysis. This e�ect was expected, as surface based analysis focuses by def-
inition on the cortical grey matter, and thus discards many regions where BOLD activity
is not expected (but also some regions where BOLD activity might occur). But, as we still
obtain a signi�cant di�erence in favor of surface based analysis when restricting the volume
to the grey matter, the di�erence should rather be attributed to better between-subject
correspondences in the surface space.

• An embedding of the cortical surface into each subject's space reveals a dissociation: peak-
level inference shows more details on the surface than in the volume, while cluster-size in-
ference displays larger regions in the volume. This dissociation can be explained as follows:
in peak-level inference, surface based may be more sensitive because the search domain does
not include white matter and should yield better inter-subject correspondence. Reciprocally,
cluster-level inference in the volume shows very large clusters above a given threshold, be-
cause limited spatial accuracy in volume normalization tends to merge a network of regions
into a large supra-threshold region: this can be viewed as a spatial jitter e�ect. This is
clearly seen in Fig 5.

• Supra-threshold regions are more stable on the surface than in the volume. This represents
another advantage of surface-based inference: the geometric variability of active regions is
simply shrunk by dimension reduction, but also by better registration between subjects.
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To summarize, the overall greater sensitivity of surface-based analysis is explained by two
factors:

• The search domain is smaller (i.e. it consists in the cortex only), while the volume-based
approach tests also white matter and cerebro-spinal �uid regions. The price to pay is that
sub-cortical structures (thalamus, basal ganglia, cerebellum etc.) are not considered in the
surface-based representations. However, our experiments show that this does not explain
all the observed di�erences.

• The co-registration of the data is certainly more accurate, as often discussed in the literature
[11, 10], but hard to prove in practical settings. Note that this better co-registration could
have the e�ect to reduce the spread of signi�cant regions by removing spatial uncertainty
on their position.

When considering cluster-level statistics, it can be expected that the �ner co-registration related
to the surface-based approach has a mitigated e�ect on the detection of large clusters: volume-
based approaches tend to join smaller clusters which are close in Euclidean space, but relatively
distant on the geodesic (surface-based) representation. It should also be reminded that cluster-
level analyses allow only a weak control of false detections (see e.g. [14]): a supra-threshold cluster
should contain at least one voxel for which the null hypothesis can be rejected, but it cannot be
concluded that all the voxels or nodes in that cluster are indeed active.
However, in surface-based approaches, if the resolution is not �ne enough, as this is the case

in our experiments, or if EPI distortions are not perfectly corrected, the functional signal may
be diluted to neighboring gyri, creating false supplementary clusters (as we can see on Fig. 7).
The e�ect might be consistent across subjects and thus results in a spurious activation focus in
a group analysis. Note that volume-based analyses su�er from the same inaccuracy, but that it
appears only when activations are displayed on the cortical surface.
It is important to notice that we did not do any systematic study of di�erent pipelines, and

that part of the results described here would be slightly altered when using di�erent pipelines
and pre-processing tools, e.g. using only FreeSurfer pipeline, and that constant improvement of
these tools also continuously changes the picture. In particular, the three following points should
be considered carefully: i) the number of data resamplings performed along the analysis pipeline
(three in the present case: the �rst one during distortion correction, a second one during motion
correction and the third one during the projection onto the surface), ii) the potential mismatch
remaining between EPI and T1 data, in particular when the acquisitions do not entirely cover
the brain, e.g. if the tip of the motor cortex is not within the acquired volume, as it was the
case in some subjects in our dataset and iii) the choice and parametrization of the projection
method, which has to trade o� sensitivity, e.g. integrating over a larger domain to avoid missing
some signal, against speci�city, avoiding bleeding across regions or tissues. We defer a more
exhaustive study of these di�erent processing steps to future work. Still, we believe that the
main e�ects described here would carry on to many surface-based studies. It is hard to predict
whether stronger fMRI contrasts would alter the conclusions: on the one hand, the decrease of
false negatives may bene�t surface-based analyses more than volume-based analyses; on the other
hand, the sensitivity may saturate.
An interesting question that can still be addressed is how a surface co-registration procedure based
on geometric features such as FreeSurfer would compare to representations of the surface that take
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Figure 7: Potential issues with fMRI data projection to the cortical surface. (top) The activity on the pre-central
gyrus for a computation task has also been projected on the neighboring gyrus (post-central gyrus) in a fraction
of the subjects, and the ensuing e�ect can be detected in a group study (p < 0.05 corrected, 25 subjects, VMFX
statistic). It is presented on the average cortical surface (left) and on an in�ated representation (right). This kind
of e�ect can be due to poor initial fMRI data resolution, to the limitations of EPI distortion correction procedures,
and to the smoothing induced by successive interpolation steps on the BOLD data. This map was obtained using
the projection method in [27]. (bottom) The limited resolution of standard fMRI data ∼ (3mm)3 makes this kind
of e�ect hardly avoidable. In this schematic case, the volume-based approach would detect only one large cluster
(in blue), while a surface-based approach would project the activated region on both the 2 gyri and would detect
2 di�erent clusters.

into account sulcus labelling. Some experiments have indeed shown that sulcus-based coordinate
systems tend to stabilize the position of some functional landmarks [38]. The combination of shape
information exacted from gyral curves, cortical surfaces together with intensity images [29, 8] is
a promising approach in that respect. Some algorithms also include include information from
di�usion MRI, such as the position of the main �ber bundles [33].

Conclusion. Performing fMRI group analysis on the cortical surface instead of the brain volume
may bene�t the detection of some foci of activity, and thus yield more speci�c, and possibly more
sensitive analysis than standard volume-based approaches. It may reveal sharper contrasts in the
functional data and thus provide more reliable markers of brain functional anatomy. A cortical
surface analysis is quite costly in term of data processing, but it detects at least as many cortical
regions as volume-based methods, with better reproducibility, and the additional guarantee of
providing more spatially speci�c clusters. While it seems bene�cial to group analysis, it is limited
by the issues related to potentially incorrect projection of fMRI signal onto the cortical surface,
which appears to be the most risky step for surface-based inference. Future work may therefore
be directed at providing quality check measures of the accuracy of the projection.
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Contrasts computation-
sentences

reading-
visual

left-
right

right-
left

audio-
video

video-
audio

VRFX, volume 0.035 0.614 0.119 0.135 0.641 0.258
VRFX, surface 0.637 2.661 0.957 0.479 2.791 3.82
CRFX, volume 1.631 3.697 1.119 1.122 2.934 3.665
CRFX, surface 7.934 7.882 3.39 1.637 5.833 10.289

Table A.3: Relative volume (in percent) of activated areas for di�erent statistical inference procedures performed
either on the surface or in the volume. The tests are performed for 6 di�erent contrasts (in column), and the results
are provided with voxel/vertex-level random e�ects inference (VRFX) and cluster-level random e�ects inference
(CRFX). The threshold p-value is 0.05, corrected.
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