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Abstract—In this article, we propose distributed learning based
approaches to study the evolution of a decentralized hierarchi-
cal system, an illustration of which is the smart grid. Smart
grid management requires the control of non-renewable energy
production and the integration of renewable energies which
might be highly unpredictable. Indeed, their production levels
rely on uncontrolable factors such as sunshine, wind strength,
etc. First, we derive optimal control strategies on the non-
renewable energy productions and compare competitive learning
algorithms to forecast the energy needs of the end users. Second,
we introduce an online learning algorithm based on regret
minimization enabling the agents to forecast the production of
renewable energies. Additionally, we define organizations of the
market promoting collaborative learning which generate higher
performance for the whole smart grid than full competition.

Index Terms—Algorithmic Game Theory, Coalition, Dis-
tributed Learning, Regret.

I. INTRODUCTION

We describe and test distributed learning algorithms in the
context of a hierarchical highly connected network of agents,
an illustration of which is the smart grid. A first class of
algorithms will be used to control the non-renewable energy
production. Then a second class will be proposed to favor the
introduction of renewable energy sources. The first class of
algorithms belongs to the reinforcement learning category. Tit
for tat and fictitious play are well-known in repeated game
theory [3], [18]. They require different knowledge levels i.e.,
the access to the agents’ previous decisions under tit for tat
and the access to the full history of the agents’ past decisions
under fictitious play. They form a natural bridge with more
sophisticated learning rules used in machine learning such
as regret based learning [2], [18]. This latter is a rather
original approach in the machine learning community [1],
[2]. When properly designed, its performance to learn mixed
strategies over various datasets overperform other classical
machine learning approaches such as support vector machines,
autoregressive processes and artificial neural networks [6]. The
originality of this article for the machine learning community
relies on the study of these algorithms in a decentralized
and hierarchical framework resulting from the double leader-
follower structure of the game.

We have chosen to place the model in the context of the
smart grid although the results that we derive are quite generic
and can be applied to any hierarchical network with a dis-
tributed access to the scarce resource and no capacity storage.

Such framework is quite common in the revenue management
literature [16] and can be applied to many other industries like
to model the interconnections between autonomous systems
or content providers and access providers in the Internet, to
better understand the relations between suppliers and retailers
in the retail industry, etc. Going back to the smart grid,
we give a broad definition of it. Initially, smart grids are
networks enabling a decentralized production of the energy
and involving bidirectional energy flows which are controlled
by a complex, global and secured communication network.
The network is said to be smart because it is capable of
integrating efficiently each agent’s action (producers, providers
and consumers) in order to guarantee a sustainable and secure
supply at lower cost.

Nowadays, in Europe and in France especially, traditional
electrical networks rely on nuclear based energies [4]. The
main difficulty is to adapt the production level so as to meet the
uncertain demand level. In this article, we build a first model
where two learning strategies based on tit for tat and fictitious
play are used to adapt the production level to meet the demand
level. In this context, the distributed learning algorithms can
be used as distributed control algorithms providing boundaries
on the agents’ biases in the prediction process.

Because of their structure, smart grids offer a substantial op-
portunity for the integration of renewable energies. Renewable
energies like wind power, photovoltaic, geothermal, biomass,
small hydroelectric facilities, etc., are highly unpredictable
since they depend on uncontrolable exterior factors like wind,
level of sunshine, etc. They are cleaner but their production
being more difficult to forecast, they are far more difficult
to integrate into the electrical network. It requires to develop
efficient learning algorithms to predict both the consumers’
demand, which can be highly erratic due to their new active
role in the grid, and the renewable energy productions.

In practice, the electrical network based on the smart grid
model is composed of a multitude of microgrids. Microgrids
are modern, small-scale versions of the centralized electrical
system. They can be either sellers in case where they have
a surplus of power to transfer, or buyers in case where they
need to buy additional power to meet their demand. Saad et al.
propose a distributed microgrid coalition formation algorithm
enabling a decrement of 31% of the average power losses
relative to the non-cooperative case, in [14]. However, their
result relies on strong assumptions. Indeed, they make the



hypothesis that the consumers’ demand is random since it
depends on unpredicable factors such as consumption level,
consumption behavior, etc. [8]. Additionally, they make the
simplifying assumption that the power surplus which is defined
as the difference between the total power and the demand, is
distributed according to a known density function.

Actually, the justification of the fitting of a specific paramet-
ric density function requires the game designer to learn at least
its parameters. In the statistical learning literature, there are
three major learning approaches, each of them corresponding
to a particular abstract learning task: supervised learning,
unsupervised learning and reinforcement learning [2], [17].
Tasks that fall within the paradigm of reinforcement learning
are control and online optimization problems, games and other
sequential decision making tasks. Learning based on regret
minimization as described in [2], belongs to this category.
Additionally, we observe in [6] that the performance resulting
from learning based on regret minimization tested on real
data bases, are clearly superior to the ones obtained using
supervised learning approaches. As a result, these points have
convinced us to use a learning approach based on regret min-
imization. The difficulty is then to extend the already existing
method to a distributed learning framework and to clearly
identify how such a decentralized access to the information
will affect the smart grid economic organization.

The existing literature on distributed learning primarly fo-
cuses on distributed learning algorithms that are suitable for
implementation in large scale engineering systems [7], [12],
[17]. The results mainly concentrate on a specific class of
games, called games of potential [15]. This class of games
is of particular interest since they have inherent properties
that can provide guarantees on the convergence and stability
of the system. However, there exist some limitations to this
framework. The most striking one is that it is frequently
impossible to represent the interaction framework of a given
system as a potential game [9].

The learning game studied in this paper belongs to the cat-
egory of repeated uncoupled games. Indeed one agent cannot
predict the forecasts and so actions of the other agents at a
given time period. To take his decision i.e., optimal prices and
traded quantities of energy, each agent is aware of the history
of forecasts of all the agents and of his utility. Recent work
has shown that for finite games with generic payoffs there
exist completely uncoupled learning rules i.e., rules where
the agents observe only their own prediction history and their
utility, that lead to Nash equilibria that are Pareto optimal [12].
Marden et al. exhibit a different class of learning procedures
that lead to Pareto optimal vector of actions that do not
necessarily coincide with Nash equilibria [9]. A well-known
illustration of the practical interest of Pareto optimality can
be found in the prisoner dilemma where the Nash equilibrium
is inefficient compared to the Pareto optimum that would
be obtained if the prisoners had collaborated [10]. However,
one serious concern regarding Pareto optimality is that the
optimum is generally not unique and deciding which one
should be implemented by the system might in some cases,

require contracts, communication or bargaining mechanisms to
be designed at the beginning of the game. Of course this is not
always the case, as proven by [9] and [12]. Under conditions
stating that it is not possible to divide the interacting agents
into two distinct subsets that do not mutually interact with one
another, Marden et al. prove that the game dynamics induce a
Markov process over the finite state space which is defined as
the set of the triples containing the chosen action, the resulting
utility and an additional binary parameter called the agent’s
mood [9]. Then they focus on characterizing the support of
the limiting stationary distribution i.e., the stable states. In
particular, they prove that any stable state maximizes the social
welfare under an initial assumption on agent interdependency.
Compared with our model, Marden et al. study a stochastic
game where the agents always control their production. They
take as an example the wind turbines which can adapt their
power to maximize the whole wind farm’s social welfare
defined as the sum of the total power produced by each
turbine. In our game setting, the production of the renewable
energies cannot be controlled since it relies on exogeneous
events. Therefore, it requires to introduce decentralized learn-
ing approaches based on online optimization [1] and to study
the resulting economic interactions using a game theoretic
approach.

The article is organized as follows. In Section II, we
introduce the economic interplays between the agents, describe
the repeated game setting and the optimization program for
each agent. Then the double Stackelberg game is solved in
Section III in complete and partial information frameworks. In
Section IV, we consider the case where producers control their
productions while service providers need to make predictions
about the microgrid energy needs to optimize their prices and
traded quantities of energy. The performance of two learning
algorithms: tit for tat and fictitious play are evaluated ana-
lytically. In Section V, the integration of renewable energies
in the grid requires the development of an efficient online
learning algorithm based on regret minimization. We finally
prove that collaborative learning through a grand coalition
generates higher performance for the whole smart grid than
in the case of individual learning under full competition.

II. THE MODEL

The smart grid ecosystem is made of three categories of
agents:
• K energy producers e1, ..., eK which can be associated

with nuclear plants, photovoltaic park managers, wind
farm administrators, etc. The produced energy can be
either non-renewable like in the case of nuclear plants or
renewable when it comes from photovoltaic parks, wind
farms, etc.

• n service providers s1, ..., sn which might buy energy
from each of the K producers and route it through their
transport network to their clients.

• n microgrids M1, ...,Mn, each one of them being com-
mitted with a single energy provider. We assume that
each end user contracts with only one service provider



and does not churn from one service provider to another
during all the period of our study. This assumption holds
well if we consider local or regional utility companies for
example.

We introduce two individual sequences: νsi (t), which con-
tains the energy needs issued from the clients of service
provider si and νek(t), which coincides with producer ek’s
production, at time period t. The economic relationships
between the agents in the grid are pictured in Figure 1. The
symbol $ is used to represent the directed monetary transfers
between the involved agents.

Fig. 1. Economic relations between the agents in the grid.

A. Repeated game setting

We model the interplay between all the agents through a
repeated game. At each time period t of the game:

(1) The energy producers ek communicate their prices
p̃k(t) > 0 for one energy unit (i.e., Wh) to the service
providers
(2) The service providers si place energy quantity orders
to energy producers: the quantity ordered by si to ek is
denoted by qik(t)
(3) The service providers si communicate their prices
pi(t) > 0 for one energy unit to their end users
The end usersMi need νsi (t) energy units for the period
(which could depend on weather, cooking, etc.)
(4) The end users decide to find alternative sources of
energies for ai(t) energy units. They buy the rest of their
needs

(
νsi (t)− ai(t)

)
to service provider si

Each energy producer ek produces νek(t) energy units
The energy producers distribute their production to ser-
vice providers: ek delivers αki(t)νek(t) energy units to
service provider si
(?) The energy producers incur penalties if they did not
fulfill the energy orders placed by the service providers
(?) The service providers incur penalties if they did not
fulfill the energy needs of their end users

The penalties are proportional to the difference between the
initial energy order and the final energy delivery. More pre-
cisely, ek incurs the penalty γ̃i

(
qik(t) − αki(t)νek(t)

)
+

with

γ̃i > 0, from service provider si, and si incurs the penalty
γi

(
νsi (t)− ai(t)−

∑
k αki(t)ν

e
k(t)

)
+

with γi > 0, from end
usersMi. The penalties are donated to the unbiased regulator
who is supposed to control the overall energy distribution sys-
tem. Various mechanisms of transfer can then be implemented
by the unbiased regulator. The penalties can be distributed
to shareholders of the energy producers or used for social
purposes.

B. Optimization program for each agent

The only decision variable for the end users is the quantity
of energy that they decide to get from alternative sources:
ai(t). We assume that the end users have no lever to influence
their random energy needs: νsi (t). The information available
to end users is the price of an energy unit from their service
provider and their energy needs νsi (t) for the time period.
We assume that finding alternative energy sources rather than
buying it to the service provider has some costs for the
end users. More precisely, finding ai(t) energy units through
alternatives costs them ai(t)

2

2 per time period. As a result, the
total cost of energy for the end users Mi is:

pi(t)
(
νsi (t)− ai(t)

)
+
ai(t)

2

2
(1)

End users Mi choose ai(t) in order to minimize their total
cost of energy depending on the energy price.

The decision variables for each service provider si are the
energy unit price pi(t) and the energy orders qik(t) for each
energy producer ek. The only information available to service
provider si when he makes his decision are the energy unit
prices p̃k(t) of all the energy producers. He has to forecast
the energy needs of his customers and the energy production
of all the energy producers. Following our description of the
interplay between the agents, the utility for service provider
si at time period t is:

πi(t) = pi(t)
(
νsi (t)− ai(t)

)
−

∑
k=1,...,K

qik(t)p̃k(t)

− γi

(
νsi (t)− ai(t)−

∑
k=1,...,K

αki(t)ν
e
k(t)

)
+

(2)

where for any real x, we set: x+ = max{x; 0}. Service
provider si chooses his energy unit price and his energy orders
toward energy producers so that πi(t) is maximized.

The only decision variable for each energy producer ek is
the energy unit price p̃k(t) that he proposes to the service
providers. We assume that the energy producer cannot influ-
ence directly the energy he produces at each time period. This
assumption holds well if, for example, we look at a wind
turbine farm without any investment in an additional wind
turbine during the study period. The variation of the wind
intensity will make vary the energy produced without any lever
for the energy producer. When energy producer ek makes his
decision, he has no information because he is the first agent to
play in the time period. He has to forecast the energy quantity



that he will produce and the energy orders of all the service
providers.

To define the sharing coefficients αki(t), we consider a
weighted proportional allocation of resource that allows pro-
ducers to discriminate energy allocation by providers. This
framework is a generalization of the well-known proportional
allocation [14] to weighted energy orders with penalty co-
efficients as weights. Such a resource sharing mechanism has
already been introduced by Nguyen and Vojnović, in [11]. This
means that between two providers booking the same quantity,
the one having the highest penalty coefficient will receive the
largest part of the producer’s available energy. Indeed, the
producer wants to minimize his overall penalty and therefore
allocates larger parts of his production to providers who appear
to him as more threatening than the others. More precisely, in
the rest of the article, we will assume that:

αki(t) =
γ̃iqik(t)∑

j=1,...,n

γ̃jqjk(t)
(3)

Then the utility of energy producer ek at time period t equals:

π̃k(t) = p̃k(t)
∑

i=1,...,n

qik(t)−
∑

i=1,...,n

γ̃iqik(t)
(

1− γ̃iνek(t)

[ ∑
j=1,...,n

γ̃jqjk(t)
]−1)

+
(4)

Energy producer ek chooses his energy unit price so that π̃k(t)
is maximized.

III. DOUBLE STACKELBERG GAME RESOLUTION

At first we consider that the double Stackelberg game
described in Section II-A is played in a complete informa-
tion setting on the individual sequences νsi (t), νek(t), ∀i =
1, ..., n, ∀k = 1, ...,K.

Proposition 1: If the system is in energy shortage (Inequal-
ity (16)) and if penalties are fair (Inequality (15)), the double
Stackelberg game under complete information admits a unique
equilibrium :
• for each provider si,∀i = 1, ..., n, ai(t) = pi(t) is

defined by Equation (11) and the quantity orders qik(t)
are defined by Equation (14)

• for each producer ek,∀k = 1, ...,K., p̃k(t) is defined by
Equation (17)

Proof of Proposition 1. The proof detailing the agents’
optimal decisions can be found in Appendix and in [5].

We now consider that the individual sequences νsi (t), νek(t),
∀i = 1, ..., n, ∀k = 1, ...,K are not public knowledge. To
simplify, we will assume that the energy needs νsi (t) are all
drawn from a common set Xs and that energy productions
νek(t) are all drawn from a common set Xe. We assume that
Xs and Xe are public knowledge and are finite i.e., |Xs| < +∞
and |Xe| < +∞.

In the rest of the article, the game settings (energy needs
of the microgrids, energy production and penalties) will be

chosen so that we are always in energy shortage and with fair
penalties. It can be ensured easily by choosing the maximum
value of Xe small enough compared to the minimum value of
Xs.

According to the analytical expression of the equilibrium
derived in the proof of Proposition 1 and in [5], service
providers need to forecast the energy productions of each
energy producer and the energy needs of the microgrids to
optimize their decisions. We will denote by fi(X, t) the
forecast of service provider si at time period t for the random
variable X . We will also use the following notations:
• fi(t) =

{
fi(ν

s
i , t), fi(ν

e
1 , t), ..., fi(ν

e
K , t)

}
to denote the

predictions made by service provider si about microgrid
Mi instantaneous needs and about the production of each
energy producer ek, k = 1, ...,K.

• f(t) =
{
f1(t), ..., fn(t)

}
which contains the forecasts of

all the service providers.
• f−i(y, t) =

{
f1(t), ..., fi−1(t), y, fi+1(t), ..., fn(t)

}
which contains the forecasts of all the service providers
except si which prediction is set equal to y.

• ν(t) =
{
νs1(t), ..., νsn(t), νe1(t), ..., νeK(t)

}
which con-

tains the microgrid energy needs and the production of
each energy producer ek, k = 1, ...,K.

By substitution of the forecasters in the Stackelberg game
solution at equilibrium as obtained in Proposition 1 proof and
in [5], we infer the optimal decisions for service provider si
at each time period t:

pi(t) =
fi(ν

s
i , t) + γi

2

qik(t) =
fi(ν

e
k, t)

p̃k(t)

L(i)

γ̃i

n− 1

δ

As a result, the utility of service provider si at each time
period t is:

πi(t) =
fi(ν

s
i , t) + γi

2

(
νsi (t)− fi(ν

s
i , t) + γi

2

)
− L(i)

γ̃i
n− 1

δ

∑
k=1,...,K

fi(ν
e
k, t)− γi

(
νsi (t)− 1

2

(
fi(ν

s
i , t)

+ γi

)
−

∑
k=1,...,K

fi(ν
e
k, t)L(i)∑

j=1,...,n

fj(ν
e
k, t)L(j)

νek(t)
)
+

(5)

The choice of the agents’ forecasting strategies varies
depending whether we consider renewable or non-renewable
energies. Indeed, in case of non-renewable energies, the pro-
ducers have the opportunity to control their production and
the providers can play on their prices to control their demand
level. Therefore, in this case, the distributed learning problem
becomes a distributed control problem.

IV. CASE OF NON-RENEWABLE ENER-
GIES: A DISTRIBUTED CONTROL

PROBLEM

In this section, we suppose that each producer controls
his production. This is typically the case for nuclear plants



or hydraulic centrals which constitute today the majority of
energy sources in Europe [4]. Additionally, providers can
adjust the demand of their mircrogrid through price incentives.

Substituting the optimal price p̃k(t) and traded quantities of
energies qik(t),∀i = 1, ..., n in producer ek’s utlility as defined
through Equation (4), we observe that it is linear increasing in
νek(t). As a result, producer ek will maximize his production at
any time period, i.e.: νek(t) = max{Xe}. The service providers
anticipating the behavior of the producers, they will align their
forecasts concerning the productions on the value max{Xe}.
By differentiation of service provider si’s utility defined in
Equation (5) under energy shortage assumption, we obtain that
it is maximized in fi(ν

s
i , t) if, and only if, fi(νsi , t) = νsi (t)

i.e., the forecast made by si about microgridMi energy needs
coincides with its true value. The problem of course, is that at
the beginning of time period t, provider si does not observe
νsi (t). Therefore he needs to develop learning approaches to
predict it.

In this section, we apply two learning approaches which
are quite classical in the theory of learning in games [3], [18].
While tit for tat requires a rather low level of information,
agents basing their forecasts on fictitious play need to keep
track of the history of all the past predictions. In spite of
this larger memory requirement, fictitious play forms a natural
bridge between rather naive type of learning such as tit for tat
where the agents’ forecasts are based solely on their earlier
observation, and more sophisticated rules like regret based
learning that will be detailed in the case of renewable energies
in Section V.

A. Tit for tat

Tit for tat is a commonly used strategy in repeated game
theory. An agent using this strategy begins by cooperating, and
then answers to his opponent’s previous action. For example,
in the repeated prisoner dilemma with infinite or unknown time
horizon, the prisoners begin by cooperating, since it enables
them to maximize the sum of their utility. They repeat this
strategy until one of them defect in which case the other
defects too in the next time step [10].

Assuming that providers use tit for tat as learning strategy,
they estimate their microgrid energy needs at time period t
using the commonly shared energy needs of the microgrid at
time period t− 1. Judging by the form of πi(t− 1) as defined
in Equation (5), once they have observed the utility value at
the end of time period t − 1, it is quite straigthforward for
them to infer νsi (t− 1) since πi(t− 1) is linear in νsi (t− 1)
and they know all the other terms in the equality. Therefore
under tit for tat, for any provider si, the forecaster takes the
form: fsi (νsi , t) = νsi (t − 1),∀i = 1, ..., n. At time period
t, provider si forecasts microgrid Mi energy needs using its
previous value.

In the following proposition, we give the analytical expres-
sion of provider si’s loss:

li

(
f(t), ν(t)

)
=
(
π0
i (t)− πi(t)

)

It is the difference between what he would have received if
his predictions were correct or unbiased (π0

i (t)) and what he
really receives in the course of the game.

Proposition 2: Under the assumption that provider si’s
forecasting strategies about microgrid Mi energy needs are
based on tit for tat, his loss at time period t is:

li

(
f(t), ν(t)

)
=

(
νsi (t)− νsi (t− 1)

)[γi
2

− 1

4

(
νsi (t− 1)− νsi (t)

)]
Proof of Proposition 2. We have made the assumption

that the penalty coefficients are chosen so that we are always
in energy shortage. It corresponds to Case 2 described in
Subsection B.2 of Appendix. Practically, this means that the
penalty term in Equation (5) is positive. Substituting the tit
for tat prediction rule: fi(νsi , t) = νsi (t − 1) in Equation (5),
we obtain that: li

(
f(t), ν(t)

)
=

νsi (t)+γi
2

(
νsi (t)− νsi (t)+γi

2

)
+

γi
νsi (t)+γi

2 −
[
νsi (t−1)+γi

2

(
νsi (t)− νsi (t−1)+γi

2

)
+γi

νsi (t−1)+γi
2

]
.

Simplifying the identical terms of opposite sign, we obtain the
stated formula: li

(
f(t), ν(t)

)
=
(
νsi (t) − νsi (t − 1)

)[
γi
2 −

1
4

(
νsi (t− 1)− νsi (t)

)]
. �

B. Fictitious play

Fictitious play is a widely used model of learning [3]. In
this process, agents behave as if they think they are facing a
stationary, but unknown, distribution of opponents’ strategies.
This assumption might be too strong in particular if the system
in which the agents are learning fails to converge.

Considering fictitious play as the learning rule, producers
and providers choose their forecast of microgrid Mi energy
needs as a best response to the empirical distribution of the
others’ play up to time period t− 1. As all service providers
align their predictions about energy productions on the value
max{Xe} and as the profit of si does not depend on the energy
needs of other microgrids than Mi, the learning strategy can
be determined as solution of the optimization problem:

fi(ν
s
i , t) = arg max

y∈Xs

1

t− 1

t−1∑
l=1

πi(l)|fi(νsi ,l)=y (6)

As in Subsection IV-A, we give in the proposition below
the analytical expression of provider si’s loss.

Proposition 3: Under the assumption that provider si’s
forecasting strategy about microgridMi energy needs is based
on fictitious play, his loss at time period t is:

li

(
f(t), ν(t)

)
=

(νsi (t) + γi
2

)2
−
(γi

2

+
1

4
(γi

1

t− 1

t−1∑
l=1

νsi (l))
)(
νsi (t) +

γi
2

− 1

4
(γi +

1

t− 1

t−1∑
l=1

νsi (l))
)

Proof of Proposition 3. Going back to Equation (6) defining
the updating rule under fictitious play, we express the



objective function as a function of y:
1
t−1

∑t−1
l=1 πi(l)|fi(νsi ,l)=y = −(y+γi2 )2 −

L(i)
γ̃i

n−1
δ K max{Xe} + γi

2 (y + γi) + γi
Kmax{Xe}L(i)∑
j=1,...,n

L(j)
+

(y+γi2 − γi) 1
t−1

t−1∑
l=1

νsi (l). It is then maximized if, and only if,

y = 1
2

[
γi + 1

t−1

t−1∑
l=1

νsi (l)
]
. By substitution in provider si’s

utility as defined in Equation (5), we obtain provider si’s loss
at time period t:

li

(
f(t), ν(t)

)
=

(γi
2

+
1

4
(γi +

1

t− 1

t−1∑
l=1

νsi (l))
)2
−
(γi

2

+
1

4
(γi +

1

t− 1

t−1∑
l=1

νsi (l))
)
νsi (t)− γi

(γi
2

+
1

4
(γi +

1

t− 1

t−1∑
l=1

νsi (l))
)

After simplifications and factorizations, we obtain the stated

formula: li
(
f(t), ν(t)

)
=
(
νsi (t)+γi

2

)2
−
(
γi
2

+ 1
4 (γi

1
t−1

t−1∑
l=1

νsi (l))
)(
νsi (t) +

γi
2
− 1

4
(γi +

1

t− 1

t−1∑
l=1

νsi (l))
)

.

�

V. RENEWABLE ENERGIES INTEGRATION IN THE GRID: A
DISTRIBUTED LEARNING GAME

Compared with Section IV and the literature [5], [9], in this
section, the energy productions cannot be controlled anymore
since it comes from renewable sources exclusively. Service
providers optimize their prices and booking quantities at each
time period, having no information about the productions and
the energy needs of the microgrid at this instant. As a result,
the game can be considered as having partial information [2].
Its study requires the introduction of performance measures
captured here by loss functions, enabling the agents to evaluate
the accuracy of their predictions.

We recall the definition of provider si’s loss which has
already been introduced in Subsections IV-A and IV-B:

li

(
f(t), ν(t)

)
=
(
π0
i (t)− πi(t)

)
where π0

i (t) corresponds to provider si’s utility evaluated in
fi(ν

s
i , t) = νsi (t) and fi(ν

e
k, t) = νek(t), ∀k = 1, ...,K. It

means that π0
i (t) contains the utility that provider si would

have received if his forecasts were perfectly aligned with
microgrid Mi instantaneous needs and with the production
of each energy producer.

Having no a priori information about the dynamic evolution
of the produced renewable energies and about the energy needs
of the microgrids, we assume that everything happens as if the
system were in the worst case: Nature and consumers allie
together to form a meta-player who is supposed to be the
most unfavorable to the service providers. It means that the

meta-player tries to maximize the sum of the providers’ losses.
His loss can be expressed as the opposite of the sum of all
the providers’ losses. Therefore, it takes the form:

l
(
f(t), ν(t)

)
=

∑
i=1,...,n

(
πi(t)− π0

i (t)
)

The agents’ external regret over the sequence of time
periods 1, ..., T , is expressed as the realized difference between
the cumulative loss and the loss of the best prediction i.e.,
pure strategy (in the sense that this prediction minimizes their
cumulative loss).

To be more precise, for service provider si, it coincides with
the difference between si’s truly observed cumulative loss and
the cumulative loss that would be obtained in case where si
made the best constant prediction over time interval [1;T ]. It
takes the form:

Ri(T ) =

T∑
t=1

li

(
f(t), ν(t)

)
− min
y∈Xs×XKe

T∑
t=1

li

(
f−i(y, t), ν(t)

)
Finally, for the meta-player, the regret coincides with the

difference between his cumulative loss and the loss of the
constant predictions over [1;T ] about the unknown sequences
minimizing his cumulative loss or equivalently maximizing the
sum of the providers’ losses over the interval. We have:

R(T ) =

T∑
t=1

l
(
f(t), ν(t)

)
− min
z∈Xns ×XKe

T∑
t=1

l
(
f(t), z

)
The service providers and the meta-player try to determine

randomized strategies such that asymptotically their external
regrets remain in o(T ) where T is the number of time periods
which have been played. It means that with probability 1:

lim sup
T→+∞

1

T

T∑
t=1

Ri(t) = 0

for provider si,∀i = 1, ..., n and

lim sup
T→+∞

1

T

T∑
t=1

R(t) = 0

for the meta-player. Forecasters satisfying these inequalities
are said Hannan consistent [2].

In the following lemma, we prove that it is possible to
construct learning strategies for the service providers which
minimize their external regret asymptotically.

Lemma 4: A Hannan consistent learning strategy exists for
each service provider si.

Proof of Lemma 4. In our case setting, at the end of each
time period, service provider si knows the energy quantity
bought by his customersMi and he can infer νsi (t) from that
quantity. si also knows the energy which has been delivered
by each energy producer ek to him. He can infer from that
the energy which could have been delivered to him, if he had
ordered a different quantity qik(t), all other providers ordering
the same energy quantities. As a result, si can calculate his loss



for all his possible actions. In [2], it is proved that a Hannan
consistent learning strategy always exists when the player can
calculate his loss for each possible action at the end of each
time period. �

The repetition of the Stackelberg game introduced in Sub-
section II-A in a context of partial information can be rewritten
by introducing randomization in the strategies. We denote by
dt(fi) : Xs × XKe → [0; 1] and dt(ν) : Xns × XKe → [0; 1]
the randomized strategies for service provider si and for the
meta-player respectively at time period t. We then have to
cope with a repeated learning game. At each time period t,
the repeated game timing introduced in Subsection II-A is
updated according to the following rules to incorporate the
forecasting tasks of the providers:

(1) All the service providers si, i = 1, ..., n make their
forecasts fi(ν

s
i , t), fi(νek, t), ∀k = 1, ...,K following

distributions dt(fi) respectively.
(2) Energy producers reveal their energy prices.
(3) Service producers reveal their energy orders qik(t)
and their service prices at the same time.
(4) The meta-player chooses νsi (t) and νek(t), ∀i =
1, ..., n and ∀k = 1, ...,K following the distribution
dt(ν).
(5) Each service provider si obtains his profit πi(t), the
demand ofMi and the energy quantities offered by each
service producer ek.
Service providers update their forecasting strategies
dt(fi) and the meta-player updates his forecasting strat-
egy dt(ν) depending on the value of the expected
utilities.

The step corresponding to the generation of unexpected ran-
dom events resulting in microgrid energy needs and production
variations is now controlled by the meta-player whereas the
penalty rules introduced in Subsection II-A remain unchanged.

A. Regret based learning

We consider two types of updates for the forecasting ran-
domized strategies dt(X) at each time period based on the
exponential forecaster for signed games: one based on the
external regret and the other based on the internal regret [2].
We will use the generic notation X to refer either to Xe or to
Xs. For a given forecast X , we derive the payoffs HX(x, t)
for each value x ∈ X of the forecast at each time period t by
going back to the utilities of the agents and by keeping only
the terms depending on forecast X . We assume that this is a
signed game because the range of values of payoff function
HX(.) might include a neighborhood of 0. We let:

Vt =

t∑
s=1

V ar
(
HX(Xs, s))

)
=

t∑
s=1

E
[(
HX(Xs, s))− E[HX(Xs, s)]

)2]
be the sum of the variances associated with the random
variable HX(Xt, t) which is the payoff for forecaster X at

time period t assuming that the forecast at time period t has
been set to Xt, under the mixed strategy X which is defined
over space X . Using the exponential forecaster for signed
games with external regret means that the randomized strategy
is updated according to the algorithm described below.

External Regret Learning Algorithm
Initialization. For t = 0, we set: w0(x) = 1

|X | , ∀x ∈ X .
Step 1 to T . The updating rules are the following:

dt+1(x) =
wt+1(x)∑
x∈X wt+1(x)

, ∀x ∈ X

wt+1(x) = exp
(
ηt+1

t∑
s=1

HX(x, s)
)

= dt(x)
ηt+1
ηt exp

(
ηt+1HX(x, t)

)
, ∀x ∈ X

ηt+1 = min
{ 1

2 max{|HX(.)|}
;

√
2(
√

2− 1)

e− 2

√
ln|X |
Vt

}
Vt = Vt−1 + V ar

(
HX(Xt, t)

)
For the internal regret, it is similar but with dt(.) =∑
i 6=j d

i→j
t (.)∆(i,j)(t) where di→jt (.) is the modified forecast-

ing strategy obtained when the forecaster predicts j each time
he would have predicted i and ∆(i,j)(t) =

ω(i,j)(t)∑
k 6=l ω(k,l)(t)

with:

ω(i,j)(t) = exp
(
ηt
∑t−1
s=1

∑
x∈X ds(x)HX(x, s)

)
.

We see that we need to compute the maximum of the
absolute value of the payoff function |HX(.)| for all forecasts
X to run a simulation of the game. This maximum is reached
for x = min{X} or x = max{X} for all payoff functions
except for Hfi(νsi )

(.) because their differentiate with respect
to x is never equal to 0. For Hfi(νsi )

(.), the differentiate equals
0 if, and only if, fi(νsi , t) = νsi (t), so the maximum of
|HX(.)| is reached either for x = min{X} or x = max{X}
or x = νsi (t).

B. Collaborative learning is better

In this subsection, we want to know how distributed learn-
ing by service providers introducing (in)voluntary biases in
their predictions, affects the smart grid global performance.
Agents will most probably exchange information concerning
their forecasts. Some agents might appear as more credible
than others and coalitions might emerge. Collaboration will
then take place within coalitions. In cooperative game theory
literature, a coalition is a group of agents who have incentives
to collaborate by sharing resource access, information, etc., in
the hope to increase their revenue, knowledge, social welfare
(in case of altruism), etc., compared to the case where they be-
have non-cooperatively [10], [15]. Adapted to our hierarchical
learning context, we define coalitions of agents as follows:
• A coalition of agents is a group of agents who share

their information and align their predictions to a common
value.

• Agents who belong to the same coalition are said to
collaborate.



We prove in [5] that under external regret minimization, the
smallest upper-bound on the agents’ average loss over time
interval [1;T ] is reached when the service providers integrate
a grand coalition. As a result, this economic organization will
remain stable provided the agents have incentives to consider
the optimization of the whole system performance.

The objective of the next part of this subsection is to test
on a toy network made of 2 producers and 3 providers that
collaborative learning through a grand coalition provides better
guarantees on the smart grid global performance than full
competition.

For our numerical illustration, we have chosen n = 3 and
K = 2. We have also used γ1 = γ2 = γ3 = 0.9 and γ̃1 =
0.5, γ̃2 = 0.4, γ̃3 = 0.6 and Xe = [1; 2] for the producers,
Xs = [5; 8] for the providers which ensure that we are always
in energy shortage (cf. Case 2 described in Subsection B.2
of Proposition 1 proof) i.e., that penalties are imposed to the
providers.

In the following pictures, we compare the cumulative regret
of each agent to the cumulative regret of the same agent who
would have forecasted the best value at each time period in
terms of payoffs. More precisely, we display:

1

t

t∑
s=1

∑
X∈F

(
HX(Xs, s)−max

x
(HX(x, s))

)
where F is the generic set of forecasts made by the service
provider or the meta-player or the considered coalition.

We start by comparing the cumulative internal and exter-
nal regrets in the case of full competition between service
providers in Figures 2(a) and 2(b).

(a) (b)
Fig. 2. Difference between the best achievable cumulative regret and
the one obtained with the internal regret minimization algorithm in
(a) and with the external regret minimization algorithm in (b) under
full competition.

The service providers are in black for s1, green for s2
and red for s3. We can see that in all cases, the difference
between regrets converge toward 0 which means that the
cumulative payoff obtained at the end of the game following
the exponential forecaster strategy is close to the best possible
cumulative payoff. This is in coherence with the theoretical
result for the internal regret but is better than what we could
expect for the external regret which means that we are in a

game setting which performs well for regret based learning.
We also remark that the algorithm converges faster for the
external regret compared to the internal regret.

We compare these graphs with the graphs obtained when
service providers integrate a grand coalition in Figures 3(a)
and 3(b).

(a) (b)
Fig. 3. Difference between the best achievable cumulative regret and
the one obtained with the internal regret minimization algorithm in
(a) and with the external regret minimization algorithm in (b) for the
grand coalition of service providers.

Again, we observe that the differences between the best
achievable regrets and those obtained converge toward 0. The
rate of convergence under cooperative learning seems higher
than in the non-cooperative case. In addition, we observe that
after 400 time periods the sum of differences between regrets
under collaborative learning is close to −0.2 whereas the sum
of differences between regrets is close to −0.26 in the full
competition case. This is in coherence with the theory which
says that collaborative learning is better.

VI. CONCLUSION

In this article, we focus on the identification of distributed
learning algorithms enabling the agents to forecast hidden
individual sequences in a decentralized hierarchical network
which typical illustration is the smart grid. The upper-level
agents are called the producers. They provide energy to
the lower-level agents. The lower-level agents are called the
providers. They provide energy access to the end users. The
problem at hand is quite different depending on whether the
produced energy is renewable or not. In case where it is
non-renewable, the producers control their productions so as
to maximize their utility. The providers can also adapt their
prices, so as to force the end users to consume as much as they
want. However, we prove that their utility is maximized if, and
only if, their prediction coincides with the true value of the end
users’ energy needs which is not observed at the beginning of
the time period. As a result, providers need to perform learning
to optimize their utility. The performance of two well-known
learning algorithms (tit for tat and fictitious play) are derived
analytically. When renewable energies are introduced in the
smart grid, the energy productions become highly uncertain
adding more forecasts to perform. This requires to develop
more sophisticated learning algorithms. We propose an online
learning algorithm based on regret minimization and analyze



its performance. Furthermore, we show through simulation that
collaborative learning generates higher performance for the
whole smart grid than full competition.

A possible extension of the work initiated in this paper
might be to determine which economic organizations remain
stable in case of unexpected attacks i.e., to design a resilient
system.

APPENDIX

Proof of Proposition 1

The game setting described in Subsection II-A implies that
in the relationship producers-providers, producers appear as
leaders whereas providers are followers. Identically, in the
relationship providers-consumers, providers appear as leaders
whereas consumers are mere followers. Under such a setting,
the game is called a Stackelberg game and as usual, it should
be solved using backward induction [10].

We make the assumption that each energy producer receives
at least one energy order from a service provider guaranteeing
that the Stackelberg game admits non trivial solutions.

A. Optimization of the end users’ decision
To minimize their total cost of energy defined by Equa-

tion (1), end users Mi have to choose ai(t) so that the
differentiate of the total cost of energy equals 0 which means:

ai(t) = pi(t) (7)

We will assume that pi(t) < νsi (t) to ensure that this value
for ai(t) does not exceed the energy needs of microgrid Mi.
Then the optimal ai(t) is defined by Equation (7).

B. Optimization of the service providers’ decisions
To find his optimal price and energy orders, service provider

si has to replace ai(t) by its optimal value in πi(t) defined
in Equation (2), and to differentiate the result in pi(t) and in
qik(t). This differentiation raises two cases.

B.1 Case 1: the energy production fulfills the energy
demand of the end users

It is the case when:

νsi (t)− pi(t) ≤
∑

k=1,...,K

αki(t)ν
e
k(t) (8)

Then differentiating the service provider’s utility in qik(t)
leads to:

∂πi(t)

∂qik(t)
= −p̃k(t)

which means that si will try to minimize all his energy orders
to maximize his utility. As a result, si will tend to break the
inequality defining Case 1 in Inequality (8) because αki(t)
will tend toward zero. As a result the optimal decision for si
will always fall in Case 2 described below or on the frontier
between Case 1 and Case 2. The frontier between these two
cases is defined by the equation:

νsi (t)− pi(t) =
∑

k=1,...,K

αki(t)ν
e
k(t) (9)

B.2 Case 2: the energy production does not fulfill the
energy demand of the end users

It is the case when νsi (t)− pi(t) ≥
∑
k=1,...,K αki(t)ν

e
k(t).

Then differentiating si’s utility gives us:

∂πi(t)

∂pi(t)
= νsi (t) + γi − 2pi(t)

∂πi(t)

∂qik(t)
= −p̃k(t) + γiν

e
k(t)

∂αki(t)

∂qik(t)
(10)

By using the definition of αki(t) given in Equation (3), we
obtain:

∂αki(t)

∂qik(t)
= γ̃i

Ck(t)− γ̃iqik(t)

Ck(t)2

where we have let: Ck(t) =
∑

j=1,...,n

γ̃jqjk(t). Then going back

to System of equations (10), we conclude that the differentiates
equal 0 when:

pi(t) =
νsi (t) + γi

2
(11)

p̃k(t)Ck(t)2 = γiν
e
k(t)γ̃i

(
Ck(t)− γ̃iqik(t)

)
(12)

On one side, we obtain directly the price for which the
differentiate of πi(t) equals 0 through Equation (11). On the
other side, Equation (12) can be rewritten as follows:

γ̃iqik(t) = Ck(t)− p̃k(t)Ck(t)2

νek(t)γiγ̃i
(13)

If si anticipates that the other service providers will make
the same optimization program, replicating Equation (13) for
the n service providers and summing them all, results in the
following equality:

Ck(t) = nCk(t)− p̃k(t)Ck(t)2

νek(t)

∑
j=1,...,n

1

γj γ̃j

by definition of Ck(t).
Then as Ck(t) is not zero because each producer ek receives

at least one order of energy, by dividing the previous equation
by Ck(t) and reordering we obtain:

Ck(t) =
νek(t)

p̃k(t)

n− 1

δ

where δ =
∑
j=1,...,n

1
γj γ̃j

. By replacing Ck(t) in Equati-
on (13), we obtain the energy orders for which the differenti-
ates of πi(t) equals 0:

qik(t) =
νek(t)

p̃k(t)

n− 1

δγ̃i
L(i) (14)

where we have introduced the notation L(i) = 1 − n−1
δγiγ̃i

to
simplify future calculations.

Presently, we have to check that the price and energy
orders for which the differentiates of πi(t) equal 0 satisfy the
conditions of Case 2.



First, it is easy to check that the price is positive through
Equation (11). However, the energy orders defined in Equa-
tion (14) are non-negative if, and only if, 1 ≥ n−1

δγiγ̃i
which is

equivalent to:

γiγ̃i ≥
n− 1

δ
(15)

This inequality means that the penalties related to si are close
to the penalties related to the other service providers. Indeed,
if all penalties are equal to γ, then δ = n

γ2 and Inequality (15)
is true for all service providers. On the contrary, if all penalties
are equal to γ except for s1 which has a penalty of γ

n−1 , then
δ = (n−1)n

γ2 and Inequality (15) becomes n ≥ (n− 1)2 which
is false as soon as n > 2.

Second, by replacing the energy orders defined by Equa-
tion (14) in Equation (3), we obtain αki(t) = L(i)∑

j=1,...,n L(j)
=

L(i) meaning that the total energy delivered to the customers
of si is

∑
k=1,...,K αki(t)ν

e
k(t) = L(i)

∑
k=1,...,K ν

e
k(t). As a

result, the price and energy orders for which the differentiates
of πi(t) equal 0 verify the inequality defining Case 2 if, and
only if:

νsi (t) ≥ γi + 2L(i)
∑

k=1,...,K

νek(t) (16)

This inequality states that the total production of energy by
energy producers should not be too large compared to the
energy needs of customers.

If Inequalities (15) and (16) are true, the optimum for si is
reached for pi(t) defined by Equation (11) and qik(t) defined
by Equation (14). If one of these inequalities is not true,
then the optimum for si is reached on the frontier defined
by Equation (9).

C. Optimization of the energy producers’ decision
After substituting qik(t) and Ck(t) by the expressions found

in the previous section in energy producer ek’s utility as
defined in Equation (4), we obtain:

π̃k(t) = νek(t)
n− 1

δ

( ∑
i=1,...,n

L(i)

γ̃i
−

∑
i=1,...,n

( L(i)

p̃k(t)

(1− p̃k(t)γ̃iδ

n− 1
)+

))
The only part of this equation depending on p̃k(t) has always
a negative impact on the profit of the energy producer under
the assumption of fair penalties. Indeed, in that case, as raised
in the previous section, we have: L(i) ≥ 0 for all service
providers si. As a result, to maximize his profit, the energy
producer has to choose p̃k(t) such that the part depending
on p̃k(t) in the above equation equals 0. It implies that the
term 1 − p̃k(t)γ̃iδ

n−1 is inferior to 0 for all i = 1, ..., n. It is
equivalent to: p̃k(t) ≥ n−1

δγ̃i
. Consequently, the optimal price

for the energy producer with fair penalties is defined by:

p̃k(t) =
n− 1

δmini=1,...,n{γ̃i}
(17)

In theory, the price could be higher than this value and it would
change nothing for the utility of the energy producer. But the

energy producer has an incentive to be moderate on his price
to avoid competition from other energy producers. �
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