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Abstract.

Magneto- and electroencephalography (M/EEG) measure the electromagnetic
fields produced by the neural electrical currents. Given a conductor model for the
head, and the distribution of source currents in the brain, Maxwell’s equations
allow one to compute the ensuing M/EEG signals. Given the actual M/EEG
measurements and the solution of this forward problem, one can localize, in space
and in time, the brain regions than have produced the recorded data. However,
due to the physics of the problem, the limited number of sensors compared to the
number of possible source locations, and measurement noise, this inverse problem
is ill-posed. Consequently, additional constraints are needed. Classical inverse
solvers, often called Minimum Norm Estimates (MNE), promote source estimates
with a small ℓ2 norm. Here, we consider a more general class of priors based
on mixed-norms. Such norms have the ability to structure the prior in order to
incorporate some additional assumptions about the sources. We refer to such
solvers as Mixed-Norm Estimates (MxNE). In the context of M/EEG, MxNE
can promote spatially focal sources with smooth temporal estimates with a two-
level ℓ1/ℓ2 mixed-norm, while a three-level mixed-norm can be used to promote
spatially non-overlapping sources between different experimental conditions. In
order to efficiently solve the optimization problems of MxNE, we introduce fast
first-order iterative schemes that for the ℓ1/ℓ2 norm give solutions in a few seconds
making such a prior as convenient as the simple MNE. Furhermore, thanks to the
convexity of the optimization problem, we can provide optimality conditions that
guarantee global convergence. The utility of the methods is demonstrated both
with simulations and experimental MEG data.

Keywords: Magnetoencephalography, Electroencephalography, inverse problem,
convex optimization, mixed-norms, structured sparsity, functional brain imaging
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1. Introduction

Inverse problems are common in applied physics. They consist of estimating the
parameters of a model from incomplete and noisy measurements. Examples are
tomography which is a key technology in the field of medical imaging, or identifying
the targets using sonars and radars. Blind source separation, which is an active topic of
research in audio-processing, also falls in this category. In this contribution, we target
the localization of the brain regions whose neural activations produce electromagnetic
fields measured by Magnetoencephalography (MEG) and Electroencephalography
(EEG), which we will refer to collectively as M/EEG. The sources of M/EEG are
current generators classically modeled by current dipoles. Given a limited number
of noisy measurements of the electromagnetic fields associated to neural activity, the
task is to estimate the positions and amplitudes of the sources that have generated the
signals. By solving this problem, M/EEG become noninvasive methods for functional
brain imaging with a high temporal resolution.

Finding a solution to an inverse problem requires finding a good model for the
observed data given the model parameters: this is called the forward problem. The
task in the inverse problem is to infer the model parameters given the measurements.
This is particularly challenging for an under-determined problem where the number
of parameters to estimate is greater than the number of measurements. In such
settings, several different source configurations can explain the experimental data and
additional constraints are needed to provide a sound solution. In addition, the solution
may be highly sensitive to noise in the measurements. Such problems are said to be
ill-posed. Note that even over-determined problems can be ill-posed.

The linearity of Maxwell’s equations implies that the signals measured by M/EEG
sensors are linear combinations of the electromagnetic fields produced by all current
generators. The linear operator, called gain matrix in the context of M/EEG,
predicts the fields measured by the sensors due to a configuration of sources (Mosher
et al. 1999). Computing the gain matrix accurately is particularly crucial for EEG,
and involves complex numerical solvers (Kybic et al. 2005, Gramfort et al. 2010). In
the M/EEG literature, solvers known as distributed inverse solvers essentially seek to
invert the gain matrix. In practice, the distribution of estimated currents is defined
over a discrete set of locations where are positioned current dipoles. The distribution
is scalar valued when only their amplitudes are unknown, and vector valued when
both amplitudes and orientations of the dipoles need to be estimated. The current
generators are commonly assumed to lie on the cortex and are in practice fixed at
the locations of the vertices of a cortical mesh (Dale & Sereno 1993). However, the
number of generators largely exceeds the number of M/EEG sensors. To tackle this
problem, one needs to use a priori knowledge on the characteristics of a realistic source
configuration.

The priors most commonly used in the M/EEG community are based on the ℓ2
norm, leading to what is known as the Minimum Norm (MN) inverse solver (Wang
et al. 1992, Dale & Sereno 1993, Hämäläinen & Ilmoniemi 1994, Pascual-Marqui
et al. 1994). This MN inverse solver leads to a linear solution: i.e., Minimum
Norm Estimates (MNE) are obtained by simple matrix multiplication (Tikhonov
& Arsenin 1977). This makes the estimation extremely fast. However, ℓ2-based
solvers suffer from several limitations. Among which is the smearing of the even
focal activations, often leading to overestimation of the extents of the activated areas.
Also, they require to use a two-step approach where the MNE are post-processed to
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obtain an interpretable picture of the spatio-temporal activation patterns (Pantazis
et al. 2003, Gramfort et al. 2011). To address these limitations many alternatives to
MNE have been proposed.

In the mid 90’s, Matsuura et al. (Matsuura & Okabe 1995) proposed to regularize
the amplitudes of the estimated sources with an ℓ1 prior using an optimization
procedure based on the simplex method. This approach was then later slightly
modified by Uutela et al. (Uutela et al. 1999), who called the ℓ1 penalized solutions
minimum-current estimates (MCEs). About the same time, Gorodnitsky et al.
proposed to use Iterative Reweighted Least Squares (IRLS) with the FOCUSS
algorithm (Gorodnitsky et al. 1995) to approximate the solution that would be
obtained with an ℓ0 prior. Subsequently, (Phillips et al. 1997) proposed a Bayesian
approach based of Markov random fields (MRF) and solved with mean field annealing.
All these approaches are motivated by the fact that realistic source configurations are
likely to have only a limited number of active sites. For example, only a few brain
regions are typically significantly activated by a given cognitive task. The source
configuration is said to be spatially sparse. This assumption has proved to be relevant
for clinical applications (Huppertz et al. 2001) and also justifies dipole fitting which
is currently the most widely used method in clinical settings.

However, the above approaches suffer from significant limitations. As they
promote a sparse solution independently at each time instant, they fail to recover the
time courses of cortical sources. In order to go beyond these limitations, there has been
a growing interest for methods that promote spatially sparse solutions while taking
into the temporal dynamics of the data (Phillips et al. 2005, Friston et al. 2008, Wipf
& Nagarajan 2009, Valdés-Sosa et al. 2009, Haufe et al. 2008, Ou et al. 2009).
While the methods proposed in (Phillips et al. 2005, Friston et al. 2008, Wipf &
Nagarajan 2009) are related to sparse Bayesian learning where the problem boils
down to the maximization of a non-convex cost function called the model evidence,
(Haufe et al. 2008, Ou et al. 2009) address the problem using a sparsity-inducing prior
that mixes both ℓ1 and ℓ2 norms. A ℓ1 prior is used to promote a spatially sparse
solution and a smooth ℓ2 prior is used either for orientations (Haufe et al. 2008) or
both time and orientations (Ou et al. 2009), leading to a convex optimization problem.
A problem is convex when it consists in minimizing a convex function over a convex
set (Boyd & Vandenberghe 2004). The main reason for the success of these solvers
is the structured sparsity induced by the ℓ21 mixed-norm. Figure 1 illustrates source
estimates with a simple ℓ1 norm compared to a structured prior with a ℓ21 mixed-norm.
The latter leads to a structured sparsity pattern while a simple ℓ1 norm provides a
scattered pattern that is not consistent with what is known about the sources. Here,
the ℓ21 prior guarantees that the active source sites will be the same over the entire
time interval of interest. Furthermore, grouping the temporal coefficients with an
ℓ21 norm is a natural way to take into account the smooth temporal dynamics of
M/EEG data. More generally, mixed-norm based priors offer a general way to take
the structure of a problem into consideration. We call solutions obtained with such
priors Mixed-Norm Estimates (MxNE). For an application to other brain imaging
methods, see, for example (Varoquaux et al. 2010), where a two-level mixed norm was
employed for the identification of brain networks using functional Magnetic Resonance
Images (MRI) data.

Despite this growing interest, the use of sparsity-inducing priors is still limited
to a small group of researchers. One possible reason is that solvers proposed so far
are slow when applied to the analysis of real datasets. Another explanation is that
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Non-zero sources

(a) (b) (c)

Figure 1. (a), (b) and (c) show in white the non-zero in the estimated source
amplitudes obtained with the three norms. The non-zero coefficients are shown
in white. While ℓ2 yields only non-zero coefficients (all sources have a non-zero
amplitude), ℓ21 promotes non-zero coefficients with a row structure (only a few
sources have non-zero amplitude over the entire time interval of interest).

algorithms proposed so far are complex and difficult to implement. Indeed, while
a basic minimum norm can be computed in a few hundreds of milliseconds, sparse
inverse solvers as proposed in (Haufe et al. 2008, Ou et al. 2009) can take an hour
to converge when realistic dimensions are used. A challenge is therefore to develop
efficient optimization strategies that can solve the M/EEG inverse with such priors in
a few seconds.

In the last few years, the machine learning and signal processing communities have
devoted a lot of efforts into the improvement of the optimization methods that help to
solve non-differentiable problems arising when considering sparse priors. One reason
is that, under certain conditions, it has been proved that sparsity could enable the
perfect resolution of ill-posed problems (Donoho 2006, Candès & Tao 2005). Among
the list of algorithms that have been proposed are IRLS methods, similar to the
FOCUSS algorithm, that consist in iteratively computing weighted MN solutions
with weights updated after each iteration (Li 1993, Daubechies et al. 2008). The
LARS-LASSO algorithm (Tibshirani 1996, Efron et al. 2004), which is a variant of
the homotopy method from Osborne (Osborne et al. 2000), is an extremely powerful
method for solving the ℓ1 problem. Simple coordinate descent methods (Friedman
et al. 2007) or blockwise coordinate descent, also called Block Coordinate Relaxation
(BCR) (Bruce et al. 1998), are also possible strategies. Alternatively, methods based
on projected gradients and proximity operators have been proposed (Daubechies
et al. 2004, Combettes & Wajs 2005, Nesterov 2007a, Beck & Teboulle 2009). Even if
some MxNE can be obtained efficiently, e.g., with coordinate descent, the algorithms
proposed in this contribution rely on proximal operators and gradient based methods
as they provide a generic approach for all MxNE. They are also grounded on the
current mathematical understanding and convergence properties of these solvers.

In this paper, we introduce efficient methods to compute mixed-norm estimates
from M/EEG data. The three main contributions of this article are:

(i) We present the M/EEG inverse problem as a convex optimization problem and
we explain how structured solutions can be promoted via appropriate priors based
on mixed-norms.

(ii) We present in detail optimization methods that outperform in terms of
convergence speed previously proposed algorithms and derive optimality
conditions to control the convergence of the algorithm.
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(iii) We then give two examples of MxNE that are relevant for M/EEG using two and
three-level mixed-norms, including application to real data.

The first section of the paper provides the necessary background and notation.
Mixed-norm estimates with two or three-level mixed-norms are introduced. The
second contains the algorithmic and mathematical details of the optimization methods.
The third section provides experimental results on real MEG data, demonstrating the
efficiency and relevance of the proposed methods.

2. Mixed-norm estimates (MxNE)

In this section, we introduce inverse problems with linear forward models and more
specifically the M/EEG inverse problem. We then define formally the one, two and
three-level mixed-norms, explaining their influence on the solutions when used as
priors. We explain how a three-level mixed-norm can be used for functional mapping
and detail how the ℓ21 norm can be combined to obtain focal source estimates while
promoting smooth time courses.

2.1. Framework and notation

Solving an inverse problem consists of estimating one or more unknown signals from
observations, typically incomplete and noisy. When considering linear models, the
observations, also called measurements, are linear combinations of the signals, also
called sources. The linear relationship between the sources and the measurements, of
this model, also called the forward model, is commonly derived from the physics of
the problem.

Distributed source models in M/EEG use the individual anatomical information
derived from MRI (Dale & Sereno 1993). The putative source locations can be then
restricted to the brain volume or to the cortical mantle. Due to the linearity of the
forward problem, each source adds its contribution independently to the measured
signal. We focus here on source models where one dipole with a known orientation is
positioned at each location. Source estimates are the amplitudes of the dipoles. Such
models are known as fixed orientation. The framework however holds also in the free
orientation case where three dipoles share a same spatial location. In this case both
amplitudes and orientations need to be estimated.

The measurements M ∈ R
N×T (N number of sensors and T number of time

instants) are obtained by multiplying the source amplitudes X ∈ R
S×T (S number

of dipoles) by a forward operator G ∈ R
N×S , i.e., M = GX . In addition, the

measurements are corrupted by an additive noise E:

M = GX + E .

In the context of M/EEG, N lies between 50 for EEG only and 400 for M/EEG
combined measurements, while S lies between 5000 and 50000 depending on the
precision of the source model considered.

A classical approach to estimateX givenM consists in introducing a cost function
F whose minimum provides the solution:

X∗ = argmin
X

F(X) = argmin
X

(f1(X) + λf2(X)) . (1)

The cost function is composed of two terms:
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• A data-fit term, f1, that quantifies how well the estimated sources match
the measured data. This term takes into account the characteristics of the
measurement noise.

• A regularization term, a.k.a., penalty term or prior, denoted f2, that is used to
introduce a priori knowledge on the solution. This term is mandatory to render
the solution unique when considering ill-posed problems.

These two terms are balanced by the regularization parameter λ > 0. In the context
of M/EEG, f2 can be directly a function of the source amplitudes or introduce a
regularization matrix like a spatial Laplacian D leading to a regularization term of
the form f2(DX) (Pascual-Marqui et al. 1994).

This contribution focuses on cases where f1 and f2 are convex functions (Boyd
& Vandenberghe 2004). As will be detailed later, the convexity of F is a key
assumption that allows to obtain globally optimal solutions which are independent of
the initialization of the solver. As will be discussed in Section 3, this assumption allows
us to employ very efficient optimization procedures whose mathematical properties in
terms of complexity and convergence rate are fully understood. Another benefit of
convexity observed in practice is the increased stability of the solutions in the presence
of noise.

In M/EEG, f1(X) is usually the squared ℓ2 norm of the residual R = M −GX :

f1(X) =
1

2
‖M −GX‖22 =

1

2
‖R‖22 =

1

2

N
∑

n=1

T
∑

t=1

R2
n,t . (2)

The smaller is the residual, the better the sources explain the data. The
minimization (2) is equivalent to finding a maximum likelihood estimate under the
assumption that the additive noise E is Gaussian, i.e., E ∼ N (0, I). In practice, the
M/EEG noise is not white but one can estimate the noise-covariance matrix, which
can be employed in whitening, either from empty-room data or from periods of actual
brain signals void of data of interest (Hansen et al. 2010). Note that what is called
here ℓ2 norm is in fact the Frobenius matrix norm, since, generally, T > 1. Note
also that the factor 1

2 is included for convenience in the derivation of the optimization
methods.

The problem therefore reads:

X∗ = argmin
X

(

1

2
‖M −GX‖22 + λf2(X)

)

, λ ∈ R+ . (3)

The variance of each of the uncorrelated whitened signals is unity, which can help
to set the λ parameter. Indeed, assuming that E is Gaussian, the expected value of
‖E‖22 is NT . It suggests that λ should be chosen such that ‖M −GX̂‖22 ≈ NT . This
is known as the discrepancy principle (Morozov 1966). It will be used in Section 4.

We now proceed to discuss suitable priors f2 for M/EEG.

2.2. The ℓw;p norm

The most common choice for f2(X) is the squared ℓ2 (Frobenius) norm of the sources
amplitudes X . This lies in the category of ℓp norms (Matsuura & Okabe 1995, Wagner
et al. 1996, Uutela et al. 1999, Gorodnitsky et al. 1995) that work on a time-by-
time basis. Throughout this paper, we are often interested in estimating X ∈ R

S×T

or X ∈ R
S×KT when considering K > 1 datasets with a joint estimation. When
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considering ℓw;p norms applied to such X , we consider X as a set of coefficients that
can be seen as a vector x ∈ R

P where P = ST or P = SKT .

Definition 1 (ℓw;p norm) Let x = (x1, . . . , xP ) ∈ R
P and w = (w1, . . . , wP ) ∈ R

P
+,

some positive weights. Let p ≥ 1. Then the ℓw;p norm of x is:

‖x‖w;p =

(

P
∑

s=1

ws|xs|p
)1/p

,

which is known to be convex for p ≥ 1 and strictly convex for p > 1 (Boyd &
Vandenberghe 2004).

The reason for introducing weights in the ℓp norms is due to the fact the columns
(G·s)s of M/EEG forward operators are not normalized. The closer the dipole s is
to the head surface, the bigger ‖G·s‖2. This implies that a näıve inverse procedure
would favor dipoles close to the head surface. In the M/EEG literature, this is known
as the “depth bias” (Lin et al. 2006). Using a weighted norm is a way to address this
problem.

2.2.1. The ℓw;2 norm The squared ℓ2 norm when used both for the data-fit and
the penalty term f2 is known as MNE in the M/EEG literature. The optimization
problem reads:

X̂ = argmin
X

(

1

2
‖M −GX‖22 +

λ

2
‖X‖2

w;2

)

. (4)

This corresponds to a penalized maximum likelihood estimate assuming the sources
are Gaussian and normally distributed, with a diagonal covariance matrix (Wipf &
Nagarajan 2009). By using such a prior, one spreads the energy of the solution over
all the sources. In the context of M/EEG source localization, it leads to activation
maps where every brain region has a non-zero amplitude (see Fig. 1-a) and where the
extent of active regions is often over-estimated. Solvers based on ℓw;2 penalty fail to
recover high spatial frequencies. In order to avoid this, we can employ a prior that
promotes spatially sparse solutions where the data will be explained by a few sources.
Keeping f2 convex, this is can be done with an ℓ1 norm.

2.2.2. The ℓw;1 norm The ℓ1 norm promotes sparse solutions, which is a strong
hypothesis: the solution should only have a small number of non-zero coefficients.

While sparsity can be a valuable assumption in some applications, e.g.,
denoising (Kowalski & Torrésani 2008, Févotte et al. 2008, Dupé et al. 2009), it can also
lead to unrealistic solutions in other applications, e.g., blind source separation (Bobin
et al. 2008), coding (Daudet et al. 2004), and for M/EEG. Indeed, as illustrated
in Fig. 1, an ℓ1 prior should be used with some caution when performing M/EEG
source imaging with temporally correlated data. Such a prior, which estimates the
active sources independently at each time instant, will very likely fail to recover the
smooth temporal dynamics of a realistic source. To address this limitation a solution
recently proposed in the literature estimates the sources for all time instants jointly
after introducing a coupling between the estimates (Ou et al. 2009). This is achieved
using a penalty based on a two-level mixed-norm.
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2.3. Two-level mixed-norms

In order to define the two-level mixed-norm, we must consider a sequence indexed
by a double index (g,m) ∈ N

2 such that (x) = (xg,m)(g,m)∈N2 . One can then
consider the two canonical subsequences (xg,.) = (xg,1, xg,2, . . .) for a fixed g, and
(x.,m) = (x1,m, x2,m, . . .) for a fixed m. This labeling convention introduces a grouping
of the coefficients and will be utilized below.

Definition 2 (Two-level mixed-norms) Let x ∈ R
P be indexed by a double index

(g,m) such that x = (xg,m).
Let p, q ≥ 1, and w ∈ R

P
+,∗ be a sequence of strictly positive weights labeled by a

double index (g,m) ∈ N
2. We call mixed-norm of x ∈ R

P , the norm ℓw;p,q defined by

‖x‖w;p,q =





∑

g

(

∑

m

wg,m|xg,m|p
)q/p





1/q

.

Cases p = +∞ and q = +∞ are obtained by replacing the corresponding norm by the
supremum.

The two indices g and m can be interpreted as a hierarchy of the coefficients. The
double indexing needed by the definition of mixed-norms allows to consider coefficients
by groups. Coefficients are indeed distinguished between groups which are blind to
each other, and the coefficients that belong to a same group are correlated. With the
notation above, the g index can be seen as the “group index” and the m index as
the “membership” index. Mixed-norms are then a practical way to induce explicitly
a coupling between coefficients, instead of the independence hypothesis behind the ℓp
norms. Hence, mixed-norms allow to promote some structures that have been observed
in real signals. Properties of such norms, convexity in particular, enable the use of
efficient optimization strategies.

In order to illustrate this, let us consider the use of the ℓw;21 norm in the
problem (3). The ℓw;21 norm defined on a matrix X ∈ R

S×T , and with weights
w depending only on the space index s (t indexes time), is given by:

‖X‖w;21 =
∑

s

√

∑

t

wsX2
s,t .

This corresponds to the sum of the ℓ2 norm of the lines. As a consequence, an
estimation of X given by the minimization of Eq. (3) is sparse through the lines,
i.e., all the coefficients of a line of X are either jointly nonzero, or all set to zero (see
Fig. 1-c). Such a behavior will become more explicit with the definition of the so called
proximity operator, see Section 3.2. This approach, proposed earlier for M/EEG (Ou
et al. 2009), avoids the irregular time series obtained with a simple ℓ1 norm. Note
that the general formulation in Definition 2 using (g,m) covers the case with sources
having unconstrained orientations. In this case g indexes each spatial location which
contains three dipoles (Haufe et al. 2008, Ou et al. 2009).

The two-level mixed-norms were introduced during the 60’s in (Benedek &
Panzone 1961). These norms were then studied more formally in the context of
Besov and modulation spaces (Samarah & Salman 2006, Feichtinger 2006, Rychkov
1999, Grochenig & Samarah 2000). Also see (Kowalski 2009) and (Kowalski &
Torrésani 2009), who introduced the use of the ℓ12 norm under the name Elitist-Lasso.
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2.4. Three-level mixed-norms

In this section, we are interested by models where sources X can be indexed by
three indices. In the context of M/EEG, these three indices can correspond to
the spatial location, the experimental conditions, and the time. For example, for
somatosensory data of Section 4, an experimental condition corresponds to the finger
that is stimulated. Let us denote this new index by k. The sources, with elements
indexed by (s, k, t), are denoted by X ∈ R

S×KT (K concatenated datasets) or simply
x ∈ R

P with P = SKT . Using this notation we can define a three-level mixed norm.:

Definition 3 (Three-level mixed-norms) Let x ∈ R
P be indexed by a triple index

(s, k, t) such that x = (xs,k,t). Let p, q, r ≥ 1 and w ∈ R
P
+,∗ a sequence of strictly

positive weights. We call mixed norm of x the norm ℓw;p,q,r defined by

‖x‖w;pqr =







S
∑

s=1





K
∑

k=1

(

T
∑

t=1

ws,k,t|xs,k,t|p
)q/p





r/q






1/r

.

Cases p = +∞, q = +∞ and r = +∞ are obtained by replacing the corresponding
norm by the supremum.

The inverse problem then reads:

X∗ = argmin
X

(

1

2
‖M −GX‖22 +

λ

r
‖X‖r

w;pqr

)

, λ ∈ R+ . (5)

For our application, we will use the ℓw;212 mixed-norm. Note that the ℓ2, ℓ12 and
ℓ21 norms are special cases of the latter norm. Indeed ℓ2 is obtained by setting K = 1,
ℓ21 by setting S = 1 and ℓ12 by setting T = 1. This suggests that an optimization
procedure for the ℓ212 norm readily works for both ℓ12 and ℓ21 norms. Also, it can
be observed that ℓw;221 is equivalent to ℓw;21 after grouping conditions as well as
time instants. By doing so one imposes the active sources to be common between all
experimental conditions.

With the ℓ1 norm to penalize the experimental conditions, while keeping the ℓ2
norm on other indices, source estimates with non-zero activations for few conditions
are promoted. By doing so, one penalizes the overlap between the active regions
for the different conditions. With the somatosensory example, such a mixed-norm
promotes activations where a given spatial location is active only for one, or at least
few, experimental conditions. By definition, this norm corresponds to the a priori
information that the stimulation of the different fingers leads to brain activations at
different cortical locations, see Section 4.

3. Algorithms

The algorithms we employ are first-order methods that fit in the same category
as the iterative thresholding procedures proposed in (Daubechies et al. 2004) for
the ℓ1 penalty. We extend them to problems where f2 is a convex mixed-
norm (Kowalski 2009), which, as explained in Section 2, can take into account the
specific characteristics of, e.g., M/EEG source localization. The properties of such
algorithms are based on recent mathematical results (Combettes & Wajs 2005).

Let us first introduce the notion of proximity operator, a.k.a., proximal
operator (Moreau 1965):
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Definition 4 (Proximity operator) Let φ : RP → R be a proper convex function.
The proximity operator associated to φ and λ > 0, denoted by proxλφ : RP → R

P

reads:

proxλφ(y) = argmin
x∈RP

1

2
‖y − x‖22 + λφ(x) . (6)

3.1. Iterative proximal gradient methods

In a nutshell, proximal gradient methods are a natural extension of gradient-based
techniques when the objective function to minimize has an amenable non-smooth
part. Such procedures based on iterative thresholding and more generally on projected
gradients require that the cost function (1) meets the following hypothesis (Combettes
& Wajs 2005):

• f1 is a proper convex function whose gradient is Lipschitz continuous: ∃L ∈ R+

such that ‖∇f1(x) −∇f1(y)‖ ≤ L‖x− y‖ for all x and y in R
P . L is called the

Lipschitz constant.

• f2 is a proper convex function (not necessarily differentiable).

In our case, the gradient of the data-fit (2) is Lipschitz continuous. It reads:

∇f1(X) = −GT (M −GX) ,

and its Lipschitz constant is given by L = ‖GTG‖ (spectral norm which corresponds
to the largest singular value).

The “simplest” iterative scheme to minimize (1) given in Algorithm 1 is
called Iterative soft-thresholding and sometimes referred to as Forward-Backward or
Landweber iterations (Combettes & Wajs 2005).

Algorithm 1: ISTA (Iterative shrinkage/thresholding algorithm)

Initialization: Let X(0) ∈ R
S×KT (for example 0).

repeat
X(k+1) = proxµλ f2

(

X(k) + µGT (M −GX(k))
)

, with 0 < µ < 2
L .

until convergence;

The idea is to alternate the minimization over f1 using a small gradient step
and the computation of the proximal operator associated with f2. As the proximal
operator can be seen as a generalized projection, this algorithm is a generalized
iterative projected gradient method (see (Combettes & Wajs 2005) for a proof of
convergence).

Unfortunately, this algorithm may converge rather slowly. It has been proved
that its convergence rate is O(1/k), where k is the number of iterations

∃C > 0, ∀k such that ‖F(X(k))−F(X∗)‖ ≤ C

k
.

To improve the convergence speed, at least two accelerated projected gradient schemes
whose convergence speed is O(1/k2) have been proposed (Nesterov 2007b, Weiss 2008,
Beck & Teboulle 2009). The FISTA (Fast Iterative shrinkage/thresholding algorithm)
algorithm (Beck & Teboulle 2009) is one of them. It’s a small modification of ISTA
that takes into account the previous descent direction. It is a two-step approach. Note
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that a classical example of a multi-step approach is the conjugate gradient algorithm
used to solve positive definite linear systems. More details on these approaches can
be found in (Tseng 2010).

Algorithm 2: FISTA

Initialization: X(0) ∈ R
S×KT , Z(1) = X(0), τ (1) = 1, k = 1, 0 < µ < 1

L repeat

X(k) = proxµλf2
(

Z(k) + µGT (M −GZ(k))
)

τ (k+1) = 1+
√

1+4τ (k)2

2

Z(k+1) = X(k) + τ (k)−1
τ (k+1) (X

(k) −X(k−1))

until convergence;

In order to tackle the optimization problem (3), one just needs to know how to
compute proxµλf2 where f2 is a mixed-norm presented in Section 1.

3.2. Proximity operators corresponding to mixed-norms

The following proposition gives details of the proximity operators associated with the
mixed-norms presented in Section 1. It corresponds to the solutions of (6) when φ is
a mixed-norm.

Proposition 1 (Proximal operators for MxNE) Let x ∈ R
P and y ∈ R

P . Let
w ∈ R

∗P
+ be a vector of weights.

ℓ2 norm Let x be indexed by s. The proximity operator associated to the squared
ℓ2 norm is given by x = proxλ‖.‖2

w,2
(y) where x reads coordinate by coordinate:

xs =
ys

1 + λws
.

ℓ1 norm Let x be indexed by s. The proximity operator associated to the ℓ1 norm is
given by x = proxλ‖.‖w,1

(y) where x reads coordinate by coordinate:

xs =
ys
|ys|

(|ys| − λws)
+ .

The function (·)+ is defined as (a)+ = max(a, 0) and we use the convention 0/0 = 0.
The proximity operator for the ℓ1 norm is known as “soft-thresholding”.

ℓ21 norm Let x be indexed by (s, t). Let us consider a vector of weights used to
weight each group. The proximity operator associated to the ℓ21 norm is given by
x = proxλ‖.‖w,21

(y) where x reads for each coordinate:

xs,t = ys,t

(

1− λ
√
ws

‖ys‖2

)+

,

where ys is the vector formed by the coefficients indexed by s.

ℓ12 norm Let x be indexed by (s, k). Let us consider w a vector of weights used to

weight each group. Let rs,k be defined such that rs,k
def
= ys,k/ws,k. For each s, let the
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indexing denoted by k′s be defined such that ∀k′s, rs,k′

s+1 ≤ rs,k′

s
. Let the index Ks be

such that:

λ

Ks
∑

k′

s=1

w2
s,k′

s

(

rs,k′

s
− rs,Ks

)

< rs,Ks
≤ λ

Ks+1
∑

k′

s=1

w2
s,k′

s

(

rs,k′

s
− rs,Ks

)

The proximal operator x = proxλ‖.‖w,12
(y) is given coordinate by coordinate:

xs,k =
ys,k
|ys,k|



|ys,k| −
λ

1 + λKws

Ks
∑

k′

s=1

ys,k′

s





+

,

where Kws
=
∑Ks

k′

s=1 w
2
s,k′

s
.

This proposition shows the effect of such proximal operators on their inputs. For
ℓ2, it is a simple weighting. The associated cost function being differentiable, a proof
is obtained simply by computing the derivative with respect to each xs. For ℓ1 it is a
thresholding of all the coefficients independently (see (Donoho 1995) for a proof). As
a result, some coefficients are set to zero which reflects the sparsity obtained with such
a penalty. With the ℓ21 norm, a group is globally set to zero depending on its norm.
A coefficient is non-zero only if the norm of the group it belongs to is large enough.
If groups are formed by rows then the ℓ21 prior promotes a row structured sparsity
pattern as illustrated in Fig. 1-c. For completeness, a derivation of this proximal
operator is given in Appendix A. Note that such results have been previously obtained
like in (Kowalski 2009). However, the later work does not address the weighted case.

From Proposition 1, the proximal operators associated to any mixed-norm
combining ℓ1 and ℓ2 norms can be derived. This is in particular the case of the
ℓ212 norm for which the proximal operator is given by the following proposition.

Proposition 2 (Proximal operator associated to the ℓw;212 norm) Let y ∈
R

P be indexed by (s, k, t). Let w ∈ R
P be a vector of positive weights such that

∀t, ws,k,t = ws,k. Let us define [ys,k]
def
=
√

ws,k

∑

t y
2
s,k,t and rs,k

def
= [ys,k]/ws,k. For

each s, let the indexing denoted by k′s be defined such that ∀k′s, rs,k′

s+1 ≤ rs,k′

s
. Let the

index Ks be such that:

λ

Ks
∑

k′

s=1

ws,k′

s

(

rs,k′

s
− rs,Ks

)

< rs,Ks
≤ λ

Ks+1
∑

k′

s=1

ws,k′

s

(

rs,k′

s
− rs,Ks

)

.

Then, x = proxλ‖.‖2
w;212

(y) is given, for each coordinate (s, k, t), by:

xs,k,t = ys,k,t











1− λ
√
ws,k

1 + λKws

Ks
∑

k′

s=1

[ys,k′

s
]

‖ys,k‖2











+

,

where Kws
=
∑Ks

ks=1 ws,ks
.

A proof of this proposition is given in Appendix B.
Having established the minimization procedures for MxNE, we need next to test

for the convergence and the optimality of the current iterate X(k).
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3.3. Optimality conditions and stopping criterion

When the cost function F to be optimized is smooth, a natural optimality criterion is
obtained by checking whether the gradient is small: ‖∇F(X(k))‖ < ε. Unfortunately,
this approach does not apply to the non-differentiable cost-functions involving ℓ1
norms.

An answer for convex problems more generally consists of computing, if possible,
a duality gap. For a subset of these problems the Slater’s conditions apply and,
consequently, the gap at the optimum proves to be zero (Boyd & Vandenberghe 2004).
Computing the gap starts by deriving a dual formulation of the original problem, also
called the primal problem. The duality gap is defined as the difference between the
minimum of the primal cost function Fp and the maximum of the dual cost function
Fd. For a value of X(k) of the primal variable at iteration k, if one can exhibit a dual
variable Y (k), the duality gap η(k) is defined as:

η(k) = Fp(X
(k))−Fd(Y

(k)) ≥ 0

At the optimum (corresponding to X∗), if the Y (k) associated to X(k) is properly
chosen, η(k) is 0. By exhibiting a pair (X(k), Y (k)) one can guarantee that:
‖Fp(X

(k))−Fp(X
∗)‖ ≤ ‖Fp(X

(k))−Fd(Y
(k))‖. A good stopping criteria is therefore

given by η(k) < ε. The solution meeting this condition is said to be ε-optimal. The
challenge in practice is to find an expression for Fd and to be able to associate a
“good” Y to a given X for the problems of the form (3).

We now give a general answer for the class of problems detailed in this
contribution. The solution is derived from the Fenchel-Rockafellar duality
theorem (Rockafellar 1972) which leads to the following dual cost function:

Fd(Y ) = −1

2
‖Y ‖22 +Tr(Y TM)− λf∗

2 (G
TY/λ) (7)

where Tr stands for the trace of a matrix and f∗
2 is the Fenchel conjugate of f2 defined

by:

f∗
2 (Z)

def
= sup

X∈RP

Tr(ZTX)− f2(X) .

In Appendix C we provide the Fenchel-Rockafellar duality theorem in order to obtain
this result.

The Fenchel conjugates of mixed-norms and squared mixed-norms, which remain
to be given in (7), can be computed thanks to the following proposition:

Proposition 3 (Fenchel conjugate of a mixed-norm) (i) The Fenchel conju-
gate of norm ‖u‖p1,...,pn

is the indicator function of the dual norm:

v 7→ i‖v‖∗

p1,...,pn
=

{

0 if ‖v‖p′

1,...,p
′

n
≤ 1

+∞ if not

where ∀i, p′i is such that 1
pi

+ 1
p′

i

= 1

(ii) The Fenchel conjugate of the function u 7→ 1
2‖u‖2p1,...,pn

is the function:

v 7→ 1

2
‖v‖2p′

1,...,p
′

n



Mixed-norm estimates for the M/EEG inverse problem 14

Moreover, the Karush-Khun-Tucker (KKT) conditions of the Fenchel-Rockafellar
duality theorem (see Appendix C) give a natural mapping from the primal space
to the dual space:

Y (k) = M −GX(k) ,

which then needs to be modified in order to satisfy the constraint of f∗
2 . When f∗

2 is
an indicator function, it corresponds to a projection on the associated convex set. It
is then possible to use the dual gap as stopping criterion. Algorithm 3 summarizes
the computation of the dual gap, in cases of ℓ21 and ℓ212 penalty function. An 1D
illustration with the ℓ1 is provided in Fig. 2.

Algorithm 3: Duality gap for ℓ212 or ℓ21

Entries: X(k)

Mapping to the dual space: Y (k) = M −GX(k)

Compute f∗
2 (G

TY (k)):
if f2 = ℓ21 then

Project dual variable on the constraint if necessary:
Y (k) = Y (k)/max(‖GTY (k)‖2∞/λ, 1)
f∗
2 (G

TY (k)/λ) = 0

if f2 = ℓ212 then

f∗
2 (G

TY (k)/λ) = 1
2‖GTY (k)/λ‖22,∞,2

Compute duality gap:
η(k) = 1

2‖M −GXk‖22 + λf2(X
k) + 1

2‖Y (k)‖22 − Tr(Y TM) + λf∗
2 (G

TY/λ)

Figure 2. Duality gap illustration with a 1D ℓ1 problem (λ = 2 and M = 2).
It can be observed that the minimum of Fp is equal to the maximum of Fd, i.e.,
that the duality gap is 0.

From a numerical point of view, every solution is ε-optimal for a particular value
of ε. The duality gap observed at the end of the computation is for example limited
by machine precision. Also, Algorithm 3 shows that η(k) depends on the scaling of the
data. Therefore, in practice the duality gap is meaningful if the input data have been
scaled or normalized in a certain way. This is guaranteed with M/EEG data by the
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pre-whitening step. Our experimental results show that for whitened data a duality
gap lower than 10−5 does not produce distinguishable solutions.

3.4. An active set method to improve the convergence speed using the ℓ21 norm

Like the ℓ1 norm, the ℓ21 norm leads to sparse solutions; only a few sources will
have non-zero activations. Knowing this, we can accelerate the computation with an
active set strategy which will restrict computations to sources likely to have non-zero
activations. This amounts to solving problems with only a subset of columns of G.
Let us call Γ the set of sources considered in the sub-problem and X∗

Γ the associated
estimated sources. By computing the duality gap associated to the full problem for a
value of X , such that X restricted to Γ is equal to X∗

Γ and where the rest of X is filled
with 0, one can test the quality of the solution for the full problem. If this solution is
not good enough according to the stopping criteria, one needs to add to Γ sources that
are likely to be active. Such sources violate the KKT optimality conditions (Boyd &
Vandenberghe 2004). These conditions are specific to the penalty considered. With
a ℓw;21 penalty, denoting by W the diagonal matrix of weights, the KKT optimality
conditions impose the following constraint on X :

‖W−1GT (M −GX)‖2∞ ≤ λ . (8)

The indices of the sources that need to be added to the active set at a next iteration,
are given by the indices of the rows of W−1GT (M − GX) that do not meet this
constraint. Intuitively it says that the sources that should be added to the active set
are the ones whose forward fields correlate the most with the current residual. Such
an active set strategy is known as forward as the size of the problem keeps increasing.

In practice, one can simply add to Γ the source that violates the most the latter
constraint. This can however be rather slow if the active set contains hundreds of
variables. That would mean running FISTA hundreds of times. A natural idea consists
in adding groups of sources, i.e., the set of sources that violate the most the constraint.
When no more source violates the KKT constraint, the solver has converged to an
optimal solution. The number of sources that should be added to the active set at
each iteration is however application specific. For M/EEG, we have found that adding
blocks of 10 new variables is a good trade-off. For an optimal solution containing at
the most about a hundred active sources a solution is obtained in practice by running
the solver ten times at the most on very small problems. Note that the procedure
do guarantee the optimality of the solution at the end as the active set can only
grow meaning that the solver will end up solving the original full problem (Roth &
Fischer 2008).

Using the active set strategy, the solution corresponding to an experimental data
set (with about 300 channels, 200 time samples and 10000 sources) can be obtained
in a few seconds. This means that the proposed optimization strategy makes the use
of the ℓ21 penalty computationally trackable in practical M/EEG applications, which
was not the case using the methods relying on second order cone solvers proposed
in (Haufe et al. 2008, Ou et al. 2009).

3.5. Convergence results on simulated data

In order to illustrate the convergence rate of the algorithms detailed above in a realistic
experimental setting, we performed a simulation using a real MEG gain matrix (151
sensors and 5,000 sources). The implementation used is written in Matlab and involves
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only linear algebra and standard vectorized operations. Fig. 3 shows the size of the
duality gap as a function of computation time using ISTA, FISTA, or FISTA with
the active set (AS-FISTA) approach on a problem with an ℓ21 prior. One can observe
that FISTA actually converges much faster than ISTA and that AS-FISTA clearly
outperforms both of them. For comparison we also ran on the same configuration of
dipoles a SOCP (Second Order Cone Program) solver using the CVX Matlab toolbox
(http://cvxr.com/cvx/) as in (Ou et al. 2009). Employing only 1,000 dipoles out of
5,000, the computation took 86 s. Such a solver relies of the inversion of a Hessian
matrix whose size in S × S. It’s cost per iteration is therefore O(S3), i.e., cubic in
the number of dipoles, and it also requires to store in memory of matrix of size S × S
which may be prohibitive. To tackle the realistic problem used for Fig. 3, it suggests
that besides the problem of storing a 5000 × 5000 matrix in memory, computation
should approximately be multiplied by 125 which corresponds to more than 2 hours
of computation.

Figure 3. Convergence of ISTA, FISTA and AS-FISTA using a ‖.‖w;21 penalty
with a real MEG lead field (151 sensors and 5,000 sources) and synthetic
measurements. It can be observed that ISTA can be slow to converge compared
to FISTA and that the active set strategy speeds significantly the convergence.

4. Simulations and MEG results

The following section first presents results with the ℓ21 norm applied to M/EEG data,
and then some simulation and experimental results obtained with the ℓ212 prior. We
show that our solver applied with an ℓ21 norm provides accurate results in a few
seconds on a real auditory M/EEG dataset and that the ℓ212 norm can improve the
accuracy of reconstructions when performing functional mapping of the somatosensory
cortex.
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4.1. MxNE with the ℓ21 norm

The data used to illustrate the performance of the ℓ21 MxNE consists of MEG and EEG
combined recordings of the evoked response to left-ear auditory pure-tone stimulus‡.
Data were acquired using a 306-channel MEG Neuromag Vectorview system with 60
EEG electrodes, sampled at 600 samples/s. The signals were low-pass filtered at
40 Hz. The noise covariance matrix was estimated from the 200 ms of recordings
preceding each stimulus. The source space consisted of 8192 dipoles on the cortex
with orientations constrained to be normal to the cortical mantle. Two channels with
technical artifacts were ignored from the analysis resulting in a lead field matrix of
size 364 × 8192. We averaged 55 epochs and the sources were estimated between 0
and 400 ms resulting in 241 time samples, hence M ∈ R

364×241.
The results are presented in Fig. 4. The computation time using AS-FISTA for

the entire source estimation was 20 s on a laptop (4 GB of RAM and 2.8 GHz CPU).
At the optimum the cost function values was 2073.2 and the duality gap about 10−5

corresponding to a change in fifth significant digit of the cost function. The estimated
sources are located in both contralateral and ipsilateral primary auditory cortices (cA
and iA). A first early component is observed in cA between 30 and 50 ms with a peak
around 90 s in cA and later at 100 ms in iA.

In many respects the source estimates look similar to standard multi-dipole
fittings results. However, a few remarks should be made about the present results.
First, when working with constrained orientations, the signs of the estimated wave
forms are dependent on the orientation used for the dipole, i.e., the wall of a sulcus
on which the dipoles are located. This is a fundamental problem of M/EEG source
imaging well known from the classical MNE. Also, the cluster of 3 active dipoles in
iA illustrates a natural behavior of convex priors. These 3 dipoles have very similar
forward fields making them very hard to disambiguate with M/EEG. The stability of
the ℓ21 convex prior produces this cluster of dipoles while a non-convex prior, e.g., ℓ2p
with p < 1, would certainly pick any one of these dipoles.

Figure 4. ℓw;21 estimates on auditory M/EEG data. Estimation leads to 4
active dipoles in both contralateral and ipsilateral auditory cortices (cA and iA).

4.2. MxNE with the ℓ212 prior: Functional mapping

4.2.1. Motivation During an M/EEG experiment, a subject is generally asked to
perform different cognitive tasks or to respond to various stimuli. Without an adapted
prior, it may occur that the estimated active cortical region in experimental condition

‡ Condition 1 of the sample data provided by the MNE software.
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1 overlaps with the active region of experimental condition 2, which may in practice
be unrealistic considering the underlying physiology. The primary somatosensory
cortex (S1) (Penfield & Rasmussen 1950) and the primary visual cortex (V1) (Wandell
et al. 2007) are examples of brain regions with such known organizations. The different
body parts are mapped to locations at S1 and a location in the visual field maps to
an area at V1 This later is known as the retinotopic organization of V1 (Wandell
et al. 2007). Recent work, such as (Sharon et al. 2007, Hagler et al. 2009), emphasize
the interest for advanced methods able to reveal such functional organizations non-
invasively. However, while (Hagler et al. 2009) propose to use functional MRI data to
improve MNE results, we propose the ℓ212 prior which is a principled way of taking
into account the spatial properties of such regions in order to obtain better functional
mappings of the brain using only M/EEG data.

To illustrate the fact that an ℓ2 prior tends to smear the activations and therefore
to overestimate the extent of the active regions, we first performed a simulation study.

4.2.2. Simulation study We generated a synthetic dataset that mimics the
organization of the primary somatosensory cortex (S1) (Penfield & Rasmussen 1950).
Three non-overlapping cortical regions with a similar area (cf. Fig. 5a), that could
correspond to the localization of three right hand fingers were assumed and were used
to generate synthetic measurements corrupted with an additive Gaussian noise. The
amplitude of activation for the most lateral region (colored in red in Fig. 5), that
could correspond to the thumb, was set to be two times as big as the amplitudes of
the two other regions. An inverse source estimate was then computed with a standard
ℓw;2 (4) norm, an ℓw;1 norm, and the ℓw;212 mixed-norm (5). Each source in the three
simulated active regions was then assigned a label corresponding to the condition for
which its estimated amplitude was the largest. Quantification of performance was
done for multiple values of signal-to-noise ratio (SNR) by counting the percentage of
dipoles that have been incorrectly labeled. The SNR is defined here as 20 times the
log of the ratio between the norm of the signal and the norm of the added noise. The
results are also presented in Fig. 6. It can be observed that the ℓw;212 always produces
the best result and that the ℓ1 norm is more strongly affected by the decrease in SNR.
In order to have a fair comparison between all methods, the λ was set in each case to
have ‖M−GX∗‖2 equal to the norm of the added noise, always known in simulations.
The depth bias was corrected in the ℓw;212 norm case by setting ws,k = ws = ‖G·s‖22.
This amounts to scaling the columns of G. The depth bias correction was applied the
same way for ℓ1 and ℓ2 solutions.

The results are illustrated in Fig. 5b and 5c on a region of interest (ROI) around
the left primary somatosensory cortex. It can be observed that in the ℓw;2 norm result
the extend of the most lateral region is overestimated while the result obtained with
the ℓw;212 mixed-norm is clearly more accurate.

4.2.3. MEG data We also analyzed somatosensory data acquired using a CTF
Systems Inc. Omega 151 system at a 1250 Hz sampling rate. The somatosensory
stimulus was an electrical square-wave pulse delivered randomly to the thumb, index,
middle, and little finger of the right hand of a healthy right-handed subject. The
evoked response was computed by averaging 400 repetitions of the stimulation of
each finger. The triangulation over which cortical activations have been estimated
contained a high number of vertices (about 55,000). The forward solution was
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(a) Simulated data
(b) ℓw;2 results (ROI) (c) ℓw;212 results (ROI)

Figure 5. Simulation results on the primary somatosensory cortex (S1) (SNR =
20dB). Neighboring active regions reproduce the organization of S1. It illustrates
that the ℓw;212 prior improves over a simple ℓw;2 prior.

Figure 6. Evaluation of ℓw;2, ℓw;212 and ℓw;1 estimates on synthetic
somatosensory data. The error represents the percentage of wrongly labeled
dipoles.

computed using the spherically symmetric head model (Sarvas 1987). The sphere
was positioned to match the shape on the inner surface of the skull near the primary
somatosensory cortex (central sulcus). Prior to source estimation, data were whitened
using a noise covariance matrix estimated during baseline periods.

The source estimates during the period between 42 and 46 ms are presented in
Fig. 7. For each type of prior, the regularization parameter λ was set in order for X∗

to satisfy ‖M − GX∗‖22 ≈ NKT , knowing that after whitening the data, NKT is a
good estimate of the noise variance.

During the time interval of interest the measured magnetic fields indicate the
currents are directed into the cortex at S1 which is known to lie on the posterior bank
of the central sulcus. Therefore, we next ignored the positive activations located on
the anterior bank. Each dipole with negative amplitude was then assigned a label
between 1 and 4 based on its maximum amplitude across the 4 conditions. For each
condition, equivalently each label, the biggest connected component of dipoles with
the same label was kept. Each of the 4 estimated components, corresponding to the 4
right hand fingers are presented in Fig. 7. Solutions using both ℓw;2 and ℓw;212 norms
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are presented. The solution with ℓw;1 is not represented as the sparsity promoted do
not produce a continuous mapping which make results difficult to compare.

With ℓw;212 the well known organization of the primary somatosensory
cortex (Penfield & Rasmussen 1950) is successfully recovered with regions of similar
size for each finger. While with ℓw;2, the component corresponding to the index finger
is overestimated leading to an incorrect localization of the area corresponding to the
thumb. Note that some activation does remain at the right location for the thumb
using the ℓw;2 norm. However, it is not strong enough to match with the biggest
connected component represented here. These results demonstrate that an alternative

(a) Fingers color coded
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(b) MEG data for the index finger

(c) ℓw,212 results
(d)

ℓw,212 results (zoom)
(e)

ℓw,2 results (zoom)

Figure 7. Labeling results of the left primary somatosensory (S1) cortex in MEG
using both ℓw;2 and ℓw;212 priors. Source estimated during the period between
42 and 46 ms. The ℓw;212 leads to a more coherent estimate of the functional
organization of S1.

to the standard ℓ2 priors, can improve the localization of cortical activations by offering
the possibility to use a prior between different conditions. By solving the inverse
problem of multiple conditions simultaneously and by using a mixed-norm that sets
an ℓ1 prior between each condition, our method penalizes current estimates with an
overlap between the corresponding active regions. When such a hypothesis holds, the
localization of the neural activity becomes more accurate with increasing number of
conditions recorded and included in the analysis.

5. Discussion

In the present paper, we capitalize on advanced numerical methods to tackle multiple
convex optimization problems present in many applications such as functional brain
imaging using M/EEG. Our paper provides a unifying view of many solvers previously
proposed in the M/EEG literature and is to our knowledge the first demonstration that
the M/EEG inverse problem can be solved in a few seconds using non-ℓ2 priors. Rapid
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computations are essential in functional brain imaging, since interactive exploratory
analysis is often needed.

This work relates to the distributed solvers based on sparse Bayesian regression
that have been recently proposed (Nummenmaa et al. 2007, Friston et al. 2008, Wipf &
Nagarajan 2009). These solvers are not explicitly derived from cost-functions like (3)
and they lead to non-convex optimization problems not covered by the algorithms
detailed above. Note also that formulating the inverse problem as the minimization of
a cost function does not guarantee convexity. For example, Valdes-Sosa et al. propose
in (Valdés-Sosa et al. 2009) to estimate the source activations as a linear combination
of a small number of spatiotemporal maps. Here again, sparsity is a key assumption
of the method, however, the minimized cost function is not jointly convex in space
and time. The consequence of the non-convexity for all these methods, is that the
optimality of the solutions cannot be guaranteed and that solutions depend on the
initialization of the algorithm. Our formulation of MxNE does not suffer from these
shortcomings.

Another benefit of MxNE is the diversity of a priori knowledge that can be
taken into account. With the same mathematical foundations and very similar
implementations, the ℓ21 norm can be used to promote sparse source estimates with
smooth temporal activations, an ℓ221 norm can furthermore impose a common set of
active dipoles between conditions, and the ℓ212 norm can be used for more accurate
functional mapping. From the neuroscience perspective, the ℓ21 prior models the a
priori assumption that active brain regions should be consistent during a time interval.
This assumption is adapted to some datasets like the auditory data presented here,
however it is likely to be wrong for a long time interval during which active sources are
changing. The ℓ212 prior is motivated by its ability to explicitly model the functional
specificity of brain regions thus leading to more insights on neural circuitry (Chklovskii
& Koulakov 2004). The latter application is also to our knowledge the first attempt
to improve the M/EEG inverse problem by using multiple datasets jointly.

Finally, an important point is that there is no prior that fits all needs. That is
why MxNE does not refer to a particular prior but to a class of solvers that use mixed-
norms to better constrain the M/EEG inverse problem. This implies that depending
on the assumptions made about the underlying sources, a particular mixed-norm can
be more relevant than others.

Conclusion

In this article, we have shown how mixed-norms can be used to promote structure on
inverse estimates in order to take into account some a priori knowledge. In the case of
M/EEG, the a priori knowledge is based on the understanding of both neurophysiology
and biophysics.

This contribution provides principled first-order optimization strategies which
are simple to implement and fast, especially when an active set approach is used.
Furthermore, the speed of convergence of these algorithms is well understood thanks
to a theoretical analysis. All these algorithms rely on proximity operators, which
are in practice special thresholding operators. Moreover, we were able to construct
practical criteria to stop the optimization process while guaranteeing the optimality
of the solutions obtained.

The utility of mixed-norms is demonstrated with both synthetic and experimental
MEG data. Our results match existing knowledge about auditory evoked responses
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and lead to a more accurate mapping of the somatosensory homunculus than the
unstructured standard methods.
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Appendix A. Derivation of the (ℓ21 proximal operator)

We are looking for:

x∗ = argmin
x

1

2
‖y − x‖22 + λ‖x‖w;21 ,

with

‖x‖w;21 =
∑

k

‖xk‖w;2 =
∑

k

√

∑

t

wkx2
k,t .

We can differentiate the functional, when ‖xk‖w;2 6= 0, to obtain the variational
system:

{

|xk,t| = |yk,t| − λ
√
wk|xk,t|‖xk‖−1

2

sign(xk,t) = sign(yk,t)

which gives:

|xk,t|
(

1 + λ
√
wk‖xk‖−1

2

)

= |yk,t|
As 1 + λ

√
wk‖xk‖−1

2 does not depend on t, it implies that for all t and ν:

|xk,t| =
|yk,t|
|yk,ν |

|xk,ν | .

By injecting this last result in Eq. (A.1) we obtain

|xk,t| =



|yk,t| −
λ
√
wk|xk,t|

√

∑

ν x
2
k,ν





+

|xk,t| =









|yk,t| −
λ
√
wk|xk,t|

√

∑

ν

(

y2k,ν
x2
k,t

y2
k,t

)









+

=



|yk,t| −
λ
√
wk|xk,t|

|xk,t|
|yk,t|‖yk‖2





+

= |yk,t|
(

1− λ
√
wk

‖yk‖2

)+

,

which is the desired result.
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Appendix B. Proof of Proposition 2 (ℓ212 proximal operator)

Proof We are looking for:

x∗ = argmin
x

‖y− x‖22 + λ‖x‖2
w;212 ,

with

‖x‖2
w;212 =

∑

s





∑

k

(

∑

t

ws,kx
2
s,k,t

)1/2




2

.

We can differentiate the functional, when xs,k,t 6= 0, to obtain the variational
system:

{

|xs,k,t| = |ys,k,t| − λ
√
ws,k|xs,k,t|‖xs,k‖−1

2 ‖xs‖w;21

sign(xs,k,t) = sign(ys,k,t)
(B.1)

which gives:

|xs,k,t|
(

1 + λ
√
ws,k‖xs,k‖−1

2 ‖xs‖w;21

)

= |ys,k,t| (B.2)

⇒ x2
s,k,t

(

1 + λ
√
ws,k‖xs,k‖−1

2 ‖xs‖w;21

)2
= y2s,k,t

By summing over t, we get:

‖xs,k‖2
(

1 + λ
√
ws,k‖xs,k‖−1

2 ‖xs‖w;21

)

= ‖ys,k‖2
⇒ ‖xs,k‖2 + λ

√
ws,k‖xs‖w;21 = ‖ys,k‖2 . (B.3)

This last equality is true for all k. Then for k and l satisfying ‖xs,k‖2 > 0 and
‖xs,l‖2 > 0, we have:

‖xs,k‖2√
ws,k

=
‖xs,l‖2√

ws,l
+

‖ys,k‖2√
ws,k

− ‖ys,l‖2√
ws,l

. (B.4)

Furthermore, we have that:

‖xs‖w;21 =
∑

l/‖xs,l‖2>0

√
ws,l‖xs,l‖2 .

which implies that:

‖xs,k‖2 = ‖ys,k‖2 − λ
√
ws,k

∑

l/‖xs,l‖2>0

√
ws,l‖xs,l‖2 . (B.5)

By injecting (B.4) in (B.5) we get:

‖xs,k‖2 = ‖ys,k‖2 − λ
√
ws,k

∑

l/‖xs,l‖2>0 ws,l

(

‖xs,k‖2√
ws,k

+
‖ys,l‖2√

ws,l
− ‖ys,k‖2√

ws,k

)

⇔ ‖xs,k‖2 = ‖ys,k‖2 − λKws
(‖xs,k‖2 − ‖ys,k‖2)− λ

√
ws,k

∑

l/‖xs,l‖2>0
√
ws,l‖ys,l‖2

⇔ ‖xs,k‖2 = ‖ys,k‖2 − λ
√
ws,k

1+λKws

∑

l/‖xs,l‖2>0

√
ws,l‖ys,l‖2

,

where Kws
=
∑

k/‖xs,k‖2>0 ws,k. We therefore have for all s:

‖xs,k‖2 =



‖ys,k‖2 −
λ
√
ws,k

1 + λKws

∑

k/‖xs,k‖2>0

ws,k‖ys,k‖2





+

.
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If we reorder the
√
ws,k‖ys,k‖2 and introduce Ks defined in the proposition, it leads

to:

‖xs,k‖2 =

(

‖ys,k‖2 −
λ
√
ws,k

1 + λKws

[ys]

)+

. (B.6)

with [ys] =
∑Ks

k=1

√
ws,k‖ys,k‖2. Let us rewrite (B.2):

|xs,k,t| =
|ys,k,t|

1 + λ
√
ws,k‖xs,k‖−1

2 ‖xs‖w;21

=
|ys,k,t|‖xs,k‖2

‖xs,k‖2 + λ
√
ws,k‖xs‖w;21

Using (B.3), we get:

|xs,k,t| =
|ys,k,t|‖xs,k‖2

‖ys,k‖2
.

By injecting the result (B.6) in this equation we get:

|x∗
s,k,t| =

|ys,k,t|
(

‖ys,k‖2 − λ
√
ws,k

1+λKws
[ys]

)+

‖ys,k‖2
= |ys,k,t|

(

1− λ
√
ws,k

1 + λKws

[ys]

‖ys,k‖2

)+

.

Note that this result gives also the proof of the proximal operator associated to
the Elitist-Lasso in Proposition 1.

Appendix C. Proof of equation (7)

Theorem 1 (Fenchel-Rockafellar duality (Rockafellar 1972)) Let f : R
M ∪

{+∞} → R be a convex function and g : R
N ∪ {+∞} → R a concave function.

Let G be a linear operator mapping vectors of RM to R
N . Then

inf
X∈RM

{f(X)− g(GX)} = sup
Y ∈RN

{g∗(Y )− f∗(GTY )}

where f∗ (resp. g∗) is the Fenchel conjugate associated to f (resp. g), and GT the
adjoint operator of G.

Moreover, the Karush-Kuhn-Tucker (KKT) conditions read:

f(X) + f∗(GTu) = 〈X,GTY 〉 , g(GX) + g∗(Y ) = 〈GX, Y 〉 .

We can apply this Theorem to the functional (3) with g(X) = − 1
2‖M −X‖22 and

f(X) = λf2(X). Then, one just have to compute the conjugate of f . By definition of
the dual, given here for a concave function, we have

g∗(Y )
def
= inf

X
Tr(Y TX) +

1

2
‖M −X‖22 = − sup

X
−Tr(Y TX)− 1

2
‖M −X‖22

then, by the change of variable Y = M −X we have

g∗(Y ) = Tr(Y TM)− sup
Z

(

Tr(Y TZ)− 1

2
‖Z‖22

)

.

Moreover, we know by Proposition 3 that the Fenchel conjugate of a squared norm is
the squared dual norm. Then, we have

g∗(Y ) = Tr(Y TM)− 1

2
‖Y ‖22 .
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For the Fenchel conjugate of f(X) = λf2(X), one can apply simple calculus rules
given in (Boyd & Vandenberghe 2004), which give f∗(Y ) = λf∗

2 (Y/λ). Finally, the
Fenchel-Rockafellar dual function of (3) is given by

Tr(Y TM)− 1

2
‖Y ‖22 − λf∗

2 (G
TY/λ) .

Furthermore, one can check that the dual variable Y = M−GX verifies the KKT
condition

−1

2
‖M −GX‖22 +Tr(Y TM)− 1

2
‖Y ‖22 = 〈GX, Y 〉 .
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