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Abstract. We develop a model to describe the force generated by the
polymerization of an array of parallel biofilaments. The filaments are assumed to
be coupled only through mechanical contact with a movable barrier. We calculate
the filament density distribution and the force–velocity relation with a mean-field
approach combined with simulations. We identify two regimes: a non-condensed
regime at low force in which filaments are spread out spatially and a condensed
regime at high force in which filaments accumulate near the barrier. We confirm
a result previously known from other related studies, namely that the stall force
is equal to N times the stall force of a single filament. In the model studied here,
the approach to stalling is very slow, and the velocity is practically zero at forces
significantly lower than the stall force.
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1. Introduction

Actin filaments and microtubules are key components of the cytoskeleton of eukaryotic cells.
Both play an essential role in cell motility and form the core components of various structures
such as lamellipodia or filopodia. They are active elements that exhibit rich dynamic behavior.
For instance, actin filaments treadmill in a process where monomers are depolymerized from
one end of the filament while other monomers are repolymerized at the other end. Actin
polymerization is highly regulated in the cell, through many actin-binding proteins. Some of
these proteins accelerate actin polymerization, while others cross-link filaments or create new
branches from existing filaments. All these proteins ultimately control the force that a cell is
able to produce [1].

Given the complexity of actin polymerization, many studies have focused on its basic
structural element, namely the filament itself. For instance, a lower bound for the polymerization
force generated by a single actin filament has been deduced from the buckling of a filament that
was held at one end by a formin domain and at the other end by a myosin motor [2]. Other
studies focused on the dynamics of single filaments through depolymerization experiments
[3]. In order to understand the rich dynamical behavior of single filaments such as actin or
microtubules and the force they can generate, discrete stochastic models have been developed
that incorporate at the molecular level the coupling of hydrolysis and polymerization [4–11].
The filament dynamics and the force generation are two related aspects: hydrolysis is relevant
not only for understanding the single-filament dynamics but also for the force generation, since
the force generated by a filament is typically lowered by hydrolysis [6].

Ensembles of parallel interacting filaments are able to generate larger forces than single
filaments as in cellular structures called filopodia [12]. General thermodynamic principles
controlling the force produced by the polymerization of growing filaments pushing against a
movable barrier were put forward many years ago by Hill and Kirschner [13]. For many years,
however, it was unclear how to extend these results in order to understand theoretically the
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effect of interactions or collective effects in the process of force generation. Progress in this
direction was made through the introduction of stochastic models for ensembles of parallel
microtubules [14–16] and through the development of simulations for actin filaments in parallel
geometry [17] or in networks [18]. In these works, the Brownian ratchet model [19] was used
at the single-filament level, while some specific rule was assumed concerning the way the load
is shared between the filaments. In the absence of hydrolysis and lateral interactions between
the filaments, the stall force of an ensemble of parallel N filaments should be N times the
stall force of a single filament, as confirmed either by a detailed balance argument valid only
near stalling [15] or, more recently, by a more general analysis based on decomposition into
cycles [20].

In this paper, we propose a new theoretical framework for this problem. One novel aspect
as compared to the previous work [15] comes from the fact that we model the dynamics of
an ensemble of parallel non-interacting filaments at an arbitrary value of the force, rather than
just predict the value of the stall force. Another important difference between this model and
the previous work is that our model allows an arbitrary number of filaments in contact with
the moving wall, which allows the possibility of a condensation transition for the number of
filaments at the wall.

This paper is organized as follows: we first present the model, then the mean-field approach
for the general case of an arbitrary N and finally the simulations and a theoretical analysis of
the approach to stalling. We end the paper with a discussion of various related experiments in
this field, in which forces generated by a few actin filaments have been measured [21, 22].

2. Model

We consider two rigid flat surfaces: one fixed where filaments are nucleated (nucleating wall)
and one movable (barrier) whose position is defined to be the position of the filament(s)
furthest away from the nucleating wall (thus there is always at least one filament in contact
with the barrier). In the cellular environment, this ‘barrier’ is often a membrane against which
filaments exert mechanical forces. We do not model the internal structure of the filaments, and in
particular we do not account for ATP hydrolysis. After nucleation, the filaments grow or shrink
by exchanging monomers with the surrounding pool of monomers, which acts as a reservoir.
The filaments are coupled only through mechanical contact with the barrier. In some previous
models [14], a staggered distribution of initial filaments was assumed so that there would be
only a single filament in contact at a time. Here we do not make such an assumption; in contrast,
monomers inside different filaments are precisely lined up. As a result, the number of filaments
at contact is an arbitrary strictly positive integer.

It follows that we can separate the filaments into two populations, the free filaments that
are not in contact with the barrier and the filaments in contact. Only the filaments in contact
feel the force exerted by the barrier on them, and as a result, this changes their polymerization
rates as compared with free filaments. We assume that a monomer can be added to any free
filament with a rate U0 or removed with a rate W0, as shown in figure 1. Similarly, a monomer
can be added to a filament in contact with a rate U (F), and removed with a rate W (F) (or
W0 as explained below). The values of the rates that we have used correspond to an actin
barbed end and are given in table 1. We also assume that the barrier exerts a constant force
F on the filaments in contact; this force is defined to be positive when the filaments are
compressed.
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Figure 1. Representation of the filaments pushing on a barrier (the white vertical
rectangle on the right, which exerts a force F on the filaments). The right figure
corresponds to the case when only one filament is in contact with the barrier,
while the left figure corresponds to the case when several filaments are in contact
with the barrier. The on- and off-rate of monomers on free filaments are U0 and
W0. The on-rate on filaments in contact is U , and the off-rate is W if there is only
one filament in contact and is W0 otherwise.

Table 1. Parameters characterizing an actin filament barbed end. W0 is the free
filament depolymerization rate and k0 is the rate constant entering the free
filament polymerization rate U0 = k0C , where C is the concentration of
free monomers, d is the monomer size and Cc is the critical concentration.

W0 (s−1) k0 (µm−1 s−1) d (nm) Cc (µm)

1.4 11.6 2.7 0.141

We need now to specify more precisely how the force exerted by the barrier is shared
by the filaments in contact. When a monomer is added to a filament in contact, the barrier
moves by one unit, but only the filament on which the monomer has been added does work; we
therefore treat all the other filaments as free during that step. Similarly, during depolymerization,
filaments depolymerize from the barrier with the free depolymerization rate W0 as long as there
is at least one other filament in contact with the barrier, since in this case the depolymerizing
filaments do not produce work. The depolymerization occurs with a rate W only when there is
a single filament in contact with the barrier. In this case the filament produces work, since its
depolymerization leads to the motion of the barrier.

For a filament that has exchanged work with the barrier through addition or loss of
monomers, we use a form of local detailed balance that reads

U

W
=

U0

W0
e− f . (1)

This relation is obeyed by the following parameterization of the rates [15, 23, 24]:

U = U0 e− f γ and W = W0 e f (1−γ ), (2)
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where γ is the ‘load factor’ and f is the non-dimensional force f = Fd/kBT , where d is the
monomer length. Note that γ itself could be a function of the force; however, in the following
we assume that it is just a constant. More elaborate treatments of the load dependence of the
transition rates can be found in, for instance, [25].

An essential feature of this model is that although multiple filaments interact with the
barrier, when a monomer is added to one of the filaments in contact, it must do work against the
entire load. In the classification of [26], this corresponds to a scenario with ‘no load sharing’. If
the force could be shared by more than one filament or if the monomers in different filaments
were not precisely lined up, the above discussion would still apply: in this case a single filament
would carry a fraction of the load at a time, and for that filament a similar local detailed
balance would hold. In this case, although the stall force would be the same as in the ‘no load
sharing’ scenario, the form of the force–velocity curve would be affected. Such models have
been considered in [15, 16, 20, 26], but for simplicity, in the present paper, we focus on the ‘no
load sharing’ model.

3. Theory

In the particular case when there are only two filaments (N = 2), the master equation can be
solved exactly in terms of the probability that there is a given gap at a given time between the
two filaments, as shown in appendix A. Unfortunately, this approach is limited to the N = 2
case, because only in that case is there a single gap between the filaments. For N > 2, there are
many gaps, so in general such an approach quickly becomes as complicated as the one based on
the filaments themselves. So instead of looking for an exact solution, we provide in the section
below an approximate but accurate mean-field solution for the general case N > 2.

3.1. An ensemble of N filaments with N > 2

We recall that the position of the moving barrier coincides with the position of the longest
filament, and we define Ni as the number of filament ends which are present at a distance i from
the moving barrier. We take the convention that i = 0 corresponds to the barrier itself. Since
each filament has only one active end and the total number of filaments is fixed at N , we have
the condition that

∑
i=0 Ni = N . After a careful account of all possible events that can occur on

any filament in a short time interval, we obtain the following master equations:

dNi

dt
= (W0 + U N0)Ni−1 + (U0 + WδN0=1)Ni+1 − (W0 + U0 + U N0 + WδN0=1)Ni , (3)

dN1

dt
= (U0 + WδN0=1)N2 − (U0 + W0 + WδN0=1 + U N0)N1 + [W0(1 − δN0=1) + U (N0 − 1)]N0,

(4)

dN0

dt
= (U0 + WδN0=1)N1 − [U (N0 − 1) + W0(1 − δN0=1)]N0, (5)

where δN0=1 represents the probability that there is only a single filament in contact.
In deriving these equations, we have, for instance, implicitly replaced the joint probability

to have Ni filament ends at position i and to have only one filament at contact at time t , namely
P(Ni(t) = Ni , N0(t) = 1) by the product of P(Ni(t) = Ni) and P(N0(t) = 1). In other words,
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a mean-field approximation has already been used. A further consequence of this mean-field
approximation is that in these equations, δN0=1 can be replaced by its time-averaged value, which
we call q:

q = 〈δN0=1〉. (6)

The quantity q is a central feature of our model for N > 2. All subsequent results and
calculations appearing in this paper follow from this mean-field approximation.

At steady state, the lhs of equation (3) is zero. The rhs leads to a recursion valid for i > 2,
which can be solved after a few lines of calculations. The solution is

Ni = N2 exp(−(i − 2)/ l), (7)

where l is the correlation length (expressed as the number of subunits) given by

l =

[
ln

(
U0 + Wq

W0 + U N0

)]−1

. (8)

The other two equations (4) and (5), together with the normalization condition, fix N2, N1 and
N0. We find that the average number of filaments in contact with the wall N0 is

N0 =
(U0 + Wq − W0)N

U0 + U (N − 1) + (W − W0)q
. (9)

When N = 2, this mean-field solution agrees with the exact solution derived in appendix A
with the additional condition that γ = 1, in which case the on-rate carries all the force
dependence. For an arbitrary value of γ , the mean-field solution does not agree with the exact
result obtained for N = 2. This is as expected, since the mean-field approximation should work
well only in the limit of large N .

The average velocity of the moving barrier is

V = d(U N0 − Wq), (10)

where the first term within parentheses is the contribution of the filaments in contact
polymerizing with a rate U and the second term is the contribution from depolymerizing events
of a single filament in contact. We have not found a way of solving in general the self-consistent
equation satisfied by q, namely equation (6), except near stalling conditions as explained in
the next section. For this reason, we have calculated q numerically from simulations, and
derived predictions from the mean-field theory assuming that q is known. For instance, using
equations (9) and (10), one obtains the average velocity.

4. Results

4.1. Numerical validation of the mean-field approach

We have tested the validity of the mean-field approach using numerical simulations. We used
the classical Gillespie algorithm [27] incorporating the Mersenne Twister random number
generator. Runs were executed for N up to 5000. Up to 200 trial runs were used to derive
averages and distributions. We validated the simulation results by comparing them with the
particular cases N = 1 and N = 2 for which an exact solution is known (it is given in [6] for
N = 1 and in the previous section for N = 2).

By evaluating the parameter q from the simulations, we obtained very good agreement
between the theoretical approach based on the use of mean-field and the simulations for the
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Figure 2. Illustration of the condensation transition of actin filaments against a
barrier. Top: average barrier velocity versus force. Symbols represent simulation
results; the dotted line represents mean-field predictions based on equation (10).
Bottom: average number of filaments in contact with the barrier. Symbols
represent simulation results; the dotted line represents mean-field predictions
based on equation (9). For both plots, the parameters are N = 100, γ = 1 and
C = 0.24 µm. Inset, left: density profile in the non-condensed regime (bars) as a
function of the distance to the barrier, together with mean-field theory prediction
(line) from equation (7), for an applied force F = 2 pN, which is low with respect
to the apparent stall force. Inset, right: density profile in the condensed regime
(bars) as a function of the distance to the barrier, together with mean-field theory
prediction (line) from equation (7), for an applied force F = 12 pN, which is
close to the apparent stall force of ≈12.5 pN.

determination of the force velocity curve (shown in figure 2, bottom) and for the number of
filaments N0 in contact with the barrier (shown in figure 2, top). We find that the values of Ni

as determined by theory do not deviate from the simulation value by more than one.

4.2. Condensation transition as a function of the applied force

At low forces, the barrier velocity is close to its maximum value given by the free polymerization
velocity. In this case, only one or a small number of filaments are in contact; therefore q ' 1,
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which corresponds to a non-condensed or single filament regime. The steady-state density
profile of the filaments is broad as shown in figure 2 (bottom, left inset) and the corresponding
correlation length is large. With the parameter values corresponding to this figure, we have
l ' 151 nm.

Inversely, at high forces, the filaments accumulate at the barrier. As a result q ' 0, the
density profile is an exponential as shown in figure 2 (bottom, right inset) with a very short
correlation length of the order of a monomer size. With the parameter values corresponding
to this figure, we have l ' 4.1 nm. Since in this case, the number of filaments in contact, N0,
is a finite fraction of N , we call this regime the condensed regime. In this high force regime
(typically near the stall force F = Fstall), the following condition is obeyed: NU � U0. Since
we also have q ' 0, equation (9) simplifies to

N0 =

(
1 −

W0

U0

)
N . (11)

This equation can be used to predict the finite fraction of filaments in contact in the condensed
regime. This condensed regime corresponds to the plateau in the curve of N0 versus F which
is shown in figure 2 (top inset). In the conditions of this figure, equation (11) predicts a plateau
for N0 ' N/2 = 50 which is indeed observed, and as expected the plateau in N0 (figure 2, top)
occurs at the same force at which the velocity approaches zero (figure 2, bottom).

4.3. Theoretical stall force

Let us first discuss here the theoretical expression for the stall force and then in the next section
the practical way this limit is approached. The stall force is defined as the value of the force
applied on the barrier for which the velocity given by equation (10) vanishes. For N = 1, the
stall force is F (1)

stall = kBT ln(U0/W0)/d. For N = 2, using the results obtained in appendix A for
N0 and q , we find that the stall force F (2)

stall is exactly twice the stall force of a single filament,
F (1)

stall,

F (2)

stall = 2F (1)

stall = 2
kBT

d
ln

(
U0

W0

)
. (12)

In the general case of an arbitrary number of filaments N , we expect that the stall force F (N )

stall
should be [15, 16]

F (N )

stall = N
kBT

d
ln

U0

W0
. (13)

This result can be derived from the following argument: near stalling conditions, the
average density of filaments at contact N0/N can be obtained from equation (11) above. This
average density of filaments can be used as an approximation of the probability of having one
filament in contact when N0/N � 1. Since q is the probability that there is a single filament in
contact (in other words, there is one filament among N in contact and the remaining N − 1 are
free), it follows that

q =

(
N

1

)
N0

N

(
1 −

N0

N

)N−1

, (14)

which leads, using equation (11), to

q = N

(
1 −

W0

U0

) (
W0

U0

)N−1

' N0

(
W0

U0

)N−1

. (15)
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Figure 3. Comparison between the theoretical and numerical estimates for the
parameter q, which represents the probability that there is a single filament
in contact. Symbols represent simulation results, the dotted line corresponds
to equation (16) and the continuous line corresponds to equation (14) (both
expressions are mean-field approximations valid in the high force regime). The
parameters are N = 10, γ = 1 and C = 0.24 µm.

We call this the binomial form for q. We note that equation (14) also means that

q ' N0 exp(−N0), (16)

which corresponds to a Poisson statistics for the distribution of the number of filaments at
contact. Now inserting the final expression for q of equation (15) into the stalling condition,
namely the vanishing of the velocity given by equation (10), one obtains the theoretical stall
force given in equation (13).

The theoretical expression for the stall force given by equation (13) has also been obtained
in a recent study devoted to the stall force of a bundle of filaments [20]. This study is based
on the model introduced in [14, 15], which the authors modified to include lateral interactions
between the filaments of the bundle. Using a theoretical argument based on the identification
of relevant polymerization cycles, the authors of [20] confirm the expression for the stall force
obtained before in [15], which is also our equation (13). More importantly, they show with
this method that this expression has a universal character for models of this kind, hence in
particular the independence of the stall force with respect to the load distribution factor γ . They
also obtained force velocity curves for various values of the lateral interaction and staggering
distance, which—as we have checked—agree with the numerical results obtained in this paper
when there is no lateral interaction and when the shifts are zero.

In figure 3, the value of q determined from the simulations is compared with the theoretical
expression given by equation (14) or equation (16) (both expressions give similar results). We
note that the deviation between the simulation points and the theory increases as the force is
lowered; this is due to the mean-field nature of the theory, which becomes invalid when the
force is small, since then the fluctuations are large. For completeness, we also show in figure 4
the probability density function of the number of filaments at contact for various forces.
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4.4. The approach to stalling

Let us now discuss more precisely how the velocity approaches zero. We find that in our
simulations, for N larger than about 10, the velocity approaches zero at forces significantly
lower than the stall force as shown in figure 2 (bottom). We note that a similar effect has been
obtained when analyzing the stall force of an ensemble of interacting molecular motors [28]. To
quantify this effect, we therefore define an apparent stall force as the value of the force where
the velocity drops to less than a small fraction α = 2.5% of the value it has for zero force [26]. In
the experimental situation, this bound could correspond, for instance, to the limit of resolution
in the velocity measurement.

The value of the velocity at zero force corresponds to the maximum velocity. When F = 0,
there is no coupling between the filaments, which behave as independent random walkers. The
probability of having more than one walker at the leading position is zero in the long-time limit,
which implies q = 1. Therefore, N0 = 1 and the velocity at zero force equals the polymerization
velocity of a single filament:

V (F = 0) = d(U0 − W0), (17)

which is mainly controlled by the monomer concentration. Now by using the expression for the
velocity at an arbitrary force given by equation (10), the expression for N0 given in equation (9)
and the parameterization of the rates of equation (2) for the particular case γ = 1, we find that

F (N )
app =

kBT

d
ln

(1 − α)(U0 − W0)N + αU0 − (α − q)W0

αU0 − (α − q)W0
. (18)

Since q � 1 near stalling, we can write the following more explicit expression:

F (N )
app '

kBT

d
ln

(
1 +

N

α
− N

)
. (19)

In figure 6, we show the apparent stall force given by equation (18) as a function of N together
with the theoretical stall force of equation (13).

Let us show now that filament condensation at the barrier and the drop in velocity occur
simultaneously. Assuming for simplicity that γ = 1, N � 1 and q ' 0 in the high force regime,
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we can substitute equation (19) into equation (9) to obtain

N0 = (1 − α)

(
1 −

W0

U0

)
N . (20)

From this we see that since α � 1, the maximum number of filaments at the barrier is almost
reached. If V0 is the initial velocity and N s

0 is the finite fraction of filaments at the barrier at the
stall force, we have the equivalence of the following two conditions:

V = αV0 ⇔ N0 = (1 − α)N s
0 ,

which shows that filament condensation occurs at the value of the apparent stall force, a point
that is confirmed by simulations. Indeed, in the case of figure 6 the apparent stall force is about
12.7 pN, and the condensation visible in figure 2 also occurs close to 12 pN.

Close to the stall force it is also possible to derive an analytic expression for the
force–velocity relation by substituting into equation (10) the expressions of q , given by
equations (14) and (16). Assuming for simplicity γ = 1 and using equation (11), we obtain
with the binomial form:

V = N

(
1 −

W0

U0

) [
U0 e− f

− W0

(
W0

U0

)N−1
]
, (21)

and with the Poissonian form:

V = N

(
1 −

W0

U0

) (
U0 e− f

− W0 e−N (1−W0/U0)
)
. (22)

When these expressions are expanded close to the stall force, one obtains in both cases

δV = N

(
1 −

W0

U0

)
U0 e− f δ f. (23)

This indicates an exponential dependence of the velocity close to stalling, which is indeed
present in the simulations as shown in figure 5.

To summarize, we have shown in this section that the apparent stall force does not scale
linearly with N as the theoretical stall force but rather as ln(N ). The apparent stall force is the
quantity of experimental interest; it is also near the apparent stall force that the condensation
transition discussed in a previous section occurs (nothing special of that sort occurs near the
theoretical stall force).

4.5. Related experimental work in connection with the model

In this section, we discuss related experimental work. Although a precise comparison with
the present model is not attempted, we hope that the discussion could be useful in identifying
some relevant questions in this field. The force generation by parallel actin filaments growing
out of an acrosome bundle has been measured in [21]. The observation of a plateau in force
measurements by optical tweezers is a good indication of the stalling regime, but the measured
stall force is very small, comparable with that of a single filament, although many filaments
are present (about a dozen). These results thus stand at odds with the theoretical predictions
for the stall force obtained in [15, 20] (and in the present paper). In the present paper, we have
emphasized the fact that the approach to stalling is slow, which can lead to an underestimation
of the true stall force. The resolution of the optical tweezers leads to a limit in the detection
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Figure 5. Average barrier velocity on the logarithmic scale as a function of
the force in the linear scale. Note that the velocity decreases to near zero
exponentially when approaching the theoretical stall force, which is shown by
the arrow. For this value of the force, the numerical velocity is not strictly zero,
but is close to the uncertainty intrinsic to the simulation, which is here of the
order of 10−8 nm s−1. The parameters are N = 10, γ = 1 and C = 1.2 µm.

Figure 6. Theoretical stall force F (N )

stall (straight line; calculated from equation
(13)) and apparent stall force, both as computed from simulations F (N )

simulations
(black symbols) and from the mean-field approximation given in equation (18)
F (N )

approximated (dotted line) versus the number of filaments N . The parameters are
γ = 1 and C = 0.24 µm.

of small velocities, which corresponds roughly to the criterion for the apparent stall force used
in the previous section. However, with a dozen filaments, the apparent stall force should be
significantly larger than that of a single filament. Another difficulty is that there is no indication
in this experiment of the two regimes of low and large forces discussed in this paper. At this
point, it may be important to say that the results of this experiment have not been reproduced; in
fact in a new experiment discussed below, where the force generated by filaments growing from
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two magnetic beads outwards, very different results have been obtained [22]. In view of all this,
we think that the reason for these discrepancies may be found in effects which are not accounted
for (such as buckling or filament cross-linking) or they may be attributed more simply to the fact
that the two experiments have been done in very different biochemical conditions. Indeed, the
authors of [21] have used profilin to suppress spontaneous nucleation of actin filaments, while
profilin was absent in [22]. The use of profilin in [21] introduced complications, since profilin
also modifies the thermodynamics of the system by binding to actin monomers and possibly
interferes with ATP hydrolysis during polymerization.

The mechanical response of an actin network confined between two rigid flat surfaces has
been probed using a surface force apparatus (SFA) in [29] and using an atomic force microscope
(AFM) in [30]. Both experiments reported a load history-dependent mechanical response,
which presumably reflects a complex interplay between buckling and polymerization forces.
This complex interplay makes it difficult to isolate the true contribution of polymerization
forces. More recently, Brangbour et al [22] devised a new experimental setup in which actin
is nucleated from magnetic beads that are covered by gelsolin. A magnetic field is used to
counteract the polymerization force, which allows one to measure the force–velocity curves. As
mentioned above, the results of [21] for the stall force of a single filament are not confirmed: in
contrast, the stall force that is obtained is of the order of 40 pN, which corresponds according to
equation (13) to about 25 active filaments. The general shape of these force–velocity curves
is similar to those obtained in this work, but some deviations are present at low and high
forces. These discrepancies suggest that our model may be too simple to fully explain this
experiment and that other aspects may be important. Firstly, it would be necessary to go beyond
the parallel organization of the filaments in order to better model the experimental geometry of
[22]. Secondly, it is probably important to account in the model for the possibility of nucleating
new filaments from existing ones [31]. Thirdly, buckling forces could play an important role in
the experiment. Some of these effects have been included in previous numerical simulations of
branched actin networks [18, 32], but they are typically difficult to study with analytical models
of the kind presented here.

5. Conclusion

In this paper, we have provided a new theoretical framework to describe the dynamics of an
ensemble of N parallel filaments with no lateral interactions, which are exerting a force against
a movable barrier. The special cases N = 1 and N = 2 can be solved exactly, unlike the general
case for arbitrary N , for which we have constructed a mean-field approach. We identify two
regimes: a non-condensed regime at low force in which filaments are spread out spatially and a
condensed regime at high force in which filaments accumulate near the barrier. The transition
occurs near the apparent stall force where the velocity approaches zero. We find that for large
N this regime where the velocity approaches zero occurs at forces significantly lower than the
theoretical stall force, given by N times the stall force of one filament. In fact, the apparent
stall force does not scale linearly with N as the theoretical stall force does; instead it scales
logarithmically.

On the theory side, several extensions of our work are worth investigating. For instance,
bundles can be formed experimentally by growing filaments in the presence of specific proteins
which cross-link the filaments. To describe such a situation, it would be necessary to include
lateral interactions. Another direction would be to explore the role of load sharing, as was done
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in [26] for instance. Although the dynamics will be different, we still expect a condensation
transition to be present in this case.

In the end, our model offers a very simplified view of the problem of force generation by
actin filaments, but precisely for this reason we hope that it can be a useful starting point for
more refined studies.
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Appendix. Exact solution of the master equation for the case N = 2

For this problem, we can derive the following master equation satisfied by p(n, t) the probability
that there is a gap of n monomers between the two filaments. For n > 2,
∂p(n, t)

∂t
= (U + W0)[p(n − 1, t) − p(n, t)] + (W + U0)[p(n + 1, t) − p(n, t)], (A.1)

and otherwise,
∂p(1, t)

∂t
= 2(U + W0)p(0, t) − (U + W0)p(1, t) + (W + U0)[p(2, t) − p(1, t)], (A.2)

∂p(0, t)

∂t
= (W + U0)p(1, t) − 2(U + W0)p(0, t). (A.3)

Solving equation (A.1) at steady state results in the recursion

(W + U0)p(n + 1) − (U + W + U0 + W0)p(n) + (U + W0)p(n − 1) = 0,

which yields two solutions, namely 1 and b =
U+W0
W +U0

. This means that for n > 2, p(n) =

p(2)bn−2.
Using the normalization condition: p(0) + p(1) +

∑
n>2 p(2)bn−2

= 1, we obtain p(2) =

(1 − b)(1 − p(0) − p(1)). Solving equation (A.3) at steady state results in

p(1) = 2p(0)
U + W0

W + U0
= 2p(0)b.

Substituting this expression into equation (A.2) at steady state yields

p(2) = 2p(0)b2.

Equating the two expressions for p(2) and using the expression for p(1) in terms of p(2), it
follows that

p(0) =
1 − b

1 + b
.

The probability of having a gap of zero monomers is the probability of having both filaments at
the barrier; it thus obeys p(0) + q = 1, since q is the probability of having only one filament at
the barrier. In the end, we find that

q =
2(U + W0)

U + W + U0 + W0
. (A.4)
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The average number of filaments at the barrier is the sum of q plus twice 1 − q, since 1 − q is
the probability of having both filaments at the barrier. Therefore

N0 = q + 2(1 − q) = 2 − q,

and if we substitute q from above, we find that

N0 =
2(W + U0)

U + W + U0 + W0
. (A.5)
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