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Abstract—In this paper, we consider the scenario of a cellular
network where base stations aim to transmit several data packets
to a set of users in the downlink, within a predefined time, at
minimal energy cost. The base stations are non-cooperating and
the instantaneous transmission rate depends on the instantaneous
SINR at the receiver. The purpose of this article is to highlight a
power-efficient transmit policy. By assuming a large number of
homogeneous users, we model the problem as a mean field game,
with tractable equations, that allow us to bypass the complexity
of analyzing a Nash equilibrium in a L-body dynamic game.
The framework we propose yields a consistent analysis of the
optimal transmit power strategy, that allows every base station
to, selfishly but rationally, satisfy its transmission, at a minimal
energy cost.

I. INTRODUCTION

Power control problems have become a relevant issue and
a challenge for multi-user communications and green power-
efficient networking [1][2]. In this article, we propose a
scenario of transmission in a multi-cell network and aim to
study a power-efficient transmission policy for Base Stations
(BSs). More precisely, we seek transmission strategies that will
improve the energy-efficiency of the network, i.e. that will
reduce the transmit power consumption of every BS, while
guaranteeing transmissions to be achieved in an acceptable
time, for every user. Similar scenarios and studies of power
adjustment and optimization, under a data rate constraint, have
recently been explored. In [3], under a constraint of QoS, the
power level of each user is adjusted in order to minimize the
power consumption of every user in the uplink. In [4], still in
the uplink, every user wants to distribute its power in order to
maximize its own data rate, over a finite time-horizon.

In this paper, we propose a scenario of downlink transmis-
sion, consisting of a set of BSs, which are required to transmit
a certain amount of data to a set of user terminals (UTs), in an
acceptable time period. Every BS is acting selfishly: the BSs
wish to minimize their transmissions cost individually. The BS
compete and interfere: every BS has to achieve a transmission
within a certain time and the transmissions of every BS will
interfere at the non-intended UTs. The instantaneous data-
rate at each receiver then depends on by the instantaneous
transmit power of every BS, as well as the interference from
other BSs. The objective for each BS is to selfishly minimize
its total energy usage while achieving data reception, by
taking into account the other BSs’ policies. This constrained
concurrent power minimization problem under a constraint of

data packet transmission can be defined as a dynamic game.
Non-cooperative dynamic game theory provides tools to solve
this problem [6]. We seek here a Nash equilibrium of the
game, i.e. a transmit policy for which none of the users wants
to change its strategy, since any deviation from the optimal
power consumption might lead to a higher power consumption.
Moreover, we will assume the channels between the BSs and
the UTs to be time-varying and modelled according to an Itô
process [10]. The stochastic dynamic game model however
leads to intractable solutions, when it comes down to solving
multi-user problems : in a multi-user case, the study of a Nash
equilibria becomes complex.

However, recent works on Mean Field Game (MFG) theory
have provided interesting results to deal with the asymptotic
case, where the number of users grows to infinity [8][9]. When
the number of users grows large, supposing a certain symmetry
of the system model, we can replace the individual interactions
to any user by an average overall interaction, called the mean
field. This way, we can turn a multi-user problem into a single-
user problem, easier to solve (since every user is by symmetry
representative of the whole population). The MFG theory
leads in general to solving a couple of differential equations,
known as Hamilton-Jacobi-Bellman (HJB) and Fokker-Planck-
Kolmogorov (FPK) equations, that greatly simplify the study
of the Nash equilibria. It also brings sufficient insight about the
approximate behavior of every user in more realistic systems.
In [5], we find an application example of the MFG theory,
to optimize the power consumption of electrical and hybrid
vehicles in smart grids. As this is in general very technical
to prove, we will take as granted that solutions to the couple
of equations (HJB and FPK) exist and that they are consistent
with the system. Mathematical discussions on this topic can be
found in [8][9][11]Simulations will confirm that such solutions
to our problem may exist.

The paper is structured as follows. In sec. II-A, we introduce
the system model. In sec. II-B, we introduce the optimization
problem. In sec. III, we provide details on the analysis of
a Nash equilibrium in a L-user stochastic differential game.
The sec. IV provides the fundamental equations to be used
for analyzing a Nash equilibrium in the MFG. In sec. V, we
provide simulation results for a simple scenario, where all the
channels are no longer time-varying, but assumed constant and
equal.



II. SYSTEM AND PROBLEM DEFINITION

We consider a downlink narrow-band system consisting of
L BSs and L UTs. We assume that UT l is associated to one
and only one BS l. The BS l is required to transmit a data
packet of size Ql to UT l within a time period T . We define
Ql(t) the size of the data packet which remains at time t,
for UT l. In particular, the initial packet size is Ql(0) , Ql.
We denote hil(t) the channel between BS i and UT l at time
t. zl(t) refers to the noise at UT l at time t, assumed i.i.d.
centered Gaussian with variance σ2

n. The received signal yl(t)
at UT l at time t is given by:

yl(t) =

L∑
i=1

hil(t)xi(t) + zl(t) (1)

where xl(t) refers to the transmitted symbol by BS l. We
define the transmit power from BS l at time t by pl(t) =
E[xl(t)x∗l (t)]. We also denote p(t) = (p1(t), . . . , pL(t)).

The channel dynamics are modeled stochastically [12] :

dhil(t) = (ail(t)hil(t) + bil(t))︸ ︷︷ ︸
αil(t,hil(t))

dt+ σbdWil(t) (2)

This evolution law consists of a deterministic part αil(t, hil(t))
which accounts for both path loss or shadowing, and a
random part which accounts for both fast fading and channel
uncertainty (dWil(t) stands for mutually independent Wiener
processes and σb is positive)

An important metric here is the instantaneous transmission
data rate wl(t, p(t), h(t)) by BS l, defined by:

wl(t, p(t), h(t)) = B ln (1 + γl(t, p(t), h(t)))

γl(t, p(t), h(t)) =
pl(t)|hl,l(t)|2

σ2
n +

L∑
i 6=l

|hi,l(t)|2pi(t)

where B is the signal bandwidth and h(t) =
(h11(t), h12(t), . . . , hil(t), . . . , hLL(t)). γl refers to the
Signal to Interference plus Noise Ratio (SINR) at UT l. The
evolution of the remaining packet size is then given by:

dQl(t) = −wl(t, p(t), h(t))dt. (3)

Under some mild conditions on ail, bil and σb, the initial
conditions on the packets sizes Ql(0), the initial channels
hil(0) and the evolution laws (2) and (3) will lead to a unique
trajectory for Ql(t) and hil(t)[7]. We assume these conditions
to be met.

The objective of this article is to determine the transmit
power strategy pl(t) for BS l, in a bounded action set [0, Pmax]
which allows BS l to transmit its full packet Ql(0) to UT
l, within duration T (a complete transmission for BS l will
then induce Ql(T ) = 0) and that will minimize the total
consumed energy. The scenario we consider can then be
modelled according to the following minimization problem:

min
(pl(t))

E

[∫ T

0

pl(u)du+K(Ql(T )

]
(4)

where K(Ql(T )) is the final penalty cost function for not
achieving a complete transmission for user l within time T ,
and

∫ T
0
pl(t)dt is the total consumed energy by BS l on the

time window [0, T ]. The problem is constrained by the system
dynamics:

dX(t) = f(t, p(t), h(t)).dt+ F.dWt

X(t) = (Q(t), h(t))T and Q(t) = (Q1(t), . . . , QL(t))

with

f(t, p(t), h(t)) = (−w1(t, p(t), h(t)), . . . ,−wL(t, p(t), h(t)),
α11(t, h11(t)), . . . , αLL(t, hLL(t)))

T

and F is the L(L+ 1)× L(L+ 1) diagonal matrix:

F = diag(0, ..., 0,︸ ︷︷ ︸
L times

σ11(t), ..., σLL(t))

for Ql(0) and hil(0) fixed.

III. THE L-USER DYNAMIC STOCHASTIC GAME

In order to solve the minimization problem above, let us
first define the running cost function for UT l, vl(t,Xt):

vl(t,Xt) = E

[∫ T

t

pl(u)du+K(Ql(T ))

]
A power strategy p∗(t) = (p∗1(t), . . . , p

∗
l (t)) is a Nash equilib-

rium for the dynamic stochastic game if and only if ∀l, p∗l (t)
is an optimal admissible control to the problem:

min
pl(t)

E

[∫ T

t

pl(u)du+K(Ql(T ))

]
such that ∀k 6= l, pk(t) = p∗k(t).

In our case, a Nash equilibrium will consist of a set of
power strategies p∗(t), where BS l does not want to deviate
from its power strategy p∗l (t), since it would result in a worse
configuration for UT l. From now on, we denote the optimal
trajectories of the running cost functions related to the Nash
equilibrium p∗(t), by v∗(t,Xt) = (v∗1(t,Xt), . . . , v

∗
L(t,Xt)).

According to [6][7], a sufficient condition for the existence of
a Nash equilibrium is the existence of a joint solution v(t,Xt)
to the L Hamilton-Jacobi-Bellman(HJB) equations:

min
pl(t)

[
pl(t) + f(t)∂Xvl(t,Xt) +

1

2
tr(F 2∂XXvl(t,Xt))

]
+∂tvl(t,Xt) = 0

where we denote ∂Xv(t,Xt) (respectively ∂XXv(t,Xt)) the
first (resp. second) order partial derivative of the function
v(t,Xt) with respect to X . The differentiation ∂Xv(t,Xt) is in
our case the gradient of v(t,Xt) with respect to all the packet
sizes Ql(t) and all the channels hil(t). And the differentiation
∂XXv(t,Xt) is the Laplacian matrix. More precisely, the HJB
equation for UT l reads:

∂tvl(t,Xt) + min
pl(t)

[
pl(t)−

∑
k

wk(t, p(t), h(t))∂Qk
vl(t,Xt)



+
∑
i,k

αik(t)∂hik
vl(t,Xt) +

∑
i,k

1

2
σ2
b∂hikhik

vl(t,Xt)

 = 0

(5)
A condition for the existence of a solution v∗(t,Xt) to the

previous system of HJB equations (5), is discussed in [11].
We will suppose that, in our problem, the functions are well-
chosen, so this condition is met. The optimal transmission
policies p∗(t,Xt) can be obtained from v∗(t,Xt):

∀l, p∗l (t,Xt) = argmin
pl(t)

pl(t) +∑
i,k

αik(t)∂hik
v∗l (t,Xt)

−
∑
k

wk(t, p(t), h(t))∂Qk
v∗l (t,Xt) +

∑
i,k

1

2
σ2
b∂hikhik

v∗l (t,Xt)


(6)

We have assumed the existence of optimal transmission
policies to the L-body stochastic dynamic game and put in
evidence the equations to be solved, in order to analyze a Nash
equilibrium of the game. The resolution of the coupled HJB
equations is however complex when L is greater than two.
We will simplify our problem by assuming that the number
of agents L becomes extremely large and that each user is
alike. For this, we will turn the L-body game formulation into
a mean field game.

IV. A MEAN FIELD APPROACH

Recent works on MFG [8][9] have shown interesting results
when the number of users in the game is large enough and
these users are sufficiently indistinguishable. In ths setting,
from one BS’s point of view, it becomes equivalent to consider
all the other transmissions as a continuum. Therefore only the
distribution of the other states is needed for one BS to take
into account the other BSs’ actions. This greatly simplifies
the problem: we will obtain only two coupled differential
equations (a HJB equation and a FPK), instead of L HJB
equations, that will determine the mean field equilibrium of
the game. In the previous game, the impact of all the BS
except BS l on one UT l decisions was expressed through the
interference term Il(t,Xt):

Itl(t,Xt) =
∑
k 6=j

|hkl(t)|2pk(t)

If we assume similar channel statistics accounting for the L−1
other interfering BS, we will need to introduce a normalization
factor to keep the interference bounded [13]. Since an increase
of the number of users in an area with constant density implies
a proportional increase of the path losses, we will assume
that E[hil(t)2] is in order of 1

L . Alternatively, for notational
convenience, we rename hil(t) by

√
βhil(t)√
L

with E[hil(t)2] = 1
and a normalization factor β for network density. We then
write here the interference as:

Itl(t) =
β

L− 1

∑
k 6=j

|hkl(t)|2pk(t)

We assume that, as L grows to infinity, the distribution
function of the states variables of all BSs is turned into a
continuum. Considering a continuum of players and a mean
field game framework, we can reformulate the problem as a
mean field game. The L-body initial problem can be simplified
by focusing on a generic user and by considering a mean field
interference. We now denote Q(t), the packet size evolution of
one generic user, which can be seen as a random variable with
density the proportion of BSs in state Q at time t. For the same
reason, h(t) will now define the channel for a generic user.
We denote m(t,X) the density of BSs in state X = (Q, h)
at time t. Similar to [4], we define the new interference term,
with respect to the distribution mt:

It(t,mt) = β

∫
Q

m(t,X)|h(t,X)|2p(t,X)dQdh (7)

where p(t, Q, h) is the transmit power scheme used by a BS
in state X = (Q, h) at time t.

The minimization problem we now consider is based on the
previous minimization problem (4) :

min
p(t)

E

[∫ T

0

p(t)dt+K(Q(T ))

]
(8)

such that

dh(t) = (a(t)h(t) + b(t))︸ ︷︷ ︸
α(t,h(t))

dt+ σb(t)dWt

dQ(t) = −w(t, p(t), h(t),mt)dt (9)

where w(t, p(t), h(t),mt) = B ln(1 + γ(t,mt, h(t), p(t)))

and γ(t,mt, h(t), p(t)) =
p(t)h(t)

σ2
n+It(t,mt)

. Finally, Q(0), m0 and
h(0) are defined and initialize the game.

The running cost function to be considered in this section
is defined by:

v(t,Xt) = E

[∫ T

t

p(u)du+K(Q(T ))

]
(10)

According to [8][9], the equivalent notion to the Nash equi-
librium in the mean field game framework is the mean
field equilibrium [m∗(t,Xt), v

∗(t,Xt)], solution to a coupled
Hamilton-Jacobi-Bellman equation (from one single user point
of view) and Fokker-Planck-Kolmogorov equation. First, the
optimal trajectory v∗(t, p(t)) is solution to the Hamilton-
Jacobi-Bellman (HJB) equation, adapted from (5):

0 = min
p(t)

[p(t)− w(t, p(t), h(t),m∗(t,Xt))∂Qv(t,Xt)

+ α(t)∂hv(t,Xt)] +
1

2
σ(t)2∂hhv(t,Xt)− ∂tv(t,Xt) (11)

with the terminal condition v(T,XT ) = K(Q(T ))
This equation can be solved backwards and gives v∗(t,Xt).

The control strategy p(t,Xt) is the argument of the min term
of the previous equation, for a given trajectory of v(t,Xt):

p(t,Xt) = argmin
p(t)

[p(t) + α(t)∂hv(t,Xt)



−w(t, p(t), h(t),m∗(t,Xt))∂Qv(t,Xt)] (12)

The optimal trajectory for the distribution of users,
m∗(t,Xt), solves the Fokker-Planck-Kolmogorov equation,
given by:

∂h[m(t,Xt)α(t)]− ∂Q[w(t, p∗(t,Xt), h(t),m(t,Xt))]

−1

2
∂hh[σ

2
b .m(t,Xt)] + ∂tm(t,Xt) = 0 (13)

Where p∗(t,X) is as in (12) with v(t,X) = v∗(t,X) and the
initial distribution m0 is given.

To summarize, a solution to the mean field game
[v∗(t,Xt),m

∗(t,Xt)] can be obtained by solving the coupled
equations (11) - (13). Once v∗(t,Xt) is known, we have access
to many system evolution information, which we study in the
next section.

V. SIMULATIONS: MANIPULATIONS AND RESULTS

A. Simplifying the model

In this section, we assume that the channels are no longer
time-varying, but are all constant and equal to 1. The problem
may appear greatly simplified, because the power strategies
will not longer depend on the channel evolution but only on the
initial packet size to be transmitted. Even though unrealistic in
this setting, the scheduling problem can be solved numerically
and shows some interesting hints on the system performance.
In this case, the equivalent asymptotic fluid limit interference
can be simplified:

It(t,mt) = β

∫
Q

m(t, Q)p(t, Q)dQ (14)

where m(t, Q) is now the density of users whose remaining
packet size at time t is Q and p(t, Q) is the transmit power
adopted by such a user.

The minimization problem we now consider is :

min
p(t)

∫ T

0

p(t)dt+K(Q(T )) (15)

such that
dQ(t) = −w(t, p(t),m(t, Q))dt (16)

where w(t, p(t, Q),mt) = B ln(1+γ(t,m(t, Q), p(t, Q)) and
γ(t,mt, p(t)) =

p(t)
σ2
n+It(t,mt)

for given Q(0) and m0.
Note that there is no longer any expectation, since the only
random variable was due to channel uncertainty. The running
cost function v(t, Q) is now:

v(t, Q) =

∫ T

t

p(u)du+K(Q(T ))

A solution to the simplified mean field game
[m∗(t, Q), v∗(t, Q)] can be obtained by solving a simplified
form of the previous coupled equations (11), (12), (13). The
HJB (11) becomes:

∂tv(t, Q)+inf
p(t)

[p(t)−B ln(1+γ(t,m∗(t, Q)))∂Qv(t, Q)] = 0.

(17)

The control strategy p(t, Q) is the argument of the min term
of the previous equation, for a given trajectory of v(t, Q):

p(t, Q) = arg inf
p(t)

[p(t)−B ln(1 + γ(t,m∗(t, Q)))∂Qv(t, Q)]

(18)
i.e., p(t, Q) = −(σ2

n + It(m∗t )) +B∂Qv(t, Q).
Reusing the expression of p(t, Q) in the HJB equation will

provide its final version:(
B ln

(
B∂Qv(t, Q)

σ2
n + It(t,mt)

)
− 1

)
∂Qv(t, Q)

+It(t,m∗t )− ∂tv(t, Q) = 0. (19)

The previous FPK (13) can be simplified as:

∂tm(t, Q)− ∂Q[B ln(1 + γ(t,m(t, Q), p(t))m(t, Q)] = 0.
(20)

Reusing the expression of p(t, Q) in the FPK equation pro-
vides its final version:

∂tmt = B ln

(
B∂Qv

∗(t, Q)

σ2
n + It(t,mt)

)
∂Qmt +mt

∂QQv
∗(t, Q)

∂Qv∗(t, Q)
.

(21)
The problem now consists of a coupled equations in

m∗(t, Q) and v∗(t, Q). Finding these two optimal solutions
will allow us to recover both power strategies p∗(t, Q) and
packets size evolution Q∗(t) for any user with initial size of
packet Q(0), given an initial distribution of packets among a
large number of users m0. The trajectory of such a user, will
be obtained, thanks to equations (16) and (18).

B. Results: observations and discussion

We assume that Q and t both belong to a set [0, 1]. We
consider an initial distribution consisting of two truncated and
scaled Gaussians of variance one: one is centered at 0.4 and
the second one is centered at 0.75. The final cost function
K (that strongly impacts the convergence of the fixed point
algorithm) is chosen to be:

K(Q(T )) = θ[exp(ρQ(T ))− 1].

The folloing results were obtained with ρ = θ = 1. We solve
the system of coupled equations (HJB and FPK), by using a
finite element method.

Fig. 1 represents m∗(t, Q), i.e. the evolution of the distribu-
tion of packet sizes among the users across time. At t = 0, we
observe the two initial masses around 0.4 and 0.75. In the end,
almost every user has achieved its transmission as requested,
only a little proportion of users have a remaining packet to
receive, therefore accepting the penalty function. This suggests
an appropriate choice of the penalty function.

Fig. 2 and 3 represent the evolution of Q∗(t) and the
cumulative power

∫ T
0
p∗(t)dt for five users having five dif-

ferent initial packet sizes (equal to 0.2, 0.4, 0.6, 0.8 and 1
respectively). The power and the delay needed for a user to
achieve its transmission are directly proportional to the initial
packet size to be transmitted. We can observe that our system
makes every user transmit at the beginning, whatever its initial
packet size. Because of this, the users, whose initial packet



were smaller, will achieve their transmissions first. This means
that the number of active transmissions tends to get reduced
when the deadline approaches. As observed by the increase
of the slopes on Fig. 3, when active users disappear, the
interference diminishes: the remaining transmitters will benefit
from a better SINR and will rise their power of transmission.

VI. CONCLUSION

In this article, we presented a dynamic L-body game
framework to model the behaviour of BSs competing in the
transmission of a data packet in time, at minimal cost. We
turned our problem into a mean field game and proposed
a consistent analysis of its mean field equilibrium. Through
simulations, we highlighted some typical behaviors for our
energy-efficient transmission scheme. We clearly observe a
trade-off between distributing the power of the users on all
the possible time slots, in order to reduce the global power
consumption, and achieving some transmissions first, in order
to reduce the number of users transmitting simultaneously,
resulting in a better SINR and a better instantaneous data rate
for the remaining users.
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Fig. 1. Optimal distribution of users m∗(t, Q) whose packet size at time t
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Fig. 2. Remaining packet size Q(t) under optimal power p∗(t, Qt) for users
with initial packet size Q(0) ∈ {0.2, 0.4, 0.6, 0.8, 1}.
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Fig. 3. Cumulated energy consumption
∫ t
0 p∗(u,Q(u))du under opti-

mal power policy p∗(t, Q) for users with initial packet sizes Q(0) ∈
{0.2, 0.4, 0.6, 0.8, 1}.


