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We have investigated the contribution of stochastic thermally activated processes

to the electric-field effects on coercivity in FePt. Coercive field distributions were

measured under different gate voltages in solid-state field-effect structures. For low

voltages a shift in the coercive field distribution can be observed, however, it is not

larger than the width of the distribution. Higher voltages are needed to obtain the

splitting from the negative (zero) voltage distribution allowing for the unambiguous

characterization of the electric-field effect. A virtual unipolarity in the electric-field

effect has been identified as a feature introduced by the dielectric layer that disappears

upon annealing.
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The electric field (E) control of magnetic properties already demonstrated in a variety of

itinerant ferromagnets1–6 constitutes an attractive path towards low power magnetization

switching applications. In FePt, the reduction of the coercive field observed under electron

charging was attributed to a reduction in the large magnetocrystalline anisotropy of this

compound, resulting from the voltage-induced 3d/5d band filling1,7. In Ref. [1], the change

in the electron density was obtained by creating an electric field between the sample and

a so-called counter-electrode, both immersed in a liquid electrolyte. The large dielectric

constant of the so-called double-layer formed at the sample surface permitted significant

charging upon applying a moderate voltage below 1V.

With the prospect of exploiting the E-control of magnetism in magneto-electric devices,

its observation in structures incorporating a solid-state barrier appears as a prerequisite.

This is realized in the present study, where the electric field is generated across an insulating

HfO2 barrier, deposited on top of a 2 nm L10 epitaxial FePt film. In these devices the mea-

sured coercive field is found to fluctuate by typically 1-2 % upon repeating the experiment

giving rise to a coercive field distribution. This feature was already observed in a number of

studies dealing with FePt ultra-thin films8,9 and can be ascribed to the stochastic nature of

the thermal activation processes involved in overcoming the coercive energy barrier associ-

ated to a small number of events. It is worth mentioning that in the cited studies the FePt

films were patterned into Hall bar structures but were not covered with a dielectric layer as

in the present case. This acertains that the coercive field distribution does not arise from

the creation of a FePt/HfO2 interface, necessary to build the field-effect devices discussed

in this study.

The width of the coercive field distribution may mask the modification of the coercive

field induced by the applied E-field and therefore the impact of stochastic thermally acti-

vated processes needs to be addressed. In this study we present the effect of electric fields

generated in top-gate electrode devices on the coercivity distributions of thin films of FePt

at various gate voltages.

The magnetic films used in this work consist of a 2 nm thick epitaxial FePt L10 layer

grown on Pt(001)(30 nm)/Cr (2nm)/MgO(001)10. The films were patterned into Hall bar

structures which have a 50x450 µm2 main channel. Subsequently, a ≈ 10 nm thick dielec-

tric layer of HfO2 was deposited by atomic layer deposition at a temperature of 150◦C on

the entire magnetic structures. HfO2 was chosen as the dielectric material due to its high
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dielectric constant (nominally 25) which makes it an extensively used material in field-effect

structures where a large electric polarization inside the insulating barrier is needed12. In a

last step, the top gate Au (50 nm thick) electrode was deposited covering an area of 104

µm2 over the main Hall bar channel. Fig. 1 shows a graphic representation of the structure

of the devices. All hysteresis loops were obtained by extraordinary Hall effect measure-

ments at room temperature using a DC bias current of 1 mA and a constant magnetic

field rate of 0.1 T/min (saturation field = 0.25 T). The resulting current density is 6x108

A/m2, well below the reported current values for which Joule heating needs to be taken

into account13. The voltage drop along the Hall bar main channel when passing a current

of 1 mA was approximately 50 mV (i.e. resistance = 50Ω), significantly smaller than the

gate voltages applied to the top electrode. The coercive field (defined as the point of zero

net magnetization) was of the order of 0.13-0.15 T at room temperature, a value similar

to the one reported in [1] for a continuous film as well as in several recent studies2,3. It is

worth noting that the FePt films used in these experiment are grown in the same facilities

and in the same conditions as those from reference [1], however, in this study the measured

area is more than one order of magnitude smaller. This explains the much more prominent

role of individual thermally activated processes leading to the appearance of a coercive field

distribution in the present case compared to the E-field measurements in [1]. All coercivity

distributions have been obtained from a number of Hall effect loops ranging from 25 to 30

which represents a measurement time of about two hours for each given gate voltage.

Fig. 2 (a), (b), (c) and (d) present the coercive field distributions at gate voltages of ±

1V, 2V, 3V and 4V, respectively. The measurements in Fig. 2 have been carried out on a

single magneto-electric device and the behavior observed has been reproduced in a number

of equivalent devices. For the sake of clarity, it is worth mentioning that the gate voltages

informed refer to the voltage applied on the Au gate electrode. Therefore, a positive gate

voltage translates into the creation of negative charges on the counter FePt electrode, i.e.

filling of the electronic band states of FePt and vice versa. The two distributions measured

under gate voltages of ± 1V are almost superimposed, only at gate voltages of ± 2V a

visible splitting of the distributions for negative and positive gate voltages is observed (Fig.

2(b)). The splitting continues to increase at higher voltages but it is only for ± 4V that the

overlapping between the two distributions completely disappears.

These observations illustrate the above-mentioned stochastic character of the thermally
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FIG. 1. Structure of the magnetic field-effect devices. The patterned Hall bar structure and the

position of the gate electrode are shown in the top part of the sketch. The magnetic film consists

of a 2 nm thick epitaxial FePt L10 layer grown on Pt(001)(30 nm)/Cr (2nm)/MgO(001)10 . After

patterning a dielectric 10 nm HfO2 layer was deposited followed by the deposition of the top gate

Au (50 nm) electrode.
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FIG. 2. Coercivity distributions measured under gate voltages of (a) ± 1V, (b) ± 2V, (c) ± 3V

and (d) ± 4V. The overlapping between the distributions at positive and negative gate voltages

disappears for ± 4V.
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activated processes involved in the magnetization reversal in FePt which are ultimately

responsible for the existence of a coercive field distribution8,9. The observed partial over-

lapping of the coercive field distributions does not mask the action of the electric field on

coercivity. However, in the presence of a coercive field distribution the existence of the

E-effect can only be established unambiguously via repeating the measurements as done

here.

The distributions at positive gate voltages appear at lower field values than those corre-

sponding to negative gate voltages of the same magnitude. This indicates that the coercive

field value is reduced in the presence of a positive gate voltage. This reduction in the

coercive field can be interpreted as a weakening of the magnetic anisotropy due to band

filling. This is in agreement with field-effect measurements on epitaxial FePt films in con-

tact with a liquid electrolyte1 as well as with electronic structure calculations7. Although

demonstrating E-effects in this system, these measurements also reveal that the coercive

field under negative voltage, up to the maximum value of -4V, is approximately identical

to the one measured under zero applied voltage, namely, that there is an asymmetry in the

effect of the applied gate voltage. This can be seen in Fig. 3 (a) showing the same ± 4V

distributions as in Fig. 2 (d) together with a 0V distribution, this asymmetry is also shown

in Fig. 3 (b) which presents Hall effect hysteresis loops taken under gate voltages of 0V,

+4V and -4V. A similar behaviour has been reported in Fe based field effect structures and

attributed to a large charge trapping effect inside the ZrO2 dielectric layer
11. It is well known

that materials with high dielectric constants such as HfO2 and ZrO2 present a tendency

for charge trapping that compromises their performance in field-effect devices12,14,15. This

led us to ascribe the asymmetric voltage effect to such charge trapping effects. The charge

trapping effects in HfO2 have been related to structural defects in the dielectric such as

oxygen vacancies and have been shown to be strongly dependent on the composition of the

gate electrodes16 and their deposition method17. The asymmetry in the E-field effect may

be explained by considering that the electronic structure in the vicinity of the trap (defect)

sites in HfO2 defines an affinity for the trapping of charges of a given sign. In this context

the E-field induced charge trapping would preferentially occur under one of the two possible

signs of the gate voltage. This scenario would translate into an asymmetric effect of the gate

voltage on the magnetic properties of the FePt films similar to what has been reported in

Ref[17]. This description is supported by studies suggesting that oxygen vacancies in HfO2
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FIG. 3. Coercivity distributions and hysteresis loops measured under gate voltages of ± 4V and

0V in as-fabricated (a,b) and annealed (c,d) devices. The annealing process eliminates a virtual

unipolarity of the gate voltage effect on the value of the coercive field.

can be intrinsic electron traps presenting a variety of ionization states18.

Along the same lines, annealing in an O2 rich environment has been shown to significantly

reduce the number of oxygen vacancies19 in HfO2 MOSFETs with an associated reduction

in the charge trapping effect. This has been confirmed in our devices after annealing in

air at a temperature of 200 ◦C for two hours. Fig. 3 (c) shows measurements after the

annealing treatment where the coercive field distributions measured under positive and

negative voltages became symmetrically displaced with respect to the zero voltage coercive

field distribution. This is also evident in the hysteresis loops shown in Fig. 3 (d).

The charge trapping effects discussed above provide a simple explanation for the results

presented in this study, however, the exact nature of the charge trapping mechanism remains

an open question and requires additional studies. It will be particularly interesting to inves-

tigate these processes not only to avoid charge trapping in variable gate voltage operation

but also to explore the possibility of using them as a route to permanent E-field effects

without the need of a constant gate voltage. This concept has been recently investigated in

magnetic structures containing a dielectric layer with optically induced trapped charges11.

In the annealed sample the relative shift of the coercive field obtained for either positive

or negative gate voltages amounts to 0.7 %/V. The field effect reported for FePt immersed
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in a liquid electrolyte1 was of 7.6 %/V for a coercivity similar to that of the present film

(0.115 T). In the cited work, the estimated capacitance is of 30 µF/cm2 while in this study

the measured capacitance is between 2.3 and 2.8 µF/cm2 which accounts for the differences

observed in the E-field assisted coercivity changes per applied Volt. This confirms that the

magnitude of the effect observed in a liquid electrolyte environment can be also achieved in

a solid state device allowing for bipolar operation, a feature that could not be implemented

in Ref.[1] due to redox potential restrictions.

It is worth mentioning that the nature of the metal/dielectric interface has been shown

to be of great importance to the E-field modulation of the magnetic properties. The fabri-

cation of the devices presented in this study has been carried out without a capping layer

protecting the FePt film from air, however, other studies in the literature reported that

under similar conditions the E-field effect is absent and that the observation of a reduced

0.1 %/V effect requires the presence of a protective in-situ grown MgO layer20. In addition,

the E-field induced changes in H
c
informed in Ref.[18] seem to have the opposite dependence

on the sign of the gate voltage as those presented here.

In conclusion, the E-field changes in coercivity observed in Ref. [1] have been brought

into a solid state device. Using these structures we have studied E-field effects in the co-

ercivity distribution of FePt. Stochastic thermally activated processes taking part in the

magnetization reversal tend to mask the gate-voltage induced coercivity changes in a low

gate-voltage range. The electric-field effect on coercivity was first observed at a gate voltage

of ±2V, however, the overlap between the coecivity distributions for positive and negative

gate voltages disappears only at ±4V. A virtual unipolar effect of the gate voltage has been

observed and attributed to a charge trapping effect in the HfO2 dielectric layer. This can be

removed by a simple annealing treatment in order to improve the devices performance when

variable gate voltage operation is needed. At the same time we foresee charge trapping

effects in the dielectric layer as a possible route to non-volatility of the E-field effect in

magnetic structures.
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