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Abstract. Being able to detect reliably functional activity in a popula-
tion of subjects is crucial in human brain mapping, both for the under-
standing of cognitive functions in normal subjects and for the analysis of
patient data. The usual approach proceeds by normalizing brain volumes
to a common 3D template. However, a large part of the data acquired
in fMRI aims at localizing cortical activity, and methods working on the
cortical surface may provide better inter-subject registration than the
standard procedures that process the data in 3D. Nevertheless, few as-
sessments of the performance of surface-based (2D) versus volume-based
(3D) procedures have been shown so far, mostly because inter-subject
cortical surface maps are not easily obtained. In this paper we present a
systematic comparison of 2D versus 3D group-level inference procedures,
by using cluster-level and voxel-level statistics assessed by permutation,
in random effects (RFX) and mixed-effects analyses (MFX). We find
that, using a voxel-level thresholding, and to some extent, cluster-level
thresholding, the surface-based approach generally detects more, but
smaller active regions than the corresponding volume-based approach for
both RFX and MFX procedures, and that surface-based supra-threshold
regions are more reproducible by bootstrap.

1 Introduction

Studying the localisation and variability of brain activity across subjects is cer-
tainly one of the most important aspects of neuroimaging data analysis. The
detection and the precise localisation of the BOLD signal are therefore crucial.
Clearly, these steps are interacting as the detection of activity across subjects
requires first to coregister the subjects brains to a common coordinate system.
This step is most commonly performed in 3D space, by applying linear and
non-linear warpings such that the anatomical and the functional images are
coregistered to a common template, often chosen to be the MNI template. The
standard approach to activation detection [1] consists in comparing the images
from the different subjects on a voxel-by-voxel basis, computing a statistical map
to test the presence of an activation in each voxel of the standard space. The
ensuing multiple testing problem can be addressed directly at the voxel-level or



by testing the presence of activity inside clusters defined above a user-chosen
threshold [2].

Spatial normalisation is therefore crucial to the whole procedure. Because
a very large part of the data originates from the cortex, methods that work
on the cortical surface may be more sensitive than those using the 3D data.
It is well known that volume-based normalization may intoduce inaccuracies
in anatomical positioning of functional data, the magnitude of which may be
estimated as 1cm in several cortical regions [3]. Several studies have shown that
a coregistration based on the cortical surface may better align the functional
signal across subjects [4,5,6,7]. For instance, it is difficult to account for the
inter-subject variability of gyri size, shape or position in a 3D referential and
such differences may displace functional activity to a different gyrus.

In this paper, we investigate whether surface-based approaches, that rely
on a cortical surface referential, provide better constraints about the position
of functional activity, and more precisely, whether this is reflected in state-of-
the-art inter-subject statistical procedures. Following [4], we perform functional
analysis on the cortical surface for a group of 25 subjects. The inter subjects
analysis relies on matching the subjects cortical surface [4]. Additionally, we
systematically compare the 2D and 3D statistical analysis and provide results
on the difference in sensitivity of the two approaches for different tests, for a
given control of the type I error. More specifically, we use for the comparison
mixed- and random-effects inference at the voxel and at the cluster level [8]
and assess their bootstrap reproducibility. These statistical analyses provide the
cognitive neuroscientist or clinician with solid information on the sensitivity that
can be achieved with surface-based methods.

2 Materials and Method

2.1 Data and pre-processing

Data were acquired from 25 subjects who performed a functional localizer proto-
col as described in [9]. This protocol is intended to activate multiple brain regions
in a very short time (128 volumes in 5 minutes) with many experimental condi-
tions to allow the application of many different functional contrasts. Anatomical
and functional data was acquired on a 1.5T GE scanner. The functional data
was first corrected from the EPI distortions using field maps. Next, a standard
pre-processing (correction of differences in slice timing, motion correction and
anatomo-functional co-registration) was performed using the SPM5 software on
all subjects.

FreeSurfer [4] was used to segment and reconstruct the cortical surface from
T1 MRI data of each subject, providing the white matter mesh for both hemi-
spheres (note that the aime of this work is not to evaluate the quality of this
segmentation). This provides a common spherical coordinate system for each
hemisphere in each subject. Pre-processing of the data includes i) segmentation
of the white matter on a triangular mesh, ii) detection of the deepest sulci,



iii) inflation of the white surface on a sphere (brain-sphere), iv) deformation to
match the deepest sulci positions on the template model.

All data are then converted to the standard GIFTI format for further process-
ing (to obtain a node-by-node correspondence of the resampled brains): i) a reg-
ular sphere (icosphere) of diameter equal to the brain-sphere is created, ii) this
sphere is refolded onto the original cortical surface of each subject while preserv-
ing node-to-node correspondence of the icosphere mesh between subjects. The
resulting gray/white interface mesh is called resampled mesh.

In Fig. 1, two meshes are presented after affine coregistration to the MNI
template of the corresponding T1 images. The cross corresponding to the top
of the posterior Sylvian Fissure sulcus on the left subject appears on the right
subject in a very different anatomical position. The surface-based correspondence
(blue balls) is clearly much more accurate.

Fig. 1. Definition of the top of the posterior Sylvian Fissure sulcus in two brains in a
normalized space (MNI space, affine coregistration). The cross corresponds to the same
voxel coordinates. The blue ball correspond to the same node after brain resampling.

An average-brain of the 25 subjects was created for visualisation of the re-
sults. Each resampled mesh is coregistered to a normalized space (MNI/Talairach
space), then an average brain is obtained by computing the mean 3D position
of each node through all subjects in that space.

Functional images were then projected onto the resampled gray/white in-
terface mesh of each subject using the method described in [10]. A General
Linear Model (GLM) analysis was applied at each and every node and the ac-
tivation maps for the i) left versus right button presses, ii) sentence listening
versus sentence reading, iii) computation versus reading iv) reading versus pas-
sive checkerboard viewing contrasts.

2.2 Group data modeling

In this work, n = 25 subjects are considered. For each subject i, and at any node
of the resampled mesh, let β̂i be the estimation of the BOLD effect related to
some some effect of interest (note that this section is easy to generalize to a linear

combination, i.e. contrast of effects). β̂i is distributed around the true effect βi:

β̂i = βi + ei with ei ∼ N (0, s2i ) where the estimation variance s2i is known from



the first-level General Linear Model (GLM). We assume that βi = βG+εi where
εi ∼ N (0, σ2) and βG is the population-level effect. We thus have :

β̂i = βG + ε′i, ε′i ∼ N (0, σ2 + s2i ), (1)

where σ2 is the between-subject variance. This is a generalization of the RFX
model in [1] which neglects the estimation variance, i.e. it assumes s2i ≡ 0. Both
βG and σ2 are then estimated by maximizing the log-likelihood of the model
specified in Eq. (1) using the Expectation-Maximization (EM) algorithm in [11].
The following log-likelihood ratios are computed to test the positivity of βG:

LMFX =
supσ2,βG>0

∏S

i=1
N (β̂i;βG, σ

2 + s2i )

supσ2

∏S

i=1
N (β̂i; 0, σ2 + s2i )

, (2)

LRFX =
supσ2,βG>0

∏S

i=1
N (β̂i;βG, σ

2)

supσ2

∏S

i=1
N (β̂i; 0, σ2)

(3)

Note that computing LRFX is equivalent to performing a t-test.

2.3 statistical calibration

The distribution of the statistics in Eq. (2-3) under the null hypothesis (βG = 0)
is unknown, but can be estimated very simply by a randomization procedure,
in which the statistics are recomputed after a sign swap of the observed effects
β̂i. Under the hypothesis that the distribution of the true effects is symmet-
ric about 0 under the null hypothesis, this procedure yields an exact (possibly
conservative) specificity for the test. In order to control the family-wise error
rate (FWER), i.e. the probability of detecting one false positive over the search
domain, we consider the distribution of the maximal statistic under the null hy-
pothesis. For a chosen FWER α, this yields a voxel- or vertex- level corrected
threshold.

A more sensitive approach to detect extended regions consists in first thresh-
olding the statistics map at a given level (corresponding e.g. to p < 10−3 un-
corrected), and then to estimate the distribution of size (area or volume) of the
supra-threshold clusters under the null hypothesis. To solve the multiple compar-
ison issue, the size of the maximal cluster is tabulated under the null hypothesis.
Once again, the quantile α of this simulated distribution yields a cluster-level
corrected threshold.

In order to enable the comparison of volume-based and surface-based ap-
proaches, we systematically project the clusters obtained from the volume-based
approaches onto the average surface.

3 Results

To compare the surface-based versus the volume-based group-level analysis, we
used four different methods (RFX voxel-level, MFX voxel-level, cluster-level



Fig. 2. Left: Surface-based (top line) versus volume-based (bottom line) voxel-level
RFX group analysis results for the computation task. Right: Cluster-level RFX group
analysis for the computation task on the surface (top line) and in the volume (bottom
line).

RFX and cluster-level MFX) on four functional contrasts: computation versus
reading, reading versus passive checkerboard viewing, left versus right button press
and sentence listening versus sentence reading that we refer to as computation,
reading, motor and auditory. The voxel-level analysis finds only a few active
voxels with the volume-based method, while the activity map on the surface
contains a significant number of active nodes in more brain regions (see e.g. the
regions activated for the computation task, in the left part of Fig. 2, in particular
the bottom part of the pre-central gyrus).

The same tendency can be observed with the cluster-level analysis (see Ta-
ble 1), although the effect is more subtle (see Fig. 2): The surface-based proce-
dures detected many more functional clusters than the volume-based methods,
but these clusters are much smaller. This indicates that:

– Many clusters that are merged in 3D are split into different components on
the surface (see Fig. 2); this means that several different functional regions
are merged into one cluster in volume-based analyses. While these regions
are close in Euclidian distance (in the volume space), there are distant once
projected on the surface (e.g. on a different gyrus).

– The size threshold is much lower for the surface-based approach than for
the volume-based approach, in the sense that the surface-based approach is
able to extract finer structures than the volume-based approach.

The MFX statistic never detects any voxels or clusters activated in the vol-
ume, while the results on the surface are similar, though weaker than with the
RFX statistic. The reduced sensitivity with mixed effects is unexpected and can
hint at a first-level model mis-specification, hence a defect of the model design.
The results in terms of activated area are given in Table 2; the surface-based



Contrast Computation Reading Left Motor Auditory

Method RFX MFX RFX MFX RFX MFX RFX MFX

Surface 14 17 6 7 8 6 4 4
Volume 5 0 4 0 4 0 2 2

Table 1. Comparison of the number of clusters found using RFX and MFX methods
on volume-based and surface-based approaches.

Cluster-level

Contrast Computation Reading Left Motor Auditory

Method RFX MFX RFX MFX RFX MFX RFX MFX

Surface 131.6 135.1 26.8 28.9 65.4 63.8 96.6 96.7
Volume 105.1 0 97.6 0 45.3 0 99 109.1

Voxel-level

Contrast Computation Reading Left Motor Auditory

Method RFX MFX RFX MFX RFX MFX RFX MFX

Surface 17.1 15.4 0.5 0.4 23.9 22.7 46.5 46.9
Volume 10.8 0 15 0 15.3 0 46.9 0

Table 2. Comparison of the area of supra-threshold regions in cm2 of volume-base
(after projection) and surface-base approaches, for MFX and RFX statistics, with both
cluster-level and voxel-level inference.

approach detects wider regions for the computation task, and less for the reading
task when considering RFX. It is generally more sensitive using MFX.

Additionally, we studied the bootstrap reproducibility of the supra-threshold
regions in the surface- and volume-based procedures: we created P = 103 sur-
rogate groups and computed how many time a vertex or a voxel had a p-value
below 10−3, uncorrected. We systematically found a higher proportion of con-
sistently supra-threshold regions in the surface-based method as illustrated in
Fig. 3. This effect was quantified using the a classification index based on this
histogram [12], which was consistently higher for the surface-based approach
(data not shown).

4 Discussion

We have shown in this work that surface-base approaches detects activity in more
brain regions when voxel-based detection is performed (voxel-level RFX, voxel-
level MFX) compared to the volume-based approach. This gain in sensitivity is
probably related to two factors:

– The search domain is smaller (i.e. it consists in the cortex only), while the
volume-based approach tests also white matter and cerebro-spinal fluid re-
gions. This effect is visible in the bootstrap reproducibility histogram shown
in Fig. 3. The price to pay is that sub-cortical structures (thalamus, basal
ganglia, cerebellum etc.) are not considered in the surface-based representa-
tions.



Fig. 3. Bootstrap reproducibility of RFX thresholding procedures for the motor con-
trast: This is the normalized histogram of the reproducibility map that indicates how
frequently a voxel or vertex has a supra-threshold activity, with a threshold correspond-
ing to p < 10−3, uncorrected: the surface-based approach has a much higher proportion
of consistently supra-threshold regions.

– The coregistration of the data is certainly more accurate, as illustrated in
Fig. 1 with an anatomical landmark. Note that this better coregistration
could have the effect to reduce the spread of significant regions by removing
a spatial uncertainty on their position.

When considering cluster-level statistics, the gain is more subtle, as discussed
in the previous section. More precisely, it can be expected that the finer coreg-
istration related to the surface-based approach has a mitigated effect on the
detection of large clusters: volume-based approaches tend to join smaller clus-
ters which are close in Euclidean space, but relatively distant on the geodesic
(surface-based) representation. It should also be reminded that cluster-level anal-
yses allow only a weak control of false detections: a supra-threshold cluster has
the property to contain at least one voxel for which the null hypothesis can be
rejected, but does not allow to conclude that all the voxels or nodes in that
cluster are indeed active.

Moreover, when considering tasks with asymmetric activity, such as read-
ing, the volume-based approach can miss significant activity in weakly-activated
hemisphere, compared to the surface-based approach (data not shown).

However, in surface-based approaches, if the resolution is not fine enough,
or if EPI distortions are not perfectly corrected, the functional signal may be
diluted to neighbouring gyri, creating false supplementary clusters (as we can see
on Fig. 4). An interesting question that can still be addressed is how a surface
coregistration procedure based on geometric features such as Freesurfer would
compare to representations of the surface that take into account sulcus labelling.
Some recent experiments have indeed shown that sulcus-based coordinate sys-
tems tend to stabilize the position of some functional landmarks [13].

Conclusion Performing fMRI group analysis on the cortical surface instead of
the brain volume may benefit to the detection of some foci of activity, and thus



Fig. 4. The activity on the pre-central gyrus has also been projected on the neighbour-
ing gyrus (post-central gyrus).

yield more specific, and possibly more sensitive analysis than standard volume
based approaches. It may thus reveal sharper contrasts in the functional data
and thus provide more reliable markers of brain functional anatomy. It will
also be important to assess whether surface-based analysis better discriminates
population of controls and patients than standard volume-based methods.
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