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Heating of dielectric nanoparticles by black-body radiation is investigated by using molecular-dynamics

simulation. The thermal interaction with the radiation is modeled by coupling the ions with a random electric

field and including a radiation reaction force. This approach shows that the heat is absorbed by the polariton

mode. Its subsequent redistribution among other vibration modes strongly depends on the particle size and on

temperature. We observe energy trapping in a finite subset of vibrational modes and study the relaxation pathway

of (MgO)4 by performing a selective excitation with a deterministic force.

DOI: 10.1103/PhysRevB.84.224301 PACS number(s): 63.22.Kn, 65.80.−g, 05.10.−a

I. INTRODUCTION

Nanoscale energy transport and thermal properties of nano-

materials have been attracting a growing interest toward ever

smaller scales since the well-established concepts of macro-

scopic heat transfer are no longer valid.1,2 The vibrational

dynamics and the subsequent relaxation of thermal energy

between molecules differ significantly in materials for which

dimensions are comparable to the characteristic length scales

associated to the heat carriers.3,4 In these regimes, various

effects like coherence, ballistic transport, nonlocality, and

dispersion forces,5 as well as tunneling of evanescent waves

influence the conductive and radiative energy transfers.6–8 This

opens a wide range of potential applications, such as ther-

moelectric materials development,9 thermophotovoltaics at

the nanoscale,10 and microelectronics thermal management.1

Hence heat relaxation in nanoscale systems is a very active

research topic, where thermal properties of phonon systems

are predicted with various computational approaches.5,11–14

Molecular-dynamics (MD) simulations have proven to be

particularly relevant for thermal physics at short scales.15,16

Moreover, the anharmonicity of atomic interactions is im-

plicitly taken into account. Nevertheless, MD is based on

classical mechanics and therefore its use is limited to a large

temperature regime, where classical statistics is valid. The low-

temperature physics, below the classical Debye temperature, is

lacking.17

We propose here to extend the classical MD by introducing a

physical model of the black-body (BB) radiation. We generate

a random electric field with a colored noise in order to

physically mimic the heating of the vibrational modes of polar

dielectric materials in contact with a BB radiation. This BB

radiation plays the role of a thermostat and will be referred to

hereafter as Planck thermostat (BB-MD).

The structure of the paper is as follows. The microscopic

mechanisms of dielectric heating by a BB cavity and the

numerical implementation of a Planck radiation model are

presented in Sec. II. Section III reports the results of the

heating of dielectric (MgO)n cubic rocksalt nanoparticles (NP)

up to 1.3 nm at low temperatures. In Sec. IV, we analyze

the vibrational relaxation pathways in (MgO)4 by performing

a selective excitation with a colored deterministic electric

force. This section also provides a detailed discussion on

the vibrational relaxation mechanisms of the thermal energy

absorbed and the subsequent effect of heat trapping by polar

modes.

II. MODELING THE INTERACTION OF A

NANOPARTICLE WITH THE BLACK-BODY

RADIATION

A. Model

The BB radiation—the transfer of thermal energy by

electromagnetic waves—is often introduced with the Planck

distribution. This distribution provides the frequency depen-

dence of the intensity radiated by a cavity in a thermodynamic

equilibrium state. When integrated, the energy emitted from

the BB cavity is given by
∫ ∞

−∞
I (|ω|,T )

dω

2π
, (1)

where

I (ω,T ) =
ω2

πc3

(

h̄ω

eh̄ω/kBT − 1

)

· (2)

According to the Wiener-Khintchin theorem, the time-

correlation function of the electric field can be related to the

power spectral density as

〈Eα(t)Eβ(t + τ )〉 = δαβ

∫ +∞

−∞
IE(|ω|,T )e−iωτ dω

2π
, (3)

and the frequency dependence of the electric component can

be obtained using the power spectral density,

IE(ω,T ) =
1

3ǫ0

I (ω,T ). (4)

〈Eα〉 = 0 for each Cartesian component α (α = x, y, or z). δαβ

is the Kronecker symbol indicating that Cartesian coordinates

of E are uncorrelated.

The random electric field is computed following a numeri-

cal technique18 employed to generate Gaussian random surface

with roughness defined by a given correlation function (see the

Appendix). In our case, the correlation function is a Planck

distribution at a fixed temperature.
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FIG. 1. Spectral density recovered from Fourier transform of

the electric field correlation at T = 1000 K. Comparison with the

analytical expression given by Eq. (4), dark line. Inset shows a sample

of the corresponding time-dependant electric field.

As illustrated on Fig. 1, the Fourier transform of the random

field autocorrelation function 〈E(t)E(t + τ )〉 obtained in this

way follows the spectral density IE prescribed by Eq. (4).

It is important to mention that the spatial dependence of E

can be neglected as long as the nanoparticle size remains

much smaller than the dominant radiation wavelengths, λmax.

It corresponds to the wavelength at which the power spectral

density spectrum is maximum. λmax remains however much

higher than 1 μm for temperatures lower than 5000 K; hence

neglecting the spatial dependence of E is justified here.

To simulate the dynamics of a charged nucleus in a

molecule, we use the interatomic forces fi , supplemented by

the force qiE(t), where qi is the electric charge. To account

for radiative damping, we also introduce a radiation reaction

force. This latter force can be written as a function of the third

time derivative of the electric dipole moment19

...
p =

N
∑

i

qi

...
r i, (5)

where ri is the position of atoms i.

The equation of motion of the nucleus i of mass mi

interacting with the electric field becomes

mi r̈i = fi + qiE + miηi

...
p . (6)

The coefficient ηi is retrieved from the radiation reaction force

calculated in the case of a single moving charge:19

ηi =
qi

6πε0mic3
· (7)

Finally, the power absorption rate of a nanoparticle with

a polarizability spectra α(ω) in thermal interaction with the

Planck radiation is given by

〈

Q̇
〉

=
∫ ∞

−∞
|ω|I (|ω|,T )Im {α(|ω|)}

dω

2π
, (8)

so that the heating of the system at an equilibrium temperature

is ensured by the electric random field acting as a thermostat.

B. Validation

To check the validity of the model, we consider a single

one-dimensional harmonic dipole defined by a particle of mass

m with an angular frequency ω0 obeying

mẍ = −mω2
0x + qE + mηq

...
x . (9)

For this simple case, the average potential energy at thermal

equilibrium is given by

1
2
mω2

0〈x2〉 = 1
2
u(ω′

0,T ), (10)

where

u(ω,T ) =
h̄ω

eh̄ω/kBT − 1
(11)

and

ω′
0 = ω0

[

1 − 5
8

(qηω0)2
]

, (12)

using the approximation qηω0 ≪ 1.

Equations (10) and (12) show that the equilibrium energy

equals that of a quantum harmonic oscillator (ω′
0). Note that

the relative frequency shift (ω′
0 − ω0)/ω0 is typically around

10−24 for such a diatomic molecule so that it can be neglected.

Another interesting feature is the characteristic time τ re-

quired to reach thermal equilibrium. It is of about 1/(qηω2
0) ∼

10−2 s. In practice, equilibrium needs to be reached within

times shorter than 10−9 s. A possible strategy to speed up the

convergence rate driven by τ is to balance the charge q by a

constant factor Z to enhance the coupling strength with the

cavity. This effective charge reduces the transient regime by a

factor Z2 without perturbating the dynamics of the steady state.

The modified set of forces acting on each charge becomes

qE ⇒ ZqE, (13)

and the corresponding radiation damping term is

mηq
...
x ⇒

Z2q2

6πε0c3

...
x . (14)

Z is however restricted by the condition that guarantees a

negligible eigenfrequency shift [Eq. (12)], which can be typi-

cally realized by taking Z ≪ 108. Figure 2 reports the perfect

agreement between the equilibrium average energy obtained

numerically for the harmonic dipole and that calculated with

the Bose-Einstein distribution u(ω0,T ).

III. HEATING DYNAMICS OF (MGO)n NANOPARTICLES

From the interaction model presented in Sec. II, we aim at

capturing the physical mechanisms from which thermally IR-

activated vibrational modes couple with radiation and transfer

their energy to other vibrational eigenmodes. We will call this

process vibrational relaxation in the following discussions.

In this work, we consider (MgO)n rocksalt cubic nanopar-

ticles and choose the interatomic potentials proposed by

Matsui.20 The symmetry group of MgO NPs is Td . Table I

reports the fraction of polar modes for n = 4, 32, and 108.

They account for 40%–50% of the total modes.

We calculated the polarizability spectrum, α(ω), and

the vibrational density of states g(ω) from standard MD

224301-2
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FIG. 2. Energy of a harmonic dipole. Comparison between the

simulated energy (BB-MD) and the energy given by u(ω0,T ) as a

function of temperature. Energy and temperature are normalized by

h̄ω0 and h̄ω0/kB , respectively.

simulations,

α(ω) =
1

3ε0kBT V

[

〈p(0)p(0)〉

+ iω

∫ ∞

0

exp(iωt)〈p(0)p(t)〉dt

]

, (15)

where V is the volume of the NP. The polarizability spectrum

is obtained by considering the polarization autocorrelation,

whereas g(ω) is computed from the particle’s velocity as

g(ω) = lim
Ns→∞

1

kBT Nsδt

∑

i

mi |vi(ω)|2 , (16)

where Ns is the number of time steps δt . At thermal

equilibrium, the total vibrational energy can be estimated by

performing an integration over the full density of states:

Uv(T ) =
∫ ∞

0

g(ω)u(ω,T )dω, (17)

whereas the contribution, Up(T ), is obtained by solely consid-

ering the polar modes (ωp) from Eq. (15),

Up(T ) = 3
∑

p

u(ωp,T ). (18)

The factor 3 stands for the polar-modes degeneracies.

Figures 3(a) and 3(b) report the polarizability spectra cal-

TABLE I. Irreductible decomposition of vibrational modes of

(MgO)n nanoparticles according to the Td symmetry group. The

degeneracy of A1, A2, E, T1, and T2 modes are 1, 1, 2, 3, and 3,

respectively.

Vib. Polar

n Irr. representation modes modes

4 2A1 + 2E + T1 + 3T2 18 9

32 12A1 + 4A2 + 16E + 19T1 + 27T2 186 81

108 36A1 + 18A2 + 54E + 71T1 + 89T2 642 267
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FIG. 3. (a), (b) Im {α(ω)} curves for (MgO)32 and (MgO)4

nanoparticles; (c) density of vibrational states (DOS) g(ω) and its

integral for (MgO)4. Polar (P) and nonpolar (NP) modes are labeled.

culated for (MgO)4 and (MgO)32 with 3 and 27 distinct

polar frequencies, respectively. For (MgO)4, the frequency P2

corresponds to the polariton resonance, that is the frequency

at which IR absorption occurs the most efficiently.21

Figure 4 reports the temperature dependence of the vibra-

tional energy directly obtained by MD simulations. The kinetic

rotational energy of the NP is subtracted to its total energy

for further comparison with Eq. (17). Results obtained for

(MgO)4, (MgO)32, and (MgO)108 exhibited two trends: at low

temperatures (T < 300 K), BB-MD simulations fit nicely with
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FIG. 4. Energy of (MgO)n nanoparticles at equilibrium as a

function of temperature compared with energies Uv(T ) (solid line)

and Up(T ) (dashed line). The energy is normalized by the number of

vibrational modes, 6n − 6.

Up(T ), whereas at higher temperatures, the predicted energy

becomes larger than Up(T ) but remains always lower than

Uv(T ), which is unexpected.

Figures 4(b) and 4(c) show that the particle size extension

enhances the contribution of nonpolar vibrational modes to

the total energy, below 500 K. These results prove that higher

activation temperatures are required for a smaller particle to

TABLE II. Degeneracy, gv , and symmetry of vibrational modes

for the (MgO)4 nanoparticle according to the Td symmetry group

(Table I).

P1 NP1 NP2 NP3 NP4 P2 P3 NP5

gv 3 2 3 1 2 3 3 1

Symm. T2 E T1 A1 E T2 T2 A1

allow an efficient vibrational relaxation of the absorbed energy.

In other terms, inelastic scattering driven by anharmonicity of

interatomic potential is too weak to redistribute the energy

to the complete set of vibrational eigenmodes: this is a

direct consequence of the discrete structure of the vibrational

spectrum in a nanoscale cluster.

To get a better insight into the vibrational relaxation mech-

anisms occurring in isolated NPs, we consider the simple case

of a (MgO)4 for which only eight vibrational eigenfrequencies

can be conveniently distinguished [Fig. 3(c)]. The three polar

frequencies are indexed P1, P2, and P3 and nonpolar modes

are named NP1 to NP5. The integration of g(ω) provides

the degeneracies, gv , of each frequency and by extension the

number of vibrational degrees of freedom (Table II).

We propose to analyze the contribution of each vibrational

mode to the total energy: at various temperatures, this

contribution is evaluated with the integral

1

gvNsδt

∫ ωmax

ωmin

∑

i

mi |vi(ω)|2

u(ω,T )
dω, (19)

where ωmax and ωmin are the bounds of the integration domain

of each frequency mode. u(ω,T ) is a normalization factor

introduced to set the contribution of each mode between 0

and 1. This allows us to estimate how far this individual

contribution is from its expected value. Numerical simulations

have been performed during 10−8 s with a coupling coefficient

Z set at 104. The steady-state regime was obtained within time

ranges shorter than 200 ps.

Figure 5 reports the contribution rates obtained with a BB

temperature ranging between 200 and 1000 K. At 300 K,

it can be seen that the thermal energy is mostly carried by
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FIG. 5. Contribution rate of each vibrational mode to the energy

of the (MgO)4 nanoparticle at various temperatures.
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the polar modes P1, P2, and P3 and NP5. NP5 corresponds

to the breathing mode and its activation is attributed to the

effect of thermal expansion of the nanoparticle. P1 tends

to decrease when the BB temperature increases, indicating

that a part of its vibrational energy has been transmitted

to the modes identified. Except for NP5 (21,2 THz), these

contributions remain almost negligible below 400 K: they do

not contribute to the total energy. In what follows, we analyze

the mechanisms responsible for inelastic modal coupling

allowing the vibrational relaxation in this system and also the

reasons that prevent an efficient energy redistribution among

all modes.

IV. VIBRATIONAL SPECTROSCOPY AND RELAXATION

PATHWAY FOR (MgO)4

This section discusses and demonstrates how the vibrational

relaxation channels of a (MgO)4 can be studied in detail. The

idea is to look at the response of the crystal when performing

selective monochromatic excitation with a deterministic elec-

tric field tuned on each polar eigenfrequency. The amount of

energy absorbed optically is thus perfectly known as well as

its fraction relaxed preferentially toward vibrational modes.

To assess the inelastic scattering contribution, we only

need to measure this fraction as a function of the system

temperature. We thus performed monochromatic absorption

simulations at 300 and 600 K for the (MgO)4 nanoparticle.

At 300 K, we found that there is only one relaxation channel

from polar modes. As reported in Table III, this relaxation

corresponds to the mixing

h̄ωP3 ≃ 2h̄ωNP1, (20)

which is dominant. As discussed earlier, P2 corresponds to the

polariton resonance and consequently absorption is dominant

at this frequency [see Fig. 3(b)]. A large fraction of the thermal

energy absorbed from the BB cavity remains trapped in this

mode, since no mixing rule involving this frequency has been

identified at this temperature.

At higher temperature (600 K), the relaxation given by

the rule [Eq. (20)] remains the most important; however,

complementary processes are involved. NP3 and NP5 are

obtained according to

2h̄ωP2
≃ h̄ωNP3

+ h̄ωNP5
, (21)

TABLE III. Fraction of energy relaxed per mode (%) when

exciting at frequencies P1, P2, and P3 (Table II).

P1 NP1 NP2 NP3 NP4 P2 P3 NP5

300 K

P 1 99.75 0 0 0 0 0.25 0 0

P2 0 0 0 0 0 100 0 0

P3 0.15 99.42 0 0 0 0 0.44 0

600 K

P 1 99.4 0 0 0 0 0.5 0 0

P2 1.0 3.4 0.2 0.3 0 92.4 2.2 0.4

P3 2.3 91.8 0 0 0 0 5.9 0

26 28 30 32 34 36 38

a.
 u
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FIG. 6. Anharmonic vibrational spectrum obtained from Eq. (16)

and corresponding to a magnification of the g(ω) at higher frequency

regions.

which is consistent with the fact that, when exciting P2, the

amount of energy relaxed to NP3 and NP5 is roughly the same.

Moreover, when exciting at the frequency P3, one obtains

h̄ωP3
≃ 2h̄ωNP2

− h̄ωNP1
. (22)

The complete set of allowed inelastic processes is checked

by considering the anharmonic contribution of the vibrational

spectrum (Fig. 6). Additional contribution from NP4 and NP5

to the total vibrational has been identified with the following

rules:

h̄ωP2
+ h̄ωNP4

≃ h̄ωP3
+ h̄ωNP3

,

h̄ωP3
+ h̄ωP2

≃ h̄ωNP4
+ h̄ωNP5

. (23)

In summary, by performing selective mode excitation

and by identifying the responding modes, we were able to

reconstruct the vibrational relaxation channels of a (MgO)4.

We found that the relaxation of the thermal energy absorbed

at the frequency P3 is the most efficient. On the other hand,

P2, which dominates the radiation absorption, do not transfer

any energy to the rest of the system. This energy trapping

effect explains the behavior observed on Fig. 4, where the total

energy of the NP remained always lower than the expected

equilibrium value. This result is clearly a consequence of size

confinement. Indeed, the discrete structure of the vibrational

spectrum introduces selection rules for relaxation. As bulk

materials exhibit band structure, this effect can be observed

only in nanostructures.

V. CONCLUSION

We have introduced a model to study the radiative heat

transfer by molecular-dynamics simulations using a BB as

a thermostat for dielectric nanoparticles. This model allows

the recovery of the low-temperatures vibrational dynamics

for (MgO)n nanoparticles. By investigating their heating

224301-5
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mechanisms with the BB, we have found situations where

the vibrational relaxation in size-confined dielectrics strongly

differs from bulk materials. Thermal energy absorption is

clearly mediated by polar modes, and absorption is predom-

inant at the polariton resonance. We observed the trapping

of heat at this particular frequency and identified this effect

as a consequence of size confinement. Our results clearly

unveil important differences between the true low-temperature

behavior of nanomaterials, and the approximations typically

used above Debye temperature.
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APPENDIX: GENERATION OF THE RANDOM FIELD

This part presents the technique used to generate the

fluctuating electric field E(t) in the time domain assuming

a Planck-law power density spectrum.18 Since it models the

thermal radiation emitted by a BB cavity, E(t) is a random

Gaussian variable. The first- and second-order moments can

be written as

〈E(t)〉 = 0, (A1)

〈E(t)E(t + τ )〉 =
∫ +∞

−∞
IE(|ω|,T ) e−iωτ dω

2π
, (A2)

where IE is given by Eq. (4).

The description of the fluctuating field in the time domain

is expressed in a discrete form, tn = nδt , where n = 1, . . . ,N .

We write the electric field as a sum of independent random

Gaussian variables (X) as

En = E(nδt) =
+∞
∑

j=−∞

WjXj+n, (A3)

with X having the following properties:

〈Xi〉 = 0,

〈XiXj 〉 = δij . (A4)

Now, Wj are the unknown variables to build the expected

correlation function. We have

〈Ei〉 = 0,

〈Ei Ej 〉 = δij , (A5)

so that we are looking for a series having the following

property:

∞
∑

j=−∞

Wj Wj−l =
∫ ∞

−∞
IE(ω,T ) e−iωtl

dω

2π
. (A6)

Wj is even and real and the Fourier transform of W (t) obeys

the equation W̃ (ω) = W̃ (−ω). As a result, we obtain

W̃ (ω) =
√

δt
√

IE(ω). (A7)

The transformation of the Wj in the time domain gives

W (tj ) =
√

δt

∫ +∞

−∞

√

IE(ω,T ) e−iωtj
dω

2π
. (A8)

For practical reasons, E(tn) is written according to a discrete

Fourier transform (DFT). The DFT of Wj and Xj are first

introduced as

Wj =
1

√
N

N/2
∑

l=−N/2+1

W̃l e
− i2πjl

N , (A9)

Xj =
1

√
N

N/2
∑

l=−N/2+1

X̃l e
− i2πjl

N , (A10)

then E takes the form

E(tj ) =
N/2
∑

l=−N/2+1

W̃−lX̃l e
− i2πjl

N . (A11)

Taking the integral form of Eq. (A9),

Wj =
1

√
Nδω

∫ +∞

−∞
W̃ (ω) e−itj ωdω, (A12)

where Nδωδt = 2π . This latter equation can be identified with

Eq. (A8) and one obtains

W̃l =
1

√
Nδt

√

IE(ωl), (A13)

where ωl = l δω. E(tj ) can be finally written as

E(tj ) =
1

√
Nδt

N/2
∑

l=−N/2+1

√

IE(ωl)X̃l e
− i2πjl

N , (A14)

where

X̃l =
1

√
2

(M̃l + iÑl). (A15)

Note that M̃l and Ñl are also independent Gaussian variables

and M̃−l = M̃l , Ñ−l = −Ñl in order to obtain real values

for Xj .
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