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Abstract

In this article, we consider houses belonging to an eco-neighborhood in which inhab-
itants have the capacity to optimize dynamically the energy demand and the energy stor-
age level so as to maximize their utility. The inhabitants’ preferences are characterized by
their sensitivity toward comfort versus price, the optimal expected temperature in the house,
thermal loss and heating efficiency of their house. At his level, the eco-neighborhood man-
ager shares the resource produced by the eco-neighborhood according to two schemes: an
equal allocation between the houses and a priority based one. The problem is modeled as
a stochastic game and solved using stochastic dynamic programming. We simulate the en-
ergy consumption of the eco-neighborhood under various pricing mechanisms: flat rate, peak
and off-peak hour, blue/white/red day, peak day clearing and a dynamic update of the price
based on the consumption of the eco-neighborhood. We observe that economic incentives
for houses to store energy depend deeply on the implemented pricing mechanism and on the
homogeneity in the houses’ characteristics. Furthermore, when prices are based on the con-
sumption of the eco-neighborhood, storage appears as a compensation for the errors made by
the service provider in the prediction of the consumption of the eco-neighborhood.

Keywords: Eco-Neighborhood; Planning; Stochastic game theory; Energy storage; Pricing

1 Introduction
In the literature, the use of energy storage systems in houses has been presented as one
of the main ways of saving energy in the smart grid [23]. Research in this area focused
on designing new efficient low cost storage systems. The main economic argument that
is raised to promote the use of storage in the smart grid is the following: if storage can

∗The authors thank the three anonymous reviewers for their helpful comments and careful proofreading.
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be used to supply the house own consumption at peak electricity consumption times
then it should be possible to lower peak demand such that fewer carbon intensive and
expensive plant generators are required. As a result, from an ecological point of view,
it would contribute to reducing both energy costs and carbon emissions. Furthermore,
storage can be used to compensate for the variability of renewable energy generation.
In practice, such energy storage may take the form of electric vehicles equipped with
lithium-ion batteries or plug-in hybrid electric vehicles1, according to Voice et al. [23].
Other systems of storage based on hydrogen or methanation exist. But, they do not
seem to be the majority.

For such storage systems to be viable, consumers should have clear incentives to
store energy because they are at the heart of the system. The design of such incen-
tives requires the understanding of the consumers2’ preferences in terms of sensitivity
toward price, comfort, of the impact of the heterogeneity in the house characteristics
in terms of thermal loss and heating efficiency, of priority schemes and pricing mech-
anisms. Thermal loss and heating efficiency will be used throughout the article to
parametrize the houses. We recall briefly their definition:

• Thermal losses are heat losses, or losses of heat energy. One typical example
is the idea of thermal loss through windows in a structure or through walls, and
roof poor insulation.

• Heating efficiency is physically measured as the ratio of the heat transferred by
the heating system to the heat content of the input source used to produce energy.

The aim of this article is to evaluate, using a game theoretic approach, the economic
incentives for houses in an eco-neighborhood to store energy under two resource allo-
cation schemes and various pricing mechanisms such as flat rate, peak and off-peak
hour pricing, blue/white/red pricing, peak day clearing pricing and dynamic pricing.
The term eco-neighborhood refers to the grouping within a territory of entities that
will be generically called houses. The latter consume and produce mostly solar based
energy [25]. When integrated into the smart grid, it will be called microgrids [8].
At the lower level the houses optimize independently their energy policy by adapting
their consumption (demand and storage levels) whereas at the upper level a manager
dynamically allocates the eco-neighborhood energy production between the houses to
guarantee the viability of the ecosystem [25].

In many articles, game theory and multi-agent simulation are presented as the most
appropriate approaches to tackle the multiple challenges associated to the smart grid
operations. Saad et al. provided a complete review of the literature dealing with game
theoretic methods for the smart grid [18]. The authors highlighted the fact that robust
and smart demand side management is an essential characteristic of the smart grid sys-
tems. Indeed, to avoid service outages and blackouts which are unacceptable for the
consumers, demand smoothing is traditionally performed through the implementation

1This perspective is sometimes referred to as vehicle to grid.
2Consumers can represent indifferently car drivers and/or house inhabitants.
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of demand side management techniques which are quite classical in the US [19]. De-
mand side management techniques include demand response approaches and energy
efficiency. Demand response can be implemented in two ways: a first approach is to
use dynamic pricing strategies; a second way is to use incentive based demand response
where contracts are established between the transmission operator who manages the
network, the consumers and other agents. In this article, we focus exclusively on price
based demand response. In the literature, Maity and Rao proposed a game theoretic
framework that enables the microgrids to decide on whether to store or use energy so
as to meet the predicted demand of their consumers [11], [18]. The essence of the
framework is based on two types of games: a non-cooperative solution for the Potluck
problem which aims at reaching without communication an equilibrium where sup-
ply equals demand, and an auction game for determining the pricing in the microgrid
network [11]. Mohsenian-Rad et al. devised a demand side management scheme that
enables to schedule the shiftable home devices, while minimizing the overall energy
consumption and thus, the charges on the consumers [12]. They proposed an algorithm
which uses best response dynamics to find the Nash equilibrium while ensuring that
no user has an incentive to cheat and announce an incorrect energy schedule. Voice et
al. developed a framework to analyze agent-based micro-storage management for the
smart grid [22], [23]. They designed a storage strategy with an adaptive mechanism
based on predicted market prices for the consumers and empirically demonstrated that
the average storage profile converges towards a Nash equilibrium. At that point, peak
demands are reduced. Moreover, analyzing the social welfare at this equilibrium, they
showed that it results in reduced costs. However, their model is restrictive in the sense
that the consumers’ preferences are based exclusively on the characteristics of their
storage systems i.e., its maximum capacity, its efficiency and its running cost. Addi-
tionally, the consumers’ utility coincides with budget minimization exclusively.

The main limitations of these articles are that few of them take into account the
microgrid intrinsic characteristics and that all of them seem to ignore the consumers’
preferences in terms of comfort versus budget, optimal temperature in the house, etc.
Additionally, the uncertainty resulting from the generation of energy issued from re-
newable sources is modeled using density functions which shapes and parameters are
adjusted a priory [16]. This last assumption seems rather unrealistic since it does not
take into account the erratic nature of the renewable sources which rely on uncontro-
lable exogenous events. In [8], [9], we studied the double Stackelberg game which
occurs between producers using either renewable or non renewable energies, the ser-
vice providers and the aggregated consumers. The renewable energy production and
the microgrid demand were represented by individual sequences, which involved no
stochastic assumptions on the underlying processes.

Compared with [8], [9], we focus on a finer scale in this article, since we consider
an individual microgrid and model the inter-relations between the houses composing
the microgrid and the eco-neighborhood manager. There are two ways to fix the service
provider’s price per energy unit: either it is determined exogenously as the result of a
predefinite pattern based on day/hour characteristics, or it is obtained as the output of
the double Stackeberg game studied in [8], [9] once the consumers’ demand has been
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aggregated in the microgrid.

The originality of this article lies in:

• The fact that we concentrate no more on load but on the comfort, which depends
in turn, on the heat and on the internal temperature in the house. The simul-
taneous production of two different energies such as electricity and heat in the
same process is called cogeneration. Heat storage measured through the comfort
in the house, allows the monitoring of electric charge which produces electric-
ity for specific needs. This choice of modeling can be justified by the fact that
it is more easily measurable, taking a consumer’s point of view, and that it is
considered as the first criterion for the inhabitants to evaluate the environmental
quality.

• The incorporation of the consumers’ preferences through their profiles which
contain the optimal temperature in their house, the house characteristics such as
thermal loss and heating efficiency and the multi-criteria utility which takes into
account the balance between the budget dedicated to heating and the comfort
perceived by the inhabitants of the house.

• The introduction of a stochastic process to model the uncertainty associated to
the renewable energy integration in the grid.

• The comparison of the economic incentives for the houses, to store energy, under
two resource allocation schemes when various pricing mechanisms are used.

The article is organized as follows. In Section 2, we describe the model and the
interplay between the agents. In Section 3, the two-level game is solved analytically
without storage capacity. In Section 4, we consider that the houses have the capacity
to store energy and we introduce uncertainty on the resource production from the eco-
neighborhood through a Markov chain. The problem is then modeled as a finite horizon
stochastic game and algorithms are proposed under two resource allocation schemes.
Finally, simulations are performed in Section 5 to determine the impact of pricing
mechanisms on the consumers’ incentives to store energy in the eco-neighborhood.

2 The model
We consider H ∈ N∗ houses belonging to the same eco-neighborhood managed by an
eco-neighborhood manager E. E produces energy by himself using solar panels, wind
turbines, etc. The houses inside the eco-neighborhood need to gather enough energy
to maximize their comfort while minimizing the budget dedicated to this provision.
The involved players share hierarchical relations. We describe the economic relations
between them:

• The service provider is in fact an energy provider. Both terms will be used
interchangeably throughout the article. It collects energy from various energy
sources (nuclear, coal, fuel, hydraulic, geothermal, solar, windpower, etc.) and
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distributes it to final users who can be individual consumers, firms, eco-neighbor-
hoods, etc. Each house contracts only with one service provider and does not
churn from one service provider to another during all the period of our study.
This assumption holds well due to the local geographic aspect of the eco-neigh-
borhoods. In this sense, the set made of provider and attached eco-neighborhood
can be seen as an individual microgrid, as defined in [17].

• The eco-neighborhood manager E allocates the energy resource that he has col-
lected between the eco-neighborhood houses. In case of negative microgrid en-
ergy balance, he will also sell the missing quantities of energy to each house at a
price p(t) fixed by the service provider.

• In case of negative microgrid energy balance, the eco-neighborhood provider
E reattributes the revenue perceived for the missing quantities of energy to the
service provider. To determine his unit price p(t), the energy provider can choose
between various pricing schemes that will be detailed in Section 5: flat rate, peak
and off-peak hour, blue/white/red day, peak day clearing and dynamic pricing.

• Each of the H individual houses receives energy and has the possibility to buy
additional quantities from E. They can also store energy in batteries.

It is unrealistic to assume that there might be multiple eco-neighborhood managers
competing at the eco-neighborhood level because in practice, it would require the end
user to own a specific box to monitor energy consumption for each eco-neighborhood
manager unless technological progress is made enabling the fusion of the consumptions
on a single box. An additional problem is that this excess of technology might generate
lassitude at the end user level. On the contrary, it is realistic to introduce competition
between the energy producers delivering energy to the providers. The problem has
been modeled as a market place in [8], [9] and solved using learning game theory.

It might be possible to model the interactions between the eco-neighborhood man-
ager E and the houses through a market place where the houses make independent
bids to get energy access. Various forms of auctions or more generally mechanisms
[5], [13], can be envisaged. The problem is that such an approach would require that
each house be equipped with a sophisticated communication box and would inject large
data flows in the smart grid. This last aspect would increase further the complexity of
the communication layer of the smart grid which is already extremely complex due to
the hierarchical and highly decentralized structure of the grid. As a result, it is more re-
alistic to assume that the eco-neighborhood manager will act as a supervisor, planning
the eco-neighborhood consumption and allocating its resource between the houses.

A house h will be characterized by its profile:
(
θ0
h, κh, κ̄h

)
where θ0

h is the op-
timal temperature, κh is the thermal loss and κ̄h, the heating efficiency in house h,
for any h = 1, ...,H . The aim of this article, schematized in Figure 1, is to design
a planning algorithm to allocate the resource produced by the eco-neighborhood be-
tween the houses depending on their profiles and on exogenous weather parameters
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so as to maximize the long-term expected discounted weighted social welfare of the
eco-neighborhood that will be introduced in Subsection 2.1.

Figure 1: Planning the eco-neighborhood energy consumption.

2.1 The agents
In this subsection, we describe each agent’s role, their interplay and give the formal
expression of their utility.

House h We denote as Qh(t) the stock level of house h at time period t and as
∆qh(t) the variation of this stock between time periods t − 1 and t. The maximum
capacity of the battery is fixed at Qmax ∈ [0; 1]. Therefore, Qh(t) belongs to the
interval [0;Qmax]. It is straightforward to define the stock level at time period t as a
function of the stock level at time period t − 1 and of its variation: Qh(t) = Qh(t −
1) + ∆qh(t) with the initialization Qh(0) = 0. Constraints on the stock variation are:

−Qh(t− 1)︸ ︷︷ ︸
maximum destocking

≤ ∆qh(t) ≤ Qmax −Qh(t− 1)︸ ︷︷ ︸
maximum stocking capacity

(1)

For any x ∈ R, we use the notation: (x)+ = max{x; 0}

At each time period t, house h determines its energy demand xh(t) ∈ [0; 1]. The
energy demand of house h can be satisfied:

(i) By drawing in the available stock Qh(t− 1)
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(ii) By using the resource allocated by the eco-neighborhood manager Rh(t)

(iii) By buying the missing quantity
(
xh(t)−Rh(t) + ∆qh(t)

)
+

from the eco-

neighborhood manager E who reattributes the perceived revenue to the service
provider.

The utility of house h is:

πh(t) = λhCh

(
θh(t)

)
− p(t)

(
xh(t)−Rh(t) + ∆qh(t)

)
+

where θh(t) is the temperature in house h and λh ∈ R is a parameter modeling the
importance of the price with respect to the comfort level. A high value λh (resp. a
small value λh) means that house h is more (resp. less) sensitive to comfort than
to price. The comfort function of house h, Ch(.) ∈ C2(R) is a continuous, twice
differentiable function over R which admits continuous differentiates. It is supposed
to be of Gaussian type centered in the optimal temperature θ0

h ∈ R+ which can be
customized for each house h and normalized with a standard deviation of 13:

Ch
(
θh(t)

)
=

1√
2π

exp
(
− (θh(t)− θ0

h)2

2

)
The Gaussian assumption enables us to take into account threshold effects in the end
user perception: comfort increases until a threshold is reached and then it decreases
symmetrically. According to some studies performed at the end user level, the temper-
ature is the first measure of comfort used by the end user. However, there exist other
measures such as the quality of life, the minimization of the carbon footprint, the fact
that the energy used thoughout the eco-neighborhood has been produced through green
sources, etc. Such criteria have been omitted because they appear as secondary in a first
approach.

For each house h, parameters λh, θ0
h characterize the house perception of comfort

and are not known a priori by the other houses. Identically, the home characteristics
measured by its thermal loss and heating efficiency, are not known a priori by the other
houses. Therefore, this is a game with incomplete information [13].

In Figure 2 (a), we have pictured the comfort function as a Gaussian density func-
tion centered around the optimal temperature of θ0

h = 210C and of standard deviation
1. The standard deviation being normalized, it will be necessary to change the tem-
perature scale by dividing all the possible values by 100C. As already mentioned in
footnote, this change of scale will enable us to widen the range of values where the
comfort function reaches high values around the optimal temperature.

The calibration of the comfort sensitivity parameter is not easy because it is used
to adjust the comfort value and the budget dedicated to heating on a common scale

3The normalization of the standard deviation is introduced to simplify the choice of the parameters. To
obtain realistic values for the comfort function and for the game outputs that will be defined in the next
sections, it will be necessary to rescale the temperature range of values.
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so as to evaluate their respective influence in the house’s utility. In Figure 2 (b), we
have represented house h’s utility πh(.) as a function of comfort sensitivity parameter
λh and price p(.) while the temperature in the house is fixed at its optimal value i.e.,
θh(.) = θ0

h and there is one missing unit of energy i.e., xh(.) − Rh(.) + ∆qh(.) = 1.
This setting coincides with a worst case because house h needs to heat at its maximum
to guarantee the reaching of the optimal temperature with no storage to compensate for
its effort. In simulation experiments that will be described in Section 5, the price per
energy unit will be supposed smaller than 60. As a result, according to Figure 2 (b), it
will be necessary to fix λh greater than 150 to obtain a non-negative utility for house
h.

(a)

(b)

Figure 2: Calibration of the model parameters θ0h, λh. In (a), the house h’s comfort function
is pictured as a gaussian density function centered around the optimal temperature for the house
θ0h = 210C. In (b), house h’s utility is represented as a function of comfort sensitivity parameter
and price.

The eco-neighborhood manager E The eco-neighborhood manager E produces
an energy resource R(t) ∈ [0; 1] at time period t. He allocates it between the houses
in such a way that: R(t) =

∑
h=1,...,H

Rh(t) and 0 ≤ Rh(t) ≤ R(t),∀h = 1, ...,H.

As a non-lucrative agent, his utility is defined as the weigthed social welfare criterion:
πE(t) =

∑
h=1,...,H

αhπh(t). The coefficients αh, ∀h = 1, ...,H characterize the pri-

ority level between the houses. They are defined a priori and satisfy the following
normalization constraints:

∑
h=1,...,H

αh = 1 and αh ≥ 0,∀h = 1, ...,H. In the rest of

the article, we will consider the two following schemes:

• Scheme 1: All the houses have the same priority coefficient 1
H . This corresponds

to a fair allocation of the resource between the houses.
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• Scheme 2: Each house has a different priority level. Without loss of generality,
we assume that the priority coefficients satisfy: h < h′ ⇒ αh ≥ αh′ , ∀h, h′ =
1, ...,H . A house with a larger priority coefficient will be served before a house
with a smaller priority coefficient. In case of a tie, the house with the smaller
index has priority. As a result the following priority allocation scheme holds:
(priority of house 1) > (priority of house 2) > ... > (priority of house H).

2.2 Dynamic evolution of house h temperature
We denote as θe(t) and θh(t), respectively, the exterior temperature and the tempera-
ture of house h, at time period t. We assume that they both belong to the interval [0; Θ]
where Θ < +∞ is a finite upper bound for the temperature fixed a priori. It can be
associated with the maximum temperature of the heating system. For the sake of sim-
plicity we let: ∆θh(t) = θh(t)− θe(t) be the gradient of temperature between house h
temperature and the exterior temperature at time period t. We suppose that it remains
non-negative at any time period t in [0;T ]. Since we do not consider separately each
room in the house, the temperature corresponds to the averaged temperature over each
room of the house and its evolution takes into account thermal losses. These thermal
losses depend on two facts: the house insulation of its walls and roof, and the efficiency
of the heating system which distributes heat throughout the house [7]. Therefore, we
introduce coefficients κh ∈]0; 1] and κ̄h ∈]0; 1] which represent, respectively, the ther-
mal loss and the heating efficiency of house h. House h energy demand xh(t) can then
be interpreted as the proportion of rooms that the owner decides to heat. The consider-
ation of the extreme cases regarding the house heating system, enables us to associate
physical interpretations to the values of parameters κh, κ̄h:

• If house h is not heated then xh(t) = 0. This implies that θh(t) = θh(t − 1) +(
θe(t − 1) − θh(t − 1)

)
κh. In this case, we notice that θh(t) = θh(t − 1) if,

and only if, κh = 0. θh(t) = θe(t − 1) if, and only if, κh = 1. As a result, the
more κh approaches 1 (resp. 0), the poorer (resp. the better) is its wall and roof
insulation.

• If house h is heated at its maximum then xh(t) = 1. This implies that θh(t) =

θh(t− 1) +
(

Θ− θh(t− 1)
)
κ̄h. In this case, we notice that θh(t) = θh(t− 1)

if, and only if, κ̄h = 0. θh(t) = Θ if, and only if, κ̄h = 1. As a result, the more
κ̄h approaches 1 (resp. 0), the smaller (resp. the higher) are the losses from the
heating system.

Merging the extreme case outputs, we determine house h temperature dynamic evolu-
tion by the recursive equation detailed below:

θh(t) = θh(t− 1) +
(
θe(t− 1)− θh(t− 1)

)(
1− xh(t)

)
κh +

(
Θ

− θh(t− 1)
)
xh(t)κ̄h (2)
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We set: θh(0) = θ, θ ∈ [0; Θ]. We rewrite Equation (2), factorizing it by xh(t):

θh(t) =
(
θh(t− 1)−∆θh(t− 1)κh

)
︸ ︷︷ ︸

≥0

+
(

∆θh(t− 1)κh + (Θ− θh(t− 1))κ̄h

)
xh(t)

(3)

Lemma 1. If κ̄h

κh
> 1, the temperature in house h increases linearly in the energy

demand, xh(t).

Proof of Lemma 1. According to Equation (3), the temperature in house h increases
linearly according to the energy demand xh(t) if, and only if, the leading coefficient
is positive. Formally, we should have: ∆θh(t − 1)κh +

(
Θ − θh(t − 1)

)
κ̄h > 0 ⇔

− ∆θh(t−1)
Θ−θh(t−1) < κ̄h

κh
. Two cases should be considered to determine under which as-

sumption the above inequality holds. First, if ∆θh(t − 1) ≥ 0 then since κ̄h

κh
> 0, the

inequality is always true. Second, if ∆θh(t− 1) < 0 then it is sufficient to assume that
κ̄h

κh
> 1 to guarantee that the inequality holds.

To guarantee that Lemma 1 holds, we will suppose that κ̄h

κh
> 1 throughout the

article.

Judging by the results derived from Equation (2) physical interpretations and by
Lemma 1, we have pictured in colors the area of definition for parameters κh, κ̄h of
house h, in Figure 3. Area 1 corresponds to a bad heating efficiency and a good insu-
lation of the house. In Area 2, the house’s insulation is bad but its heating efficiency is
high. Finally, in Area 3, both the insulation and the heating efficiency are good.

Figure 3: Areas of definition for house h parameters κh, κ̄h.

In Figure 4, we have represented the quantity of energy xh(.), necessary to reach
the optimal temperature in the house when the exterior temperature is at its minimum
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i.e., θh(.) = θ0
h = 210C and θe(.) = 00C, as a function of thermal loss and heating

efficiency parameters. As expected, a house with small thermal losses and high heating
efficiency will require little heat to reach the optimal temperature. But this quantity
increases as thermal loss increases and to lesser extent, as heating efficiency decreases.
Furthermore, the impact of thermal loss is higher than the impact of heating efficiency
on the definition of the quantity of energy necessary to reach the optimal temperature.

Figure 4: Quantity of energy necessary to reach the house’s optimal temperature expressed
as a function of thermal loss and heating efficiency when the exterior temperature reaches its
minimum.

3 No storage
In this section, we assume that: ∆qh(t) = 0,∀h = 1, ...,H,∀t ∈ [0;T ]. We describe
the game steps at time period t. It takes the form of a Stackelberg game where the
eco-neighborhood manager E is the leader and the H houses are the followers.

(1) Eco-neighborhood manager E allocates his resource R(t) between the H
houses so as to maximize his utility πE(t).

(2) Each house h determines independently and simultaneously its energy de-
mand xh(t) so as to maximize its utility πh(t),∀h = 1, ...,H .

The game is then repeated over a finite horizon [0;T ] such that T < +∞. The game
can be solved analytically proceeding by backward induction. This approach is quite
classical in Stackelberg settings [13].
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Proposition 2. At any time period t and for any house h = 1, ...,H , there exists
a unique equilibrium in (x∗h(t), R∗h(t)) for the Stackelberg game. Furthermore, the
equilibrium is efficient under priority allocation scheme.

Proof of Proposition 2. We start by Step (2) of the Stackelberg game described
above i.e., the optimization of the energy demand of house h. We consider that the
resource allocation rule is fixed. Two cases should be distinguished depending on the
sign of xh(t)−Rh(t).

Case (i): xh(t) ≤ Rh(t)

Under this assumption, the total energy demand of house h is entirely satisfied
by drawing in the resource allocated by the eco-neighborhood manager E. In this
case

(
xh(t) − Rh(t)

)
+

= 0 since xh(t) − Rh(t) ≤ 0. House h utility simplifies

to: πh(t) = λhCh
(
θh(t)

)
. Differentiating πh(t) with respect to xh(t), we obtain:

∂πh(t)
∂xh(t) =

λh√
2π

exp
(
− (θh(t)− θ0

h)2

2

)
︸ ︷︷ ︸

>0

(
θ0
h − θh(t)

)
∂θh(t)
∂xh(t) .

Considering the right part of the equation, we have: ∂θh(t)
∂xh(t) = (θh(t− 1)− θe(t−

1))κh + (Θ− θh(t− 1))κ̄h > 0. Then, according to Lemma 1:

θh(t− 1)− θe(t− 1) >
κ̄h
κh

(
θh(t− 1)−Θ

)
⇔ κh

(
θh(t− 1)− θe(t− 1)

)
> κ̄h

(
θh(t− 1)−Θ

)
This implies that: ∂θh(t)

∂xh(t) = κh

(
θh(t − 1) − θe(t − 1)

)
+
(

Θ − θh(t − 1)
)
κ̄h >

κ̄h

(
θh(t− 1)−Θ

)
+
(

Θ− θh(t− 1)
)
κ̄h︸ ︷︷ ︸

=0

.

Therefore:

∂πh(t)

∂xh(t)
= 0 ⇔ θh(t) = θ0

h

⇔ xh(t) =
θ0
h − θh(t− 1) + ∆θh(t− 1)κh

∆θh(t− 1)κh +
(

Θ− θh(t− 1)
)
κ̄h

Case (ii): xh(t) > Rh(t)

Under this assumption, the eco-neighborhood manager E cannot satisfy the entire
demand of house h. This latter will need to buy the lacking energy to the service
provider who provides energy to the microgrid. House h utility then takes the form:
πh(t) = λhCh

(
θh(t)

)
− p(t)

(
xh(t) − Rh(t)

)
. Differentiating πh(t) with respect to
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xh(t), the equation is equivalent to the derivative equals 0:(
θ0
h − θh(t)

) ∂θh(t)

∂xh(t)︸ ︷︷ ︸
>0

=
p(t)
√

2π

λh
exp

( (θh(t)− θ0
h)2

2

)
(4)

According to Case (i) studied above, ∂θh(t)
∂xh(t) > 0. The left part of Equation (4) is

linearly decreasing in θh(t) and vanishes in θh(t) = θ0
h. Computing the differentiate

of the right part of Equation (4) with respect to θh(t), we obtain that it is decreasing
until θh(t) = θ0

h and increasing for θh(t) > θ0
h. Furthermore, the right part is positive

in θ0
h where it equals p(t)

√
2π

λh
. Judging by both function shapes, we infer that the game

admits a unique equilibrium in x∗h(t) if, and only if:

θ0
h

∂θh(t)

∂xh(t)
|θh(t)=0 ≥

p(t)
√

2π

λh
exp

(θ0 2
h

2

)
(5)

Now, we will assume that there exists reals r, r′ ∈]0; 1] such that θ0
h = rΘ and that the

maximum exterior temperature can be written as: r′Θ. These points can be justified
by the fact that the optimal temperature in house h is necessarily smaller than the max-
imum temperature that can be reached by the heating system and by the fact that the
maximum temperature of the heating system should be larger than the maximum exte-
rior temperature since otherwise our model would be inapplicable to countries where
the temperature remains low. Additionally, we make the assumption that the unit en-
ergy price p(t), varies in interval [0; pM ] where pM is the price upper bound. This is
as if the State or an unbiased regulator, fixed a price cap to avoid situations of abuse
of monopoly or tacit collusion between the service providers which might generate
an artificially high energy price. Such an assumption is quite classical in industrial
organization economics. Then, choosing the game parameters so that:

r′ ≤ 1− pM
√

2π

λhrΘ2κh
exp

(
(

1√
2
rΘ)2

)
(6)

guarantees that Inequality (5) holds and a fortiori, that the game admits a unique equi-
librium in x∗h(t).

The energy demand being optimized, we skip to Step (1) of the Stackelberg game
i.e., the optimization of the resource allocation. As explained at the end of Section 2,
we consider two schemes defining the allocation rule: either the allocation is fair or a
priority allocation scheme holds.

Under a fair scheme, the resource available in the eco-neighborhood is allocated so
that: R∗h(t) = R(t)

H ,∀h = 1, ...,H.

Under a priority allocation scheme, the rule becomes:

• For house 1

R∗1(t) =

{
x∗1(t) if x∗1(t) ≤ R(t),
R(t) otherwise.
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• For house h = 2, ...,H

R∗h(t) =


x∗h(t) if x∗h(t) ≤ R(t)−

h−1∑
l=1

R∗l (t),

R(t)−
h−1∑
l=1

R∗l (t) otherwise.

By definition, the Pareto frontier of the game is the set of points such that once one
of them is reached, no agent’s utility can be increased without decreasing at least one
agent’s utility [13]. In the game without storage, the Pareto frontier containing the set
of efficient equilibria is defined by the following equations: Rh(t) ≤ xh(t), ∀h =

1, ...,H and
∑

h=1,...,H

Rh(t) = R(t). As a result, the equilibrium obtained under a

priority allocation scheme is efficient whereas it is not in general under a fair allocation
scheme. Of course the priority allocation scheme is not the unique resource allocation
scheme that guarantees the reaching of a Pareto optimum.

4 Storage under stochastic environment
Most of the energy produced autonomously by the eco-neighborhood comes from solar
panels deployed on the roofs and on the fronts of the eco-neigborhood houses. Empir-
ical observations on real data and physical relations which describe the dependence
on temperature of photovoltaic module performance [20] lead us to assume that there
exists a bijective relation between the energy produced by the eco-neighborhood and
the exterior temperature i.e., there exists a bijective function ϕ(.) from [0; Θ] to [0; 1]
such that:

R(t) = ϕ
(
θe(t)

)
4.1 Resource uncertainty model
In the literature, many articles model the weather evolution as a stationary finite dis-
crete Markov chain [4] or use Hidden Markov Models in case where states cannot
be directly observed but information about the underlying hidden state sequence is
available [6]. The direct relationship between weather and energy production justifies
the introduction of a stationary finite discrete Markov chain to model the uncertainty
associated with the production of energy in the eco-neighborhood. Depending on out-
side factors such as weather conditions, we allow to have K ∈ N∗ realizations of the
produced energy. We define pij as the probability that the energy produced by the
eco-neighborhood will be in state j in the next time period if currently it is in state i.
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4.2 Problem formulation
In this subsection, we detail the stochastic optimization problems that the houses have
to face with, under a fair allocation of the resource in Subsection 4.2.1 and with a
priority mechanism in Subsection 4.2.2.

4.2.1 Allocation scheme 1: The H houses have equal priority

We define a generic state of the system as: sH = (R, θ1, Q1, θ2, Q2, ..., θH , QH) ∈
{1, 2, ...,K}×([0; Θ]× [0;Qmax])H .We let S = {1, 2, ...,K}×([0; Θ]× [0;Qmax])H

be the set of all possible states sH . At any time period t the system being in state sH ,
we want to choose an action for each house h = 1, ...,H from the set of allowable
actions in state sH , AsH . Actions are the energy demand and the variation of the
storage for each of theH houses in each stage with different realizations of the resource
produced by the eco-neighborhood. We denote as: ah(t) =

(
xh(t),∆qh(t)

)
the action

chosen by house h at time period t. When in state sH , the set of admissible actions
obtained after reordering Equation (2) and considering the storage constraints defined
in Equation (1) is denoted: AsH .

In our optimization problem, each house hwants simultaneously and independently
to maximize the expected discounted sum of its utilities over time interval [0;T ]. We
introduce δ ∈]0; 1] as the discount factor of our stochastic optimization problem [15].
The more δ approaches 1, the more house h is sensitive to the future or has a long-term
vision. Reciprocally, the more δ approaches 0, the shorter is the vision of house h. For
any house h = 1, ...,H , the optimization problem can be written as:

max
ah∈AsH

E
[ T∑
t=0

δtπh(t)|sH ,ah
]

under an equal allocation of the resource i.e.: R∗h(t) = R(t)
H , ∀t = 0, 1, ..., T.

4.2.2 Allocation scheme 2: (priority of house 1)>(priority of house 2)>...>(priority
of house H)

This is a sequential optimization problem. The steps are the following.

Step 1: In this step, we assume that there is only a single house in the eco-
neighborhood and that is house 1, which has the highest priority level. The state of
the optimization problem is defined as s1 = (R, θ1, Q1) ∈ S1 = {1, 2, ...,K} ×
[0; Θ] × [0;Qmax], where R contains the energy produced by the eco-neighborhood,
θ1 is the temperature and Q1 the storage level in house 1. If we decide to choose an
action a1 = (x1,∆q1) ∈ As1 at time period t, house 1 receives π1(t)|s1,a1 as utility.
We optimize the following problem:

max
a1∈As1

E
[ T∑
t=0

δtπ1(t)|s1,a1
]
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The allocation rule at time period t is:

R∗1(t) =

{
x∗1(t) + ∆q∗1(t) if x∗1(t) + ∆q∗1(t) ≤ R(t),

R(t) otherwise.

Step 2: In this step, we consider house 2 and house 1. House 2 has the second high-
est priority level. The state of the optimization problem is s2 = (R, θ1, Q1, θ2, Q2) ∈
S2 = {1, 2, ...,K} × ([0; Θ] × [0;Qmax])2, where θ2 is the temperature and Q2 the
storage level in house 2. At any stage t, we choose an action a2 = (x2,∆q2) ∈ As2 so
as to optimize the following problem:

max
a2∈As2

E
[ T∑
t=0

δtπ2(t)|s2,a2
]

We describe the allocation rule at time period t under priority scheme 2, for both
houses. For house 1, we have:

R∗1(t) =

{
x∗1(t) + ∆q∗1(t) if x∗1(t) + ∆q∗1(t) ≤ R(t),

R(t) otherwise.

And, for house 2, we have:

R∗2(t) =

{
x∗2(t) + ∆q∗2(t) if x∗2(t) + ∆q∗2(t) ≤ R(t)−R∗1(t),
R(t)−R∗1(t) otherwise.

Steps 3 to H: We keep following the same procedure until we have solved for the
H houses. The state of the optimization problem is sH = (R, θ1, Q1, ..., θH , QH) ∈
S = {1, 2, ...,K} × ([0; Θ] × [0;Qmax])H , where θh is the temperature and Qh the
storage level in any house h = 1, ...,H. At any stage t, the H-th house which has
the lowest priority, chooses an action aH = (xH ,∆qH) ∈ AsH so as to optimize the
following problem:

max
aH∈AsH

E
[ T∑
t=0

δtπH(t)|sH ,aH
]

We describe the allocation rule at time period t under priority scheme 2, for the H
houses. For house 1, we have:

R∗1(t) =

{
x∗1(t) + ∆q∗1(t) if x∗1(t) + ∆q∗1(t) ≤ R(t),

R(t) otherwise.

And, for any house h = 2, ...,H , we have:

R∗h(t) =


x∗h(t) + ∆q∗h(t) if x∗h(t) + ∆q∗h(t) ≤ R(t)−

h−1∑
l=1

R∗l (t),

R(t)−
h−1∑
l=1

R∗l (t) otherwise.
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4.3 Markov decision processes
There exist multiple ways to find or at least, to approximate, the optimal strategy i.e.,
the optimal sequence of actions, which maximizes the agents’ utilities. A first pos-
sibility is to learn it, by making the agents interact in their environment and adapt
dynamically their actions while learning the strategy of the other agents. Many al-
gorithms have been developed in this direction using adaptive dynamic programming
[14], Q-learning, and more generally reinforcement learning [21], [24] and artifical
intelligence techniques. A second class of methods consists in planning off-line the
optimal sequence of actions to play for each possible initial state [3], [15]. The (learnt
or planned) optimal strategies will coincide with the equilibria of the stochastic game.

In this article, we choose to focus on the second category of methods and to solve
the sequential stochastic optimization problem introduced in Subsection 4.2. We as-
sociate a T -horizon Markov Decision Process (MDP) for each house h. The dynamic
evolution of this process is governed by a control strategy which is optimized simulta-
neously and independently by each house. House h T -horizon control strategy will
be denoted: āh =

(
āh(0), āh(1), ..., āh(T )

)
. At any time period t = 0, 1, ..., T ,

āh(t) =
(
āh(t, sH)

)
sH∈S

is a vector containing the optimal action to choose in state

sH ∈ S. āh(t) belongs to the set of stationary strategies and āh to the set of Markov
strategies of the T -horizon MDP: FTM .

The T -stage value of the control strategy āh is: Eāh
[ T∑
t=0

δtπh(t)|sH(0)=sH

]
for

every initial state sH ∈ S, where Eāh [.] is the expectation taken with respect to house
h control strategy: āh. The optimization problem for house h becomes:

max
āh∈FT

M

(
Eāh

[ T∑
t=0

δtπh(t)|sH(0)=sH ]
)
sH∈S

House h transition probabilities Let us consider two states: sH = (i, θ1, Q1, ...,
θH , QH) ∈ S and s′H = (i′, θ′1, Q

′
1, ..., θ

′
H , Q

′
H) ∈ S. Equation (2) enables us to

define two applications: ψ : (i, θh, ah) 7→ θ′h and ψ̃ : (i, θh, θ
′
h) 7→ xh which de-

fine in a formal way the temperature evolution and the restriction on the action to be
chosen depending on the state transition, respectively. Additionally, each house h has
beliefs on the actions of the other houses in the eco-neighborhood. These beliefs are
defined a priori in the game. Indeed, the choice of action being simultaneous, house
h does not observe the other houses’ actions. For any house l = 1, ...,H, l 6= h in
the eco-neighborhood, house h belief regarding the action that house l might choose
is represented by a |A|-dimensional vector: ρhl which is a probability distribution de-
fined over the action set A = ∪sH∈SAsH . Using the independence assumption on the
houses’ choices and Bayes formula, we derive house h transition probability from state
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sH to state s′H conditionally on action ah:

ph
(
s′H |sH , ah

)
= 1{

ψ(i,θh,ah)=θ′h

}pii′ ∏
l=1,...,H,l 6=h

∑
al∈{A|xl=ψ̃(i,θl,θ′l)}

ρhl(al)

Then for any house h = 1, ...,H , the transition probabilities conditionally on action
ah ∈ A are stored in a matrix: Ph,ah =

(
ph(s′H |sH , ah)

)
sH ,s′H∈S

.

The algorithm The generic notation s is used to refer to a state because depending
on the considered allocation scheme, it can be 2, 3, ..., H , or H + 1-dimensional.
The principle of optimality leads us to solve the problem using backward recursion of
dynamic programming [3], [15]:

For each t = 1, 2, ..., T , we calculate for each state s ∈ S the optimal action to
choose as the solution of the optimization problem:

ā∗h(T − t, s) = arg max
ah∈A

{
πh(.)|s,ah +

∑
s′∈S

ph(s′|s, ah)V ht−1(s′)
}

For any house h = 1, ...,H , we let: V ht (s), ∀s ∈ S be the value of the game for
house h in any state s at time period t. It is updated at each time period t:

V ht (s) = πh(.)|s,ā∗h(T−t,s) +
∑
s′∈S

ph
(
s′|s, ā∗h(T − t, s)

)
V ht−1(s′)

The algorithm of backward recursion of dynamic programming for house h = 1, ...,H
will be called Algorithm BR. We detail below the algorithm that will be used in Sec-
tion 5 to simulate the system evolution under the allocation scheme 2, described in
Subsection 4.2.2.

Simulation of the eco-neighborhood energy consumption under scheme 2

(1) Recursion.

• HOUSE 1. For any a1, house 1 computes the conditional probability transition matrix
P 1,a1 taking into account only house 1. Algorithm BR is run and gives the optimal
action to choose in each state s1 = (R, θ1, Q1) at any time period. As the output we
obtain the optimal control strategy for house 1: ā∗1.

• HOUSE 2 TO H . For any ah, house h = 2, ..., H computes the conditional probability
transition matrix Ph,ah taking into account only houses 1, ..., h. Algorithm BR is run
and gives the optimal action to choose in each state sh = (R, θ1, Q1, ..., θh, Qh) at any
time period. As the output we obtain the optimal control strategy for house h: ā∗h.

(2) Simulation of the eco-neighborhood energy consumption.

• TIME PERIOD 1 TO T . Given the system initial state sH(0) ∈ S, from time period 1 to
T −1, the system is in state sH(t) ∈ S. The optimal action to choose for each house h =

1, ..., H is contained in ā∗h
(
t, sH(t)

)
. The energy produced by the eco-neighborhood

evolves according to the Markov chain having transition matrix (pi,j)i,j=1,...,K , generat-
ing R(t + 1). It is allocated between the houses according to the priority rule described
in 4.2.2.
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• The system ends in state sH(T ) ∈ S.

On the contrary, under the allocation scheme 1 described in Subsection 4.2.1, the
resource allocation mechanism is known at the beginning of each time period, by every
house. As a result, under the allocation scheme 1, the algorithm begins with an ini-
titialization step where each house h = 1, ...,H computes its conditional probability
transition matrix taking into account all the other houses. Then, in the recursion step,
each house runs simultaneously and independently Algorithm BR since there is no
priority rule. The simulation of the system evolution remains unchanged except that
each house h = 1, ...,H receives an equal share: R(t)

H of the resource.

5 Economic guidelines for the operations of the eco-
neighborhood

The aim of this section is to determine whether houses in the eco-neighborhood, have
economic incentives to store energy under various pricing mechanisms and hetero-
geneity in their characteristics. To perform this study, we start by simulating the eco-
neighborhood consumption over a finite time horizon using the algorithm introduced
in Subsection 4.3 and then, we plot the resulting cumulative discounted utilities of the
houses assuming that they have either storage capacity or no storage capacity. The
derived results will enable us to determine whether storage is a natural issue for the
eco-neighborhood, which means that it should be worth for politics investing in the de-
velopment of even more efficient storage systems or, on the contrary, elaborating more
sophisticated economic incentives in the form of contracts or pricing mechanisms, to
promote it.

5.1 Comparisons of the agents’ incentives to store energy under
various pricing mechanisms

In this subsection, we consider two houses in the eco-neighborhood i.e., H = 2 and
K = 11 outcomes for the resource. Both the energy demand and the storage belong to
the interval [0; 1] discretized according to a 0.2 step-size. We choose Θ = 40oC and
3oC as discretization step for the temperature interval. The resource generating tran-
sition matrix is defined so that: pii = 0.8

11 + 0.2 and pii′ = 0.8
11 ,∀i

′ 6= i. The comfort
sensitivity parameters are chosen so that: λ1 = 150, λ2 = 200 i.e., house 2 is more
sensitive to its comfort than house 1. The optimal temperature for each house is set to
the most common values: θ0

1 = 21oC and θ0
2 = 19oC. The discount factor is fixed

at: δ = 0.7. Beliefs are uniform for house 2. This assumption is required when the
planning algorithm described in Subsection 4.3 is run and house 2 needs to compute its
conditional probability transition matrix. In this subsection, the houses’ thermal loss
and heating efficiency parameters are supposed homogeneous within the houses i.e.,
κh = 0.3, κ̄h = 0.7,∀h = 1, 2. In this subsection, we compare the agents’ cumu-
lative discounted utilities over a finite T horizon, under the four pricing mechanisms
proposed by the French electricity company [26], adapted to our study. The horizon of
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the game is fixed at: T = 100. It is supposed to coincide with the spanning of 50 days,
the houses having the opportunity to adapt their energy demand and stock level twice
a day i.e., at 8 a.m. and at 11 p.m.

5.1.1 Flat rate

In this pricing scheme, the price is constant: p(t) = 12.49,∀t = 0, 1, ..., T. This value
is fixed by the French electricity company as one option among its publicly available
tariff schedules [26].

(a) (b)

Figure 5: Agents’ cumulative discounted utilities under scheme 1 (a) and under scheme 2 (b)
with flat rate pricing.

We have represented the agents’ cumulative discounted utilities under an equal al-
location of the resource in Figure 5 (a) and under the priority allocation scheme in
Figure 5 (b) while the price is fixed according to a flat rate. In all the simulations,
the cumulative discounted utilities are plotted in green when the houses have the op-
portunity to store energy and in red when they lack this opportunity. We observe that
the agents are indifferent between both storage strategy under an equal allocation and
weakly prefer not to store over to store under a priority based allocation. Therefore,
under flat rate pricing, it is reasonable to state that the agents are indifferent between
both storage strategies.

5.1.2 Peak and off-peak hour pricing

In this pricing scheme, the price can take two values depending on the hour of the day:
p(t) = 13.53 in peak hours and p(t) = 9.26 in off-peak hours. The peak hour period
runs from 6 a.m. to 10 p.m. In the remaining hours, the price is fixed at the off-peak
hour tarif. The principle of this pricing scheme is pictured in Figure 6.
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Figure 6: Peak and off-peak hour pricing principle.

We have represented the agents’ cumulative discounted utilities under equal allo-
cation in Figure 7 (a) and under a priority allocation in Figure 7 (b). We observe that
under both allocation schemes, the capacity to store energy enables the agents to in-
crease their discounted cumulative utilities compared to the case without storage.

(a) (b)

Figure 7: Agents’ cumulative discounted utilities under scheme 1 (a) and under scheme 2 (b)
with peak and off-peak hour pricing.

5.1.3 Blue/White/Red day pricing

In this pricing scheme, the price can take six values depending on the color of the day
and of the hour of the day: in blue days, p(t) = 8.69 in peak hours and p(t) = 7.25
in off-peak hours ; in white days, p(t) = 12.34 in peak hours and p(t) = 10.36 in
off-peak hours ; in red days, p(t) = 50.81 in peak hours and p(t) = 19.33 in off-peak
hours.

Under an equal allocation of the resource, we observe in Figure 8 (a) that the agents
are indifferent between both storage strategy. When priority is introduced as pictured
in Figure 8 (b), we observe that the capacity to store energy is more profitable for the
agents than in case where they lack it.
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(a) (b)

Figure 8: Agents’ cumulative discounted utilities under scheme 1 (a) and under scheme 2 (b)
with Blue/White/Red day pricing.

5.1.4 Peak day clearing pricing

In this pricing scheme, the price can take two values depending whether the day is
considered as normal or as a peak day. In the first case p(t) = 10.30 and in the second
case, p(t) = 53.29. The peak days are mobile and allocated randomly. The only
information that is available is that there are 22 peak days over the studied period of
time. This means that a day has a probability of 22

50 to be a peak day. To explain how
we conducted our experiment, we have generated peak days according to a multinomial
density function of parameters 50 and 22

50 .

In Figure 9 (a), we have represented the agents’ cumulative discounted utilities
under an equal allocation of the resource. We observe that the agents are indifferent
between the storage and the no storage capacity. In Figure 9 (b), we have plotted
the agents’ cumulative discounted utilities under a priority allocation of the resource.
We observe the the capacity to store energy is more profitable for the agents than no
storage.

5.1.5 Summary of the results

In Table 1, we have indicated which storage policy between no storage, storage and
indifference between the two, is more profitable for the agents depending on the cho-
sen pricing mechanism and resource allocation scheme. We conclude that the pricing
mechanism based on peak/off-peak hours is the most adapted mechanism for an eco-
nomic implementation because under both resource allocation mechanism, houses will
have incentives to store energy. Furthermore, this choice will not generate any debate
about the resource allocation scheme to implement. This is all the more interesting
as there are many debates about the implementability of priority based resource alloca-
tion mechanisms in the smart grid and the peak/off-peak hour pricing is the sole pricing
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(a) (b)

Figure 9: Agents’ cumulative discounted utilities under scheme 1 (a) and under scheme 2 (b)
with peak day clearing pricing.

hhhhhhhhhhhhhhhhhhPricing mechanism

Allocation scheme
equal priority

Flat rate Indifference Indifference
Peak/Off-peak Storage Storage

Blue/White/Red Indifference Storage
Peak Day Clearing No Storage Storage

Table 1: Best storage policy under different pricing mechanisms and resource allocation
schemes.

mechanism which guarantees that storage is more profitable under both resource allo-
cations. Besides, the above simulation outputs do not depend on the variablility of the
comfort sensitivity parameter.

The above simulations have been realized over houses which are homogeneous in
their characteristics (κh, κ̄h,∀h = 1, 2). Is the conclusion still the same for houses
which are heterogeneous in their thermal loss and heating efficiency parameters ?

5.2 Impact of the heterogeneity in the houses’ profiles on the in-
centives to store energy

In this subsection, we consider three profiles for the houses depending on parameters
κh, κ̄h values while the optimal temperature is supposed identical for all the houses i.e.,
θh = θ0

h, ∀h = 1, 2. We describe the three profiles that we consider for the houses:

• Profile A: κh = 0.3, κ̄h = 0.7 i.e., thermal losses are small and heating effi-
ciency is high. It belongs to area 3, as pictured in Figure 3.
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• Profile B: κh = 0.3, κ̄h = 0.4 i.e., thermal losses are small but heating effi-
ciency is low. It belongs to area 1, as pictured in Figure 3.

• ProfileC: κh = 0.6, κ̄h = 0.7 i.e., thermal losses are high and heating efficiency
is high. It belongs to area 2, as pictured in Figure 3.

We run the algorithm described in Section 4 with different priority order between
the house profiles, using equal and priority based resource allocation mechanisms. The
pricing mechanism is based on peak and off-peak hour pricing as described in Subsec-
tion 5.1.2. Like in Subsection 5.1, we have simulated the agents’ discounted cumu-
lative utilties as functions of time with storage capacity and without storage capacity.
Depending on the discounted cumulative utility values, we determine which policy be-
tween storage, no storage and indifference between the two, is the best i.e., maximize
the discounted cumulative utilities of the agents. In Table 2, we have listed the best
storage policy for the agents.

hhhhhhhhhhhhhhhhPriority order
Allocation scheme

equal priority

(priority of Profile A) > (priority of Profile B) Indifference Indifference
(priority of Profile A) > (priority of Profile C) Storage No Storage
(priority of Profile C) > (priority of Profile A) Storage Indifference
(priority of Profile B) > (priority of Profile C) Storage Indifference

Table 2: Best storage strategy with heterogeneity in the house profiles.

First, we observe that the influence of κ̄h is predominant over the influence of κh.
Second, houses have incentives to store when (priority of Profile C) > (priority of Pro-
file A) and (priority of Profile B) > (priority of Profile C) and when resource alloca-
tion is equal. To avoid the case where (priority of Profile A) > (priority of Profile C),
it is enough to impose that the house corresponding to ProfileC is always served before
the house corresponding to ProfileA. To avoid the case where (priority of Profile A) >
(priority of Profile B), the house having the lowest heating efficiency should invest so
has to increase it.

To conclude, if any house has a poor heating system efficiency, storing energy is
a waste for it since the house has to heat at maximum all the time to avoid a very bad
comfort. If all houses have good heating systems, then heterogeneity in insulation can
generate low incentives for energy storage if the energy allocation in the microgrid is
too much inequal. Otherwise, the houses have always an incentive to store energy.

5.3 Dynamic pricing
In this subsection, the game parameters are identical to the ones introduced at the be-
ginning of Subsection 5.1. The market game coincides with the one considered in [9]:
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the eco-neighborhood studied in this article is assimilated to a microgrid to which en-
ergy is supplied by a unique service provider. As already mentioned, this assumption
holds well if we consider local or regional utility companies for example [9]. The
energy producer can be associated with a nuclear plant, a photovoltaic park manager,
a wind farm administrator, etc. His production at time period t is stored in: νe(t).
At time period t, the energy needs of the microgrid νs(t), should coincide with the
sum of the consumptions of all the houses in the eco-neighborhood. The microgrid
has the possibility to find alternative sources of energies for a(t) energy units at a cost
a(t)2

2
4. Additionally, penalties which are proportional to the difference between the

initially booked quantity of energy and the finally delivered quantity, are imposed from
the microgrid to the service provider according to the rule: γ

(
νs(t)− a(t)− νe(t)

)
+

where γ = 0.9 is the penalty coefficient. As proved analytically in [9], the optimal
price for the service provider is: p(t) = νs(t)+γ

2 . The planning algorithm described in
Subsection 4.3 relies on the service provider’s price evolution and each house realizes
a forecast ν̂s(t), on the price evolution by estimating the global consumption of the
eco-neighborhood. We make the simplifying assumption that each house believes that
the other houses will choose the same demand and storage levels5. Hence, when house
h = 1, ...,H chooses action

(
xh(t),∆qh(t)

)
, its estimate of the microgrid’s energy

needs is: ν̂s(t) = H
(
xh(t)+∆qh(t)

)
−R(t) which leads to

H

(
xh(t)+∆qh(t)

)
−R(t)+γ

2

as estimated price for the service provider. But, to simulate the consumption of the
eco-neighborhood, the service provider’s price should depend on the houses’ true con-
sumption. To compensate for the gap between the service provider’s price obtained by
each house independently in the planning part and in the simulation part of the algo-
rithm described in Subsection 4.3, we introduce an error coefficient: 0 ≤ ε ≤ 2H such
that: νs(t) =

∑
h=1,...,H

(
xh(t) + ∆qh(t)−Rh(t)

)
+

+ ε. The higher ε is, the worst are

the service provider’s predictions in the microgrid’s energy needs.

In Figure 10 (a) (resp. Figure 10 (b)), we have represented the eco-neighborhood
manager’s cumulative utility at time period T = 20 as a function of the error coef-
ficient ε under equal allocation (resp. priority based allocation) of the resource. We
observe that in both cases, the increase of the error makes the eco-neighborhood man-
ager’s cumulative utility decrease and that storage is always preferable over no storage.
Furthermore, storage is all the more interesting compared to no storage, as the error in
the prediction increases.

4The choice of a quadratic cost function is rather arbitrary and the derived results can be extended to
more general convex functions without loss of generalities, as mentioned in [9].

5It can be justified by the fact that depending on the exterior temperature, the houses’ actions will be rather
homogeneous i.e., maximum heat for low exterior temperature, minimal heat for high exterior temperature,
etc., and by sheep of Panurge effect regarding storage.

25



(a) (b)

Figure 10: Eco-neighborhood manager’s cumulative discounted utilities at T = 20 under equal
allocation scheme (a) and under priority allocation scheme (b) with dynamic pricing as a function
of the error in forecasting ε.

6 Conclusion
We have modeled the problem of energy consumption planning in the eco-neighborho-
od, as a stochastic game and proposed algorithms based on stochastic dynamic pro-
gramming to simulate its evolution under two resource allocation schemes: an equal
allocation of the resource produced by the eco-neighborhood and a priority based one.
The eco-neighborhood’s energy policy has been simulated under various pricing mech-
anisms: flat rate, peak and off-peak hour, blue/white/red day, peak day clearing and a
dynamic update of the price based on the eco-neighborhood’s consumption. We ob-
serve that high incentives for house inhabitants to store energy is not straightforward
since it relies heavily on the implemented pricing mechanism and on the homogeneity
in the houses’ characteristics.

A possible solution to promote storage in houses is to use dynamic pricing since
under such a pricing mechanism, storage appears as a compensation for the errors made
in the demand prediction when planning the eco-neighborhood’s behavior and since in
this case, storage generates a higher discounted cumulative weighted social welfare
for the eco-neighborhood than no storage. Of course, dynamic pricing can be binding
because it requires anticipating price changes and a high flexibility in task scheduling.
Other pricing mechanisms based on contracts including various commitment lengths
[2] or budget rebates [10] already launched by the telecommunications industry, can
be envisaged. Besides, to be viable such approaches require investments in new pro-
duction capabilities such as solar panels, wind farms, and also an extensive research
and development effort to enhance the performance of storage capacity and the cer-
tification of demand response to avoid artifical retention at the end user level. These
problem solving is necessary to the efficient deployment of the capacity market defined
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by the Nome law.
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