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Abstract

The purpose of this work is simulation of magnetised plasmas in the ITER

project framework. In this context, kinetic Vlasov-Poisson like models are

used to simulate core turbulence in the tokamak in a toroidal geometry.

This leads to heavy simulations because a 6D dimensional problem has to

be solved, even if reduced to a 5D in so called gyrokinetic models. Accurate

schemes, parallel algorithms need to be designed to bear these simulations.

This paper describes the numerical studies to improve robustness of the

conservative PSM scheme in the context of its development in the GYSELA

code. In this paper, we only consider the 4D drift-kinetic model which is

the backbone of the 5D gyrokinetic models and relevant to build a robust

and accurate numerical method.
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1. Introduction

The ITER device is a tokamak designed to study controlled thermonu-

clear fusion. Roughly speaking, it is a toroidal vessel containing a magne-

tised plasma where fusion reactions occur. The plasma is kept out of the ves-

sel walls by a magnetic field which lines have a specific helicoidal geometry.

However, turbulence develops in the plasma and leads to thermal transport

which decreases the confinement efficiency and thus needs a careful study.

Plasma is constituted of ions and electrons, which motion is induced by the

magnetic field. The characteristic mean free path is high, even compared

with the vessel size, therefore a kinetic description of particles is required, see

Dimits [4]. Then the full 6D Vlasov-Poisson model should be used for both

ions and electrons to properly describe the plasma evolution. However, the

plasma flow in presence of a strong magnetic field has characteristics that

allow some physical assumptions to reduce the model. First, the Larmor ra-

dius, i.e. the radius of the cyclotronic motion of particles around magnetic

field lines, can be considered as small compared with the tokamak size and

the gyration frequency very fast compared to the plasma frequency. Thus

this motion can be averaged (gyro-average) becoming the so-called guid-

ing center motion. As a consequence, 6D Vlasov-Poisson model is reduced

to a 5D gyrokinetic model by averaging equations in such a way the 6D

toroidal coordinate system (r, θ, φ, v‖, v⊥, α) becomes a 5D coordinate sys-

tem (r, θ, φ, v‖, µ), with v‖ the parallel and v⊥ the perpendicular to the field

lines components of the particles velocity, α the angular velocity around the

field lines and µ = m v2
⊥/2B the magnetic momentum depending on the

velocity norm |v⊥|, on the magnetic field magnitude B and on the particles
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mass m which is an adiabatic invariant. Moreover, the magnetic field is

assumed to be steady and the mass of electrons me is very small compared

to the mass of ions mi. Thus the cyclotron frequency ωi,e = qi,e B/mi,e is

much faster for electrons than for ions ωe >> ωi. Therefore the electrons

are assumed to be at equilibrium, i.e. the effect of the electrons cyclotronic

motion is neglected and their distribution is then supposed to be constant

in time. The 5D gyrokinetic model then reduces to a Vlasov like equation

for ions guiding center motion:

∂f̄µ
∂t

+∇X ·
(
dX

dt
f̄µ

)
+ ∂v‖

(
dv‖

dt
f̄µ

)
= 0 (1)

where f̄µ(X, v‖) is the ion distribution function for a given adiabatic in-

variant µ with X = (r, θ, φ), velocities dX/dt and dv‖/dt define the guiding

center trajectories. If∇(X,v‖)·(dX/dt, dv‖/dt)
t = 0, then the model is termed

as conservative and is equivalent to a Vlasov equation in its advective form:

∂f̄µ
∂t

+
dX

dt
· ∇X f̄µ +

dv‖

dt
∂v‖
(
f̄µ
)

= 0. (2)

This equation for ions is coupled with a quasi-neutrality equation for the

electric potential Φ(R) on real particles position, with R = X−ρL (with ρL

the Larmor radius) :

− 1

Bωi
∇⊥ · (n0∇⊥Φ) +

e

κTe
(Φ− < Φ >θ,φ) =

∫
f̄µdµdv‖ − n0 (3)

where n0 is an equilibrium electronic density, Te the electronic temperature,

e the electronic charge, κ the Boltzmann constant for electrons and ωi the

cyclotronic frequency for ions.

These equations are of a simple form, but they have to be solved very ef-

ficiently because of the 5D space and the large characteristic time scales

considered. This work is then a contribution in this direction, following
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Grandgirard et al who develops the GYSELA 5D code that solves this 5D

gyrokinetic model, see [5] and [6]. Looking at the model, one notices that

the adiabatic invariant µ acts as a parameter. Therefore for each µ we have

to solve a 4D advection equation as accurately as possible but also taking

special care on mass and energy conservation, especially in this context of

large characteristic time scales. The maximum principle that exists at the

continuous level for the Vlasov equation should also be carefully studied at

discrete level:

min
i

(f(xi, t
n)) ≤ f(x, tn+1) ≤ max

i
(f(xi, t

n))

with f(xi, t
n) the value at xi in cell i at time tn. There is no physi-

cal dissipation process in the gyrokinetic model (1) that might dissipate

over/undershoots created by the scheme and the loss of this bounding ex-

trema of the solution at tn+1 > tn may even eventually crash a simulation.

Those studies will be achieved in this paper on a relevant reduced model,

the 4D drift-kinetic model described in section 4, which has the same struc-

ture than equations (1). The geometrical assumptions of this model for ion

plasma turbulence are a cylindrical geometry with coordinates (r, θ, z, v‖)

and a constant magnetic field B = Bz ez, where ez is the unit vector in

z direction. This 4D model is conservative and will be discretized using a

conservative semi-Lagrangian scheme, the Parabolic Spline Method scheme

(PSM, see Zerroukat et al [12] and [13] ). It is a fourth order scheme which

is equivalent for linear advections to the Backward Semi-Lagrangian scheme

(BSL) currently used in the GYSELA code (see Grandgirard et al [6]) and

introduced by Cheng-Knorr [2] and Sonnendrücker et al [10]). This conser-

vative PSM scheme based on the conservative form of the Vlasov equation

will be described in section 4 and properly allows a directional splitting.

4



In this paper, the BSL and PSM schemes will be detailed with an empha-

sis on their similarities and differences. We will see that one difference is

about the maximum principle. The BSL scheme satisfies it only with a

condition on the distribution function reconstruction and the conservative

PSM scheme does not satisfy it without an extra condition on the volumes

conservation in the phase space. The last condition is equivalent to try

to impose that the velocity field is divergence free at the discrete level. A

scheme is given to satisfy this constraint in the form of an equivalent Finite

Volume scheme. Moreover, we have designed a slope limiting procedure,

Slope Limited Splines (SLS), to get closer to a maximum principle for the

discrete solution, by at least diminish the spurious oscillations appearing

when strong gradients exist in the distribution function profile.

The outline of this paper is the following : in section 2 will be recalled some

important properties of Vlasov equations at the continuous level. Then BSL

and PSM schemes will be described and compared, according to properties

of the discrete solutions. In section 3, a numerical method will be given to

improve the respect of the maximum principle by Vlasov discrete solutions

when using the PSM scheme and particularly to keep constant the volume

in the phase space. In section 4, practical aspects of the PSM scheme use

will be described in the context of the 4D drift-kinetic model and at last we

will comment on numerical results.
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2. Semi-Lagrangian schemes for Vlasov equation

2.1. Basics of the Vlasov equation

Let us consider an advection equation of a positive scalar function f(x, t)

with an arbitrary divergence free velocity field: ∂tf + a · ∇x(f) = 0,

∇ · a = 0 and f(x, t) ≥ 0
(4)

with position x ∈ RD and a(x, t) ∈ RD the advection velocity field.

The solutions satisfy the maximum principle:

0 ≤ f(x, t) ≤ max
x

(f(x, t0)) (5)

for any initial time t0 < t.

Since ∇ · a = 0, we can also use an equivalent conservative formulation of

the Vlasov equation:

∂tf +∇x · (a f) = 0, (6)

For more details, see Sonnendrücker Lecture Notes [11]. One obvious prop-

erty of this conservation law (Reynolds transport theorem) is to conserve

the mass in a Lagrangian volume V ol(t), by integrating the distribution

function on each Lagrangian volume element dΩ:

dtm = dt

∫
V ol(t)

f(x, t)dΩ = 0.

Let us introduce the convective derivative dt(.) = ∂t(.) + a · ∇x(.), thus (6)

becomes:

dtf + f ∇x · a = 0. (7)

Considering a Lagrangian motion of an infinitely small volume V ol(t), we

have dtm = dt(f V ol) = 0, thus we obtain:

dtV ol

V ol
= ∇x · a. (8)
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Obviously, a divergence free flow ∇x · a = 0 conserves a Lagrangian volume

in its motion.

2.2. Maximum principle in the BSL and PSM schemes

2.2.1. Backward semi-Lagrangian (BSL)

Let us consider a Vlasov equation in its non conservative form:

∂tf + a · ∇xf = 0, (9)

with f(x, t) a scalar function, position x ∈ RD and a(x, t) ∈ RD the ad-

vection field. The BSL scheme, see Sonnendrücker et al [10], is based on

the invariance property of function f along characteristic curves to obtain

values fn+1 at time tn+1 from the values fn at tn:

fn+1
(
X(xn+1, tn+1)

)
= fn

(
X(xn+1, tn)

)
, (10)

with x the Eulerian coordinates and the characteristic curves X defined as

dX(x, t)

dt
= a(x, t) (11)

with the initial position x = X(x, tn) at tn. Let us locate the discrete func-

tion values fni = fn
(
X(xn+1

i , tn+1)
)

at mesh nodes xn+1
i = X(xn+1

i , tn+1).

We solve the following nonlinear system which is a second order approxima-

tion of dtX(t) = a(x, t):

X
n+1/2
i =

(
X(xn+1

i , tn+1) +X(xn+1
i , tn)

)
/2,

X(xn+1
i , tn) = X(xn+1

i , tn+1)−∆t a
(
X
n+1/2
i , tn+1/2

)
,

fn+1
(
X(xn+1

i , tn+1)
)

= fnh
(
X(xn+1

i , tn)
)
,

(12)

with ∆t = tn+1 − tn. The function fnh (x) is a reconstruction of the solution

fn(x) according known values at nodes xn+1
i using cubic splines basis func-

tions on the domain to obtain the value at xni = X(xn+1
i , tn), which is not

a mesh node in general.
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Properties of the BSL scheme. This scheme is formally fourth order in space.

It is second order in time using for instance a Leap-Frog, Predictor-Corrector

or Runge-Kutta time integration. Mass is not conserved by this scheme,

because it has no conservative form. However, an approximated maximum

principle is satisfied. Let us consider fnh (x) the cubic spline interpolation of

the distribution function f(x, tn) at time tn, we have for any x:

fn+1
(
X(x, tn+1)

)
= fnh (X(x, tn)) .

It then naturally appears a ”discrete” maximum principle:

min
x

(fnh (x, tn)) ≤ fn+1(x) ≤ max
x

(fnh (x, tn)). (13)

Comparing with the property (5), we have here min
x

(fnh (x, tn)) 6= 0 and

max
x

(fnh (x, tn)) 6= max
x

(fn(x, tn)) because the cubic spline reconstruction

does not satisfy a maximum principle. If we have a manner to enforce this

property to this reconstruction, a maximum principle is granted for the BSL

scheme. No directional splitting is allowed since the BSL scheme is based

on the non conservative form of the Vlasov equation, see [11].

2.2.2. Semi-Lagrangian Parabolic Spline Method (PSM)

Let us consider a Vlasov equation in its conservative form:

∂tf +∇x · (a f) = 0, (14)

with f(x, t) a scalar function, position x ∈ RD and a(x, t) ∈ RD the advec-

tion field. Notice that with the hypothesis ∇x · (a) = 0, conservative form

(14) and non-conservative form (9) of the Vlasov equation are equivalent.

The PSM scheme, see Zerroukat et al [12] and [13], is based on the mass

conservation property of function f in a Lagrangian volume V ol to obtain
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the value fn+1 at time tn+1:∫
V oln+1

f(x, tn+1)dΩ =

∫
V oln

f(x, tn)dΩ, (15)

with the characteristic curves X defined as
dX(x, t)

dt
= a(x, t) and xn =

X(x, tn) with tn the initial time, and the volume V oln = {X(xn+1, tn) such

that X(xn+1, tn+1) ∈ V oln+1} defined by the Lagrangian motion with the

field a(x, t). The important point is that this conservative formalism prop-

erly allows a directional splitting without loosing the mass conservation.

Indeed, equation (14) may be solved with D successive 1D advections still

of conservative form:

∂tf + ∂xk(ak f) = 0, k ∈ [1, D]. (16)

We then approximate a 1D equation for each direction k using the conser-

vation property. Omitting subscript k, the PSM scheme writes in 1D as

follows: ∫ xn+1
i+1/2

xn+1
i−1/2

f(x, tn+1)dx =

∫ xn
i+1/2

xn
i−1/2

f(x, tn)dx, (17)

with xn+1
i+1/2 = X(xn+1

i+1/2, t
n+1) settled as the 1D mesh nodes and xni+1/2 =

X(xn+1
i+1/2, t

n) the associated foot of the characteristic curve, V olni = [xni−1/2, x
n
i+1/2]

and V oln+1
i = [xn+1

i−1/2, x
n+1
i+1/2].

Let us define the unknowns of the scheme as the average of f in cell i

f
n+1
i =

1

∆x

∫ xn+1
i+1/2

xn+1
i−1/2

f(x, tn+1)dx, (18)

and the primitive function

Fn(z) =

∫ z

x1/2

f(y, tn)dy, (19)

with the uniform space step ∆x = xn+1
i+1/2 − xn+1

i−1/2 and x1/2 an arbitrary

reference point of the domain and for instance the first node of the grid
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{xi−1/2}i=1,N+1. Therefore, one has to solve a nonlinear system, which is

similar to the BSL one, to obtain a discrete solution of equation (17) that

writes:

X
n+1/2
i+1/2 =

(
X(xn+1

i+1/2, t
n+1) +X(xn+1

i+1/2, t
n)
)
/2,

X(xn+1
i+1/2, t

n) = X(xn+1
i+1/2, t

n+1)−∆t a
(
X
n+1/2
i+1/2 , t

n+1/2
)
,

f
n+1
i ∆x = Fnh (X(xn+1

i+1/2, t
n))− Fnh (X(xn+1

i−1/2, t
n))

(20)

with the time step ∆t = tn+1−tn and the uniform space step ∆x = xn+1
i+1/2−

xn+1
i−1/2 .

The computation of the reconstructed primitive function Fnh (x) is based on

values at mesh nodes xn+1
i+1/2:

Fnh (xn+1
i+1/2)− Fnh (x1/2) =

i∑
k=1

f
n
k∆x.

Then this set of values is interpolated by cubic splines functions to obtain

an approximated value Fnh (z) of the primitive function Fn(z) at any point

z of the domain:

Fnh (z) ≈ Fn(z) =

∫ z

x1/2

f(y, tn)dy. (21)

Properties of the PSM scheme. This scheme is formally fourth order in space

and strictly equivalent to the BSL scheme for constant linear advection, see

[3]. It is second order in time using for instance a Leap-Frog, Predictor-

Corrector or Runge-Kutta time integration scheme. Mass is exactly con-

served by this scheme for each 1D step k of the directional splitting. How-

ever, no maximum principle does exist for each step k even for the exact

solution: in general ∂xkak 6= 0, even if the velocity field is divergence free

∇ · a = 0. Let us consider the scheme in D dimensions of space:

∂tf +∇ · (a f) = 0, (22)
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with f(x, t) a scalar function, position x ∈ RD and a(x, t) ∈ RD the advec-

tion field. Let us consider a cell i, where the solution is described at time

tn+1 by its average in cell i, the PSM scheme then writes:

f
n+1
i V oln+1

i =

∫
V oln+1

i

f(x, tn+1)dΩ =

∫
V olni

f(x, tn)dΩ. (23)

We thus obtain the following relation:

f
n+1
i = f

n∗
i

V olni
V oln+1

i

(24)

with the average of the distribution function in the Lagrangian volume at

time tn:

f
n∗
i =

1

V olni

∫
V olni

f(x, tn)dΩ.

Here clearly appears two conditions, both difficult to satisfy especially in

the context of a directional splitting, to have a maximum principle defined

as follows:

min
j

(f
n
j ) ≤ fn+1

i ≤ max
j

(f
n
j ). (25)

1. Maximum principle on the distribution function in V olni :

min
j

(f
n
j ) ≤ fn∗i ≤ max

j
(f
n
j ). (26)

2. Conservation of volumes in the phase space at the discrete level:

V olni = V oln+1
i . (27)

The first condition is difficult to ensure in general, because a maximum prin-

ciple should be satisfied for any average of the distribution function on an

arbitrary volume V olni . Moreover, in the context of a directional splitting,

it is impossible to satisfy a maximum principle for a 1D step k, because it

does not exist at the continuous level since in general ∂kak 6= 0. Therefore it
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is probably impossible to recover a maximum principle of the reconstruction

after all steps of the directional splitting.

The second condition is true at the continuous level while ∇ · a = 0, since

we have dtV ol = V ol ∇ · a = 0, see equation (8) in section 2.1. As well as

for the first condition, in the context of a directional splitting, it is difficult

to ensure a constant volume evolution V olni = V oln+1
i after all steps of the

directional splitting, where compressions or expansions of the Lagrangian

volume occur successively.

As a consequence, we will propose a form of the conservative PSM scheme

that does not use a directional splitting. However we will not write the Semi-

Lagrangian form of the PSM scheme in D dimensions of space because it

is costly in computational time, because of the reconstruction step, and

it is difficult to handle with arbitrary coordinate systems. The solution

we choose is to use an equivalent Finite Volume form of the PSM scheme

described in section 3.2, which is locally 1D at each face of the mesh. It is

therefore possible to design 1D numerical limiters to try to better satisfy the

maximum principle condition (26). Moreover, we will show that this form

allows an exact conservation of the volumes in the phase space (27). The

maximum principle and therefore the robustness of this scheme will thus be

considerably improved.

3. Maximum principle for the PSM scheme

3.1. Numerical limiters for the distribution function reconstruction

Enforcing the first condition on the maximum principle of the distribu-

tion function reconstruction (26) can be really costly in computational time.
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Instead of trying to correct the cubic spline reconstruction, we will reduce

the spurious oscillations, generated by high order schemes when strong gra-

dients appear in the distribution function profile, by using a classical Van

Leer like slope limiting procedure, see for instance LeVeque [9]. We propose

here to measure the gradients in the flow and to add diffusion where they

are detected. The diffusion is added by mixing the high order PSM flux

with a first order upwind flux. The evaluation of the gradient is given by

the classical function θ and we estimate the diffusion needed with a function

γ(θ) ∈ [0, 1] based on a minmod like limiter function (see Fig. 1). The

resulting limiter we propose here is called SLS (Slope Limited Splines), see

[7] for details:

φSLSi+1/2 = γ(θi+1/2) φPSMi+1/2 + (1− γ(θi+1/2)) φupwindi+1/2

where

φupwindi+1/2 = ai+1/2

(
f
n
i + f

n
i+1

2
− sign(ai+1/2)

f
n
i+1 − f

n
i

2

)
.

We define θi+1/2 as the classical slope ratio of the distribution which depends

on the direction of the displacement:

θi+1/2 =


f
n
i − f

n
i−1

f
n
i+1 − f

n
i

if ai+1/2 > 0

f
n
i+2 − f

n
i+1

f
n
i+1 − f

n
i

if ai+1/2 < 0

However, the classical limiter minmod, where γi+1/2 = max(0,min(θi+1/2, 1)),

set γ to 0 when θ < 0. That means that the scheme turns to order 1 when

an extrema exists, i.e. the slope ratio θ < 0. These extrema are thus quickly

diffused and that leads to loose the benefits of a high order method. For

SLS, the choice is to let the high-order scheme deal with the extrema and

13
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Figure 1: γ function for the SLS limiter

only add diffusion when strong gradients occurs, i.e. the slope ratio θ ≈ 0.

We also introduce a constant K in relation to control the maximum slope

allowed without adding diffusion, i.e. mixing with the upwind scheme, see

figure 1:

γi+1/2 = max(0,min(K|θi+1/2|, 1)). (28)

with the constant K = 5 experimentally settled.

We present in Fig. 2 the results of the linear advection of a step function

with the standard PSM scheme with and without the SLS limiter (K=5).

The domain is meshed with 70 cells with periodic boundary conditions and

the displacement is set to 0.2 cell per iteration. One can see that as any high

order scheme, the PSM scheme produces spurious oscillations at the discon-

tinuity or at a stiff gradient location. The SLS limiter do well with K = 5

to reduce these oscillations without introducing much diffusion. However,

a maximum principle is not granted. This limiter has been further studied

and compared with other limiters in the report [7].
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Figure 2: Linear advection of a step function. The exact solution is green and the numer-

ical results are in blue, above the standard PSM scheme and below the PSM scheme with

SLS limiter with K = 5.

3.2. Finite Volume form of the PSM scheme

Let us consider the 1D conservative advection equation of the form:

∂tf + ∂x(ax f) = 0, (29)

with f(x, t) a scalar function, position x ∈ R and ax(x, t) ∈ R the advection

field. We recall that X(xn+1
i+1/2, t

n+1) = xi+1/2 is the position of the mesh

node i + 1/2. Let us set the notation X(xn+1
i+1/2, t

n) = x∗i+1/2 for the ”foot”

position at tn on the characteristic curve. Let us rewrite the PSM scheme

(20):

x∗i+1/2 = xi+1/2 −∆t ax

(
x
n+1/2
i+1/2 , t

n+1/2
)
,

f
n+1
i ∆x = Fnh (x∗i+1/2)− Fnh (x∗i−1/2).

with the primitive function Fnh (z) is interpolated by cubic splines at mesh

nodes such that Fnh (z) ≈ Fn(z) =
∫ z
x1/2

fn(y)dy at fourth order in space.
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Let us make appear explicitly in 1D the fluxes at cell faces i ± 1/2, by

introducing the primitive values at cell faces Fn(xi±1/2):

f
n+1
i ∆x =

(
Fnh (x∗i+1/2)− Fnh (xi+1/2)

)
−
(
Fnh (x∗i−1/2)− Fnh (xi−1/2)

)
+f

n
i ∆x

with f
n
i ∆x = Fnh (xi+1/2)− Fnh (xi−1/2). It yields

f
n+1
i − fni

∆t
+
Fnh (xi+1/2)− Fnh (x∗i+1/2)

∆x∆t
−
Fnh (xi−1/2)− Fnh (x∗i−1/2)

∆x∆t
= 0.

(30)

The PSM fluxes at cell faces i± 1/2 clearly appear:

f
n+1
i − fni

∆t
+

ΦPSM
i+1/2 − ΦPSM

i−1/2

∆x
= 0 (31)

with

ΦPSM
i+1/2 =

Fnh (xi+1/2)− Fnh (x∗i+1/2)

∆t
≈ 1

∆t

∫ xi+1/2

x∗
i+1/2

fn(y)dy. (32)

A simple Taylor expansion shows that this PSM flux, which consists in a

cubic spline approximation of the integral of fn(x) along the characteristic

curves at cell faces, is a consistent approximation at node i + 1/2 of the

continuous flux Φ = axf in equation (29), i.e. ΦPSM
i+1/2 ≈ (axf)i+1/2.

Moreover, this flux is an approximation of the integral of (axf
n on cell faces.

Coming back to (29) and integrating on the cell volume V oln+1
i = Ax∆x,

with Ax the bounding faces Γi±1/2 area transversal to x of cell i:

V oln+1
i

∂f

∂t
+

∫
V oln+1

i

∂x(ax f)dΩ = 0. (33)

We obtain using Green formula:

∂f

∂t
+

1

V oln+1
i

∫
∂V oln+1

i =Γi−1/2∪Γi+1/2

f(ax · nx)dΓ = 0. (34)
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with ∂V oln+1
i = Γi−1/2 ∪ Γi+1/2 the surface bounding V oln+1

i and nx its

outgoing normal.

∂f

∂t
+

1

V oln+1
i

(∫
Γi+1/2

faxdΓ−
∫

Γi−1/2

faxdΓ

)
= 0. (35)

Comparing with formula (31), we see that the PSM flux is an approximation

of the flux average at cell faces:

ΦPSM
i+1/2 ≈

1

Ax

∫
Γi+1/2

f(ax · nx)dΓ (36)

because V oln+1
i = Ax∆x.

The extension to D dimensions of space is then straightforward, because

it only consists in adding the fluxes through the faces of a cell in every

direction d. Considering the Vlasov equation in its conservative form in

dimension D and for an arbitrary coordinate system:

∂(Jf)

∂t
+∇ · (Ja f) = 0

with J the geometric Jacobian of the cell, f(x, t) a scalar function, position

x ∈ RD and a(x, t) ∈ RD the advection field. In a classical way in Finite

Volume methods, we integrate this local equation on the cell Ci of volume

V oln+1
i and we use the Green formula:∫

V oln+1

∂f

∂t
Jdx+

∫
Γd∈Ci

(a · nd)fJdx = 0, (37)

with Γd the face of cell i perpendicular to direction d of area Ad and of out-

going normal unit vector nd. Using the 1D flux formula (36) in direction nd

and a first order time discretisation, we obtain the following Finite Volume

scheme:

V oln+1
i

f
n+1
i − fni

∆t
+
∑

Γd∈Ci

AdΦ
PSM
d = 0, (38)
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with

f
n
i =

1

V oln+1
i

∫
V oln+1

i

f(y, tn)J(y)dy. (39)

and ΦPSM
d the flux that goes through Γd:

ΦPSM
d =

Fnh,d(xd)− Fnh,d(x∗d)
∆t

≈ 1

Ad

∫
Γd

(a · nd)f(y, tn)J(y)dy, (40)

with x∗d = xd −∆t (a(xd) · nd) the foot of the 1D characteristic curve and

Fnh,d(z) the primitive function at tn reconstructed using cubic splines in the

direction of nd:

Fnh,d(z) ≈ Fnd (z) =

∫ zd

xd,1/2

f(y, tn)J(y)dy. (41)

We see here a Finite Volume form of the Semi-Lagrangian PSM conservative

scheme. This equivalence is however restricted, because this Finite Volume

form is submitted to a CFL condition as any scheme of this form:

∆t ≤ min
d

 ∆xd
max
xd

(and (xd))

 .

Moreover, as we will see in section 3.3, the Lagrangian volume evolution is

here approximated by the cell faces motion only in their normal direction,

instead of the general motion as it is described in the Semi-Lagrangian

formalism (15). It is the same volume evolution as the Semi-Lagrangian

method with 1D directional splitting. However it is the classical Finite

Volume formalism and it is the key point that will permit to enforce a

divergence free evolution of the flow.

Notice that the Finite Volume form (38) can be directionally split keeping

exactly the same result. Indeed, it only consists in adding the flux in two

successive operations instead of in one. As an example, let us consider the

18



2D (x, y) case of a cartesian mesh:

V oln+1
i

f
n+1
i − fni

∆t
+Axi+1/2,jΦ

PSM
i+1/2,j +Axi−1/2,jΦ

PSM
i−1/2,j

+Ayi,j+1/2ΦPSM
i,j+1/2 +Ayi,j−1/2ΦPSM

i,j−1/2 = 0.

(42)

It is stricly equivalent to use the directional directional splitting:

V oln+1
i

f
nx
i − f

n
i

∆t
+Axi+1/2,jΦ

PSM
i+1/2,j +Axi−1/2,jΦ

PSM
i−1/2,j = 0

V oln+1
i

f
n+1
i − fnxi

∆t
+Ayi,j+1/2ΦPSM

i,j+1/2 +Ayi,j−1/2ΦPSM
i,j−1/2 = 0.

(43)

with the only condition that all fluxes ΦPSM are computed using fn and an

at time tn as in the unsplit scheme (42).

3.3. Conservation of volumes in the phase space

The second condition to have a maximum principle for the PSM scheme

is to satisfy the multi-dimensional condition (27) of conservation of volumes,

i.e. V oln = V oln+1. Equation (8) showed that at continuous level the

volume is constant in its evolution in the phase space if the advection field

is divergence free. Therefore we will study the PSM scheme to find out

a divergence free condition that should be satisfied at the discrete level

∇h · a = 0 in such a way V oln = V oln+1, in the same way ∇ · a = 0 at

the continuous level. With the idea of making appear the total evolution

of volumes between tn and tn+1, we will use the Finite Volume form of the

PSM scheme given in section 3.2 for the 2D polar coordinate system. Let us

consider radial r and orthoradial θ directions, with constant space steps ∆r,

∆θ and the volume of the cells V oli,j = ri∆r∆θ with ri the mean radius

of the cell. We consider that the mesh in polar coordinates has locally

no curvature, i.e. each mesh is a trapezium with straight edges. This is

important to be noticed to write the Finite Volume scheme and calculate
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Figure 3: Polar cells in black and the Finite Volume representation of the cells in red as a

trapezium with the volumes swept by the cell faces in their normal motion. The direction

for all faces motion is drawn outward, but it could be inward as well, function of the

velocity field.

the volume swept by the cell edges, see Fig. 3. Let us set a velocity field

(ar(r, θ), r aθ(r, θ)) such that:

∇r,θ · a =
1

r
∂r(r ar) +

1

r
∂θ(r aθ) = 0.

Let us write the conservative advection equation in polar coordinates:

∂t(rf) + ∂r(r ar f) + ∂θ(r aθ f) = 0. (44)

Notice that the geometric Jacobian J = r for polar coordinates.

The PSM scheme without directional splitting in the Finite Volume form

(38) reads here:

V oli,j
f
n+1
i,j − f

n
i,j

∆t
+Ari+1/2,jΦ

PSM,r
i+1/2,j −A

r
i−1/2,jΦ

PSM,r
i−1/2,j

+Aθi,j+1/2ΦPSM,θ
i,j+1/2 −A

θ
i,j+1/2ΦPSM,θ

i,j−1/2 = 0

(45)
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with ΦPSM,θ
i,j±1/2 and ΦPSM,r

i±1/2,j positioned at cell faces center and with cell i, j of

volume V oli,j = ri∆r∆θ and faces areas Ari±1/2,j = ∆θ and Aθi,j±1/2 = ∆r.

The cell averaged values of f used in the scheme are:

f i,j =
1

V oli,j

∫
V oli,j

f(r, θ, t) rdrdθ. (46)

Using the integral form (40) of the fluxes:

ri∆r∆θ(f
n+1
i,j − f

n
i,j)

+∆θ

∫ ri+1/2

r∗
i+1/2

f(r, θi, t
n)rdr −∆θ

∫ ri−1/2

r∗
i−1/2

f(r, θi, t
n)rdr

+∆r

∫ θj+1/2

θ∗
j+1/2

f(ri, θ, t
n)ridθ −∆r

∫ θj−1/2

θ∗
j−1/2

f(ri, θ, t
n)ridθ = 0.

(47)

Let us introduce the volumes swept by each cell face in its normal motion

in accordance with the Green formula and the way of computation of feet of

characteristic curves normal to cell faces, i.e. without taking into account

the tangential motion at the cell faces or the curvature of the mesh, see Fig.

3:

δV olri±1/2,j = ri±1/2 ∆θ (ri±1/2 − r∗i±1/2)

δV olθi,j±1/2 = ri ∆r (θj±1/2 − θ∗j±1/2).

Therefore we obtain:∫
V oli,j

fn+1
i,j rdrdθ =

∫
V olni,j

f(r, θ, tn) rdrdθ (48)

with

V olni,j = V oli,j − δV olri+1/2 + δV olri−1/2 − δV ol
θ
j+1/2 + δV olθj−1/2.

We here recover a discrete mass conservation formulation. To obtain V oli,j =

V olni,j , and thus preserve a constant function, it yields:

δV olri+1/2 − δV ol
r
i−1/2 + δV olθj+1/2 − δV ol

θ
j−1/2 = 0.
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Using δV olk definitions, we thus obtain a discrete divergence formulation in

polar coordinates ∇h · a = 0 to be nullified:

1

ri

ri+1/2ar(ri+1/2, θj)− ri−1/2ar(ri−1/2, θj)

∆r
+

1

ri

riaθ(ri, θj+1/2)− riaθ(ri, θj−1/2)

∆θ
= 0.

(49)

with the following first order definition of the characteristic curves feet com-

putation:

ri±1/2 − r∗i±1/2 = ∆t ar(ri±1/2, θj) and θj±1/2 − θ∗j±1/2 = ∆t aθ(ri, θj±1/2).

As a conclusion, we have presented a general methodology for any co-

ordinate system to compute the associated discrete divergence free condi-

tion, by using the approximation of cell edges by straight lines and by only

considering the normal to cell faces motion of the volume as it has to be

when invoking the Green formula in this Finite Volume framework. The

discrete divergence formulation (49) is independent of the time integration

method. It is a discrete consistent relation for the advection field of the

form ∇h · a = 0. It should be satisfied to get the conservation condition on

volumes V olni = V oln+1
i in the phase space, which is necessary to obtain a

maximum principle for the PSM scheme or actually for any Finite Volume

scheme. This condition is also necessary when using the Semi-Lagrangian

PSM scheme with directional splitting as described in section 2.2.2 as well

as when using the Finite Volume form described in section 3.2. In Fig. 4,

we compare the results of a 4D drift-kinetic benchmark (see section 4.3.1

for details) obtained with the Semi-Lagrangian PSM scheme 2.2.2 with an

advection field computed: first in such a way the discrete divergence free

condition (49) is satisfied and second with an advection field computed by

cubic spline interpolation without satisfying this condition.
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Figure 4: Result at time t = 60 with (left) the advection field computed in a way (see

section 4.3.1) that satisfy the discrete divergence condition (49) and with (right) the

advection field computed with cubic splines, which do not satisfy this condition (49).

Respecting condition (49) for the advection field not only leads to a better respect of the

maximum principle, it is actually necessary to ensure the stability of the scheme. The

result in figure 4 diverges from realistic physics.

4. Use of the PSM scheme in a 4D drift-kinetic code

4.1. Drift-kinetic model

This work follows those of Grandgirard et al in the GYSELA code, see

[5] and [6]. The geometrical assumptions of this model for ion plasma tur-

bulence are a cylindrical geometry with 4D coordinates (r, θ, z, v‖) and a

constant magnetic field B = Bz ez, where ez is the unit vector in z direc-

tion. The model is the 4D Drift-Kinetic equations described inGrandgirard

et al [6]:

dr

dt
= vGCr ; r

dθ

dt
= vGCθ ;

dz

dt
= v‖;

dv‖

dt
=

qi
mi
Ez (50)

with vGC = (E ×B)/B2 and E = −∇Φ with Φ the electric potential.

The 4D Vlasov equation governing this system, where the ion distribution
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function is f(r, θ, z, v‖, t), is the following:

∂tf + vGCr∂rf + vGCθ∂θf + v‖∂zf +
qi
mi
Ez∂v‖f = 0. (51)

This equation is coupled with a quasi-neutrality equation for the electric

potential Φ(r, θ, z) that reads:

−∇⊥Φ ·
(
n0(r)

B Ω0
∇Φ

)
+
e n0(r)

Te(r)
(Φ− < Φ >θ,z) = ni − n0 (52)

with ni =

∫
v‖

f(r, θ, z, v‖)dv‖ and constant in time physical parameters n0,

Ω0, Te and e. Let us notice that the 4D velocity field a = (vGCr , vGCθ , v‖,

q/mi Ez)
t is divergence free:

∇ · a =
1

r
∂r(r vGCr) +

1

r
∂θ(vGCθ) + ∂zv‖ + ∂v‖(q/mi Ez) = 0 (53)

because of variable independence ∂v‖Ez = ∂v‖(∂zΦ(r, θ, z)) = 0 and ∂zv‖ = 0

and we have vGC = (E ×B)/B2, with E = −∇Φ and B = Bz ez, thus

vGCr =
1

Bz

(
−1

r
∂θΦ

)
and vGCθ =

1

Bz
(∂rΦ) (54)

and

∇r,θ · a =
1

r
∂r(r vGCr) +

1

r
∂θ(vGCθ)

=
1

r Bz
(∂r (r (−1/r)∂θΦ) + ∂θ (∂rΦ)) = 0.

(55)

Therefore, one can write an equivalent conservative equation to the preced-

ing Vlasov equation (51):

∂tf + ∂r(vGCr f) + ∂θ(vGCθ f) + ∂z(v‖ f) + ∂v‖

(
qi
mi
Ez f

)
= 0 (56)

4.2. Computation of a divergence free velocity field at the discrete level

We have obtained a discrete form of the velocity field divergence to

nullify (49), as a necessary condition to obtain a numerical solution with a
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maximum principle. We saw in (53) that ∇ · a = 0 is satisfied equivalently

if ∇rθ · a = 0 (55) is satisfied and this is still true at the discrete level

(independence of variables). Therefore, the velocity field should nullify the

discrete polar divergence (49):

1

ri

ri+1/2ar(ri+1/2, θj)− ri−1/2ar(ri−1/2, θj)

∆r
+

1

ri

riaθ(ri, θj+1/2)− riaθ(ri, θj−1/2)

∆θ
= 0

(57)

with

ar = dr/dt = vGCr =
−1

r Bz
∂θΦ and aθ = dθ/dt = vGCθ/r =

1

r Bz
∂rΦ,

using definitions given in (54).

Proposition 1. Let us define the electric potential at the nodes of the mesh

Φi+1/2,j+1/2, whatever the way it is computed. Let us set the following nat-

ural finite difference approximation for the velocity field:

ar(ri+1/2, θj) =
−1

ri+1/2 Bz

Φi+1/2,j+1/2 − Φi+1/2,j−1/2

∆θ

aθ(ri, θj+1/2) =
1

ri Bz

Φi+1/2,j+1/2 − Φi−1/2,j+1/2

∆r
.

(58)

With this approximated velocity field, the approximation of ∇rθ · a = 0 (57)

is satisfied.

The proof is easy, we just have to put the velocity field (58) in (57) to see

that all terms annulate each others.

Remark 2. Notice that the electric potential Φ should be computed at nodes

(i± 1/2, j ± 1/2) of the mesh to obtain velocities at the center of cell faces

(i ± 1/2, j) and (i, j ± 1/2). It is well adapted to the PSM schemes, where

the displacement should be calculated at cell faces.
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4.3. Numerical tests

4.3.1. Drift-kinetic 4D model, PSM schemes comparison

In this section, we will compare the numerical methods on a 4D drift-

kinetic benchmark, following the paper Grangirard et al [6]. The model is

described in section 4.1. We will compute the growth of a 4D unstable tur-

bulent mode. The benchmark consists of exciting the plasma mode (m,n),

with m the poloidal mode (θ) and n the toroidal mode (z). The initial

distribution function is the sum of an equilibrium and a perturbation dis-

tribution function f = feq + δf . The equilibrium distribution function has

the following form:

feq(r, v‖) =
n0(r)

(2πTi(r)/mi)1/2
exp

(
−
miv

2
‖

2Ti(r)

)
(59)

and the perturbation δf

δf(r, θ, z, v‖) = feq(r, v‖) g(r) h(v‖) δp(θ, z) (60)

with g(r) and h(v‖) two exponential functions and

δp(θ, z) = ε cos

(
2πn

Lz
z +mθ

)
with Lz the length of the domain in z direction, mi, Ti(r), n0(r) physical

constant profiles, see [6] for details. We have set here m = 16 and n = 8.

4.3.2. Algorithm

At the beginning of the time step, the distribution function f(x, v‖, t
n)

is known at time tn, with x = (r, θ, z). The time step ∆t = tn+1 − tn is

computed at each step with the CFL like condition:

∆t = min
d=r,θ,z,v‖

CFLd ∆xd
max
xd

(and (xd))

 ,
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with the coefficients CFLr = CFLθ = 0.5, because the flow is highly non-

linear in (r, θ) planes thus characteristics should not cross each others during

one time step, and CFLz = CFLv‖ = 8 because it is linear advection in

direction z and v‖ so characteristics can not cross each others and then we

allow a maximum displacement of 8 cells. Actually excluding the linear

phase, the most restrictive directions for the time step are r and θ, in such

a way this last value (8) has a minor importance compare to the leading

parameters CFLr = CFLθ = 0.5.

The operator splitting between the quasi-neutral equation and the Vlasov

transport equation is made second order using a Predictor-Corrector scheme

in time:

1. Time step ∆t computation.

2. Quasi-neutral equation (52) solving at tn using the distribution func-

tion fn (actually the density) to obtain the electric potential Φn(x)

at time tn+1/2. The advection field a(x, tn) is computed with Φn(x)

according to equation (53) and using formula (58) .

3. 4D Vlasov equation solving at tn with time step ∆t/2 to obtain the

distribution function fn+1/2(x) at time tn+1/2 using the advection field

a(x, tn).

4. Quasi-neutral equation (52) solving at tn+1/2 using the distribution

function fn+1/2 (actually the density) to obtain the electric potential

Φn+1/2(x) at time tn+1/2. The advection field a(x, tn+1/2) is computed

with Φn+1/2(x) according to equation (53) and using formula (58) .

5. 4D Vlasov equation solving at tn with time step ∆t to obtain the

distribution function fn+1(x) at time tn+1 using the advection field

a(x, tn+1/2).

27



In the two following paragraphs, we describe the schemes for the 4D

Vlasov equation (56) solving of the algorithm with ∆t∗ = ∆t/2 in the pre-

diction step and ∆t∗ = ∆t in the correction step.

4D Semi-Lagrangian PSM sheme with directional splitting.

• PSM 1D advection of f(x, v‖, t
n) in direction v‖ with velocity anv‖ and

time step ∆t∗/2 to obtain f(x, v‖, t
v‖/2).

• PSM 1D advection of f(x, v‖, t
v‖/2) in direction z with velocity anz and

time step ∆t∗/2 to obtain f(x, v‖, t
z/2).

• PSM 1D advection of f(x, v‖, t
z/2) in direction θ with velocity anθ and

time step ∆t∗/2 to obtain f(x, v‖, t
θ/2).

• PSM 1D advection of f(x, v‖, t
θ/2) in direction r with velocity anr and

time step ∆t∗ to obtain f(x, v‖, t
r).

• PSM 1D advection of f(x, v‖, t
r) in direction θ with velocity anθ and

time step ∆t∗/2 to obtain f(x, v‖, t
θ).

• PSM 1D advection of f(x, v‖, t
θ) in direction z with velocity anz and

time step ∆t∗/2 to obtain f(x, v‖, t
z).

• PSM 1D advection of f(x, v‖, t
z) in direction v‖ with velocity anv‖ and

time step ∆t∗/2 to obtain f(x, v‖, t
v‖) = f(x, v‖, t

n+1).

Each PSM 1D advection is achieved using the standard 1D semi-Lagrangian

PSM scheme as described in section 2.2.2. The directional splitting is second

order by using a Strang like decomposition. Since we use here a directional

splitting and a second order scheme in time for the computation of the char-

acteristic curves, the volumes are not strictly conserved in the phase space,
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because the scheme does not satisfy the discrete divergence free condition

(49).

4D Finite Volume form of the PSM scheme:.

• PSM 1D advection of f(x, v‖, t
n) in direction v‖ with velocity anv‖ and

time step ∆t∗/2 to obtain f(x, v‖, t
v‖/2).

• PSM 1D advection of f(x, v‖, t
v‖/2) in direction z with velocity anz and

time step ∆t∗/2 to obtain f(x, v‖, t
z/2).

• PSM 2D advection of f(x, v‖, t
z/2) in each plane (r, θ) with velocities

(anr , a
n
θ ) and time step ∆t∗ to obtain f(x, v‖, t

r,θ).

• PSM 1D advection of f(x, v‖, t
r,θ) in direction z with velocity anz and

time step ∆t∗/2 to obtain f(x, v‖, t
z).

• PSM 1D advection of f(x, v‖, t
z) in direction v‖ with velocity anv‖ and

time step ∆t∗/2 to obtain f(x, v‖, t
v‖) = f(x, v‖, t

n+1).

Each PSM 1D advection is achieved using the standard 1D semi-Lagrangian

scheme as described in section 2.2.2. The PSM 2D advection in (r, θ) is

achieved with the Finite Volume form as described in section 3.2. Since

we use here the scheme 3.2, the volumes are strictly conserved in the phase

space, because the scheme does satisfy the discrete divergence free condition

(49). Even if we use the semi-Lagrangian PSM 1D advection in z and v‖

directions, the property is kept because the velocity is constant in these

directions.

4.4. Results

The mesh is 128× 256× 32× 16 cells in r, θ, z, v‖ directions. Boundary

conditions are periodic for directions θ and z and Neumann (∂f/∂n = 0) in r
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and v‖. We first ran the reference test case with the non-conservative Back-

ward Semi-Lagrangian (BSL) scheme in section 2.2.1 which is currently used

in the GYSELA code. Then we ran four test cases to show the influence of

each numerical treatment: the standard conservative semi-Lagrangian PSM

scheme in section 4.3.2 with 1D directional splitting (PSM Directional Split-

ting 1D) and the same with the SLS limiter (SLS Directional Splitting 1D),

the unsplit Finite Volume form of the PSM scheme in section 4.3.2 (PSM

Finite Volume) and the same with the SLS limiter (SLS Finite Volume).

The computed 4D distribution functions are pictured in Fig. 5 at time

t = 1800 and in Fig. 6 at time t = 4400. We only present 2D slices (r, θ) of

the distribution function at v‖ = 0 and for a given value of z = z0. In these

figures X stands for r direction and Y for the θ direction. At initial time

t = 0, the minimum and maximum values of the distribution function in

this slice are (min . = 0.331,max . = 0.4187) and these values should be the

same at any time of the computation if the maximum principle would be re-

spected. In Fig. 5, we show pictures of each scheme result at time t = 1800,

which corresponds approximately to the beginning of the non-linear tur-

bulent phase saturation. Small structures are appearing and interact with

each others. All results are still close qualitatively. However, we already see

oscillations in the solution obtained with PSM DS (Directional Splitting),

where the minimum and maximum values (min . = 0.3086,max . = 0.4427)

are already quite different than the one at initial time. The PSM Finite Vol-

ume (PSM FV) form and the SLS DS better keep these extrema, but only

SLS Finite Volume keep the extrema unchanged until time t = 1800 with

a really similar behaviour of the solution. In Fig. 6, we show pictures of

each scheme result at time t = 4400 when turbulence is well developed. We

see that the standard PSM scheme creates a lot of unphysical oscillations
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PSM Directional Splitting PSM Finite Volume

SLS Directional Splitting SLS Finite Volume

Figure 5: Simulation with 128x256x32x16 cells — PSM Directional Splitting 1D (up-left)

— PSM Finite Volume (up-right) — SLS Directional Splitting 1D (down-left) — SLS

Finite Volume (down-right) — time =1800.
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(structures are reaching the boundaries in r) and may crash the compu-

tation. The PSM FV form and the SLS DS better keep the turbulence

structures, but still oscillations are created. The SLS Finite Volume keep

the extrema of the solution reasonably well (min . = 0.3263,max . = 0.4221)

(the SLS limiter does not provide a maximum principle) and the solution

is smooth. We may say that the added diffusion with the limiter helps the

scheme to diffuse subgrid structures without creating oscillations. The di-

vergence free property of the Finite Volume scheme is important to cure to

solution from instabilities that can be seen at r values close the average value

of r (vertical line at the middle of pictures in Fig. 6) in the SLS Directional

Splitting solution compare to the SLS Finite Volume solution. In Fig. 7,

we see in the reference BSL solution at time t = 1800 spurious oscillations

produced during the reconstruction step of the distribution function, which

is the only possibility to break the maximum principle for the BSL scheme:

here extrema are (min . = 0.3124,max . = 0.4430) instead of values at initial

time (min . = 0.331,max . = 0.4187). At time t = 4400, we see spurious

oscillations as well, but the maximum principle is better satisfied than with

the standard PSM DS scheme in Fig. 6, because no conservation of volumes

in the phase space has to be satisfied, as it is explained in section 2.2.1.

5. Conclusion and perspectives

The PSM scheme has been successfully integrated in the GYSELA code

and has been tested on 4D Drift-Kinetic test cases. We had first experimen-

tally stated and afterward explained in this paper that the PSM scheme can

be unstable without taking care of a velocity field divergence free condition.

The numerical results show that the study of the volume evolution in the
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PSM Directional Splitting PSM Finite Volume

SLS Directional Splitting SLS Finite Volume

Figure 6: Simulation with 128x256x32x16 cells — PSM Directional Splitting 1D (up-left)

— PSM Finite Volume (up-right) — SLS Directional Splitting 1D (down-left) — SLS

Finite Volume (down-right) — time =4400, with all color tables set to the minimum and

maximum value at initial time.
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BSL time=1800 BSL time=4400

Figure 7: Reference BSL Simulation with 128x256x32x16 cells — BSL at time=1800 with

the real color table values (left) — BSL at time=4400 with the color table set to the

minimum and maximum value at initial time (left).
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phase space is fruitful. Notice that this conservative scheme properly al-

lows a directional splitting, in the semi-Lagrangian or in the Finite Volume

form, what is not the case with the BSL scheme. The Slope Limited Splines

(SLS) limiter is efficient to cut off spurious oscillations of the standard PSM

scheme by adding diffusion that helps eventually the scheme to manage

small structures below the cell size. Of course, the PSM scheme should be

further validated as well as its integration in the GYSELA code using the

gyrokinetic 5D model in toroidal geometry. In particular, the curvature of

the mesh couple several directions by the geometrical Jacobian which makes

the divergence free condition more complex, as well as the writing of the

Quasi-Neutral solver and the Gyroaverage operator.
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