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Abstract 

The decision that a given detection level corresponds to the effective presence of a 

radionuclide is still widely made on the basis of a classic hypothesis test. However, 

the classic framework suffers several drawbacks, such as the conceptual and 

practical impossibility to provide a probability of zero radioactivity, and confidence 

intervals for the true activity level that are likely to contain negative and hence 

meaningless values. The Bayesian framework being potentially able to overcome 

these drawbacks, several attempts have recently been made to apply it to this 

decision problem. Here, we present a new Bayesian method that, unlike the previous 

ones, presents two major advantages together. First, it provides an estimate of the 

probability of no radioactivity, as well as physically meaningful point and interval 

estimates for the true radioactivity level. Second, whereas Bayesian approaches are 

often controversial because of the arbitrary choice of the priors they use, the 

proposed method permits to estimate the parameters of the prior density of 

radioactivity by fitting its marginal distribution to previously recorded activity data. The 

new scheme is first mathematically developed. Then, it is applied to the detection of 

radioxenon isotopes in noble gas measurement stations of the International 

Monitoring System of the Comprehensive Nuclear-Test-Ban Treaty. 

 

Keywords: a priori knowledge; Bayesian statistics; CTBT; environmental monitoring; 

fitted prior; radioactivity detection; radioactive xenon. 
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1. Introduction 

As early as 1968, L. A. Currie [1] made a rigorous summary of the classical 

framework for statistical hypothesis testing when applied to radioactivity detection. In 

particular, he proposed consistent definitions of limits that are useful in order to 

decide whether an observed activity level corresponds to the effective presence of a 

radionuclide, the critical level LC and the detection limit LD. These concepts are 

developed at the international level in the ISO standard 11929-7 dating from 2005 [2]. 

Nevertheless, the classical framework is by no means entirely satisfactory, at least 

for two reasons. First, if the observed level is above the critical level, and the 

radionuclide hence reported present, it makes sense to compute a point estimate and 

a confidence interval for the true radioactivity. However, the two-sided confidence 

interval may include negative, i.e. physically meaningless, values (at least with the 

Gaussian approximation to the Poisson distribution as in [1], see [3] for a numerical 

procedure to estimate alternative positive confidence intervals based on the Poisson 

distribution). Indeed, it is not straightforward in the classical framework to take into 

account the fact that the activity can only be non-negative. Second, if the observed 

level is below the critical level, the radionuclide is reported absent, but with an 

unknown probability of error. Moreover, the observed net signal does not further 

contribute to any decisional quantity (it merely intervenes in the estimation of the 

detection limit when the true blank signal is estimated as an average of blank and 

gross signals, as advocated in [4]). This is not satisfactory since the observation of a 

negative net signal (i.e. of a gross signal below the blank) intuitively more strongly 

supports the hypothesis of the radionuclide’s absence than the observation of a 

positive net signal. 

Even more problematical is the fact that, the true radioactivity being considered as an 

unknown but certain value, probabilities of zero activity or of a strictly positive activity 

are meaningless: either the radioactivity is truly zero, or it is not. This is not the case 

in the Bayesian framework, where the true activity is considered as a (positive) 

random variable, and where probabilities of its belonging to a given interval or to be 

equal to a given value indeed have a meaning, which meets the common sense. It 

hence opens the way to the estimation of the posterior probability of zero (or non-

zero) activity, i.e. given the observed activity level. However, to adopt the Bayesian 

framework in turn imposes to be able to provide an a priori probability for a zero 

activity, as well as an a priori distribution (or “prior”) for the activity when it is non 

zero. 

In the past, several approaches to radioactivity detection based on Bayesian 

concepts have been proposed, to the point that Bayesian theory is now a pillar of the 

most recent ISO standard 11929:2010(E) [5]. In [6], Zähringer & Kirchner used a 
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Bayesian approach with a classic improper prior for the activity that leads to 

satisfactorily positive point estimates and confidence intervals, but with the 

shortcoming that the posterior probability of zero activity is always zero. Recognizing 

this shortcoming, Vivier et al. constructed an approach that allows non-zero 

estimates of the posterior probability of zero activity, but with the drawback of not 

specifying explicitly any a priori probabilities or priors [7]. 

In this paper, we propose a truly Bayesian approach based on proper priors which 

leads both to physically meaningful estimates for the true activity and to a possibly 

non zero posterior probability of zero activity. Moreover, we show that using a proper 

prior allows to use data recorded in the past in order to estimate the a priori 

probability of no activity together with the prior for the activity, by fitting the marginal 

activity density to the observed data. 

Section 2 presents the Bayesian concepts and the estimates they potentially lead to 

for the problem of radioactivity detection, with their advantages over the classical 

estimates and a discussion of the Bayesian priors. In section 3, we first recall the two 

previously cited approaches in order to explicit the origin of their shortcomings, and 

then detail the proposed method. Section 4 presents simulated results as well as 

results obtained on radioxenon data, and comparisons to competing approaches. 

The whole methodology is further discussed in section 5. 

2. Bayesian concepts and estimates for radioactivity 
detection 

2.1. Radioactivity detection framework 

In the following, we denote the gross count associated to the radionuclide of interest 

by Xg. It is assumed that it is the sum of a blank count Xb and an independent net 

count Xn, and that both are Poisson random variables with expectations (true values) 

µb and µ respectively. Xg is hence also a Poisson process with expectation µb + µ. In 

practice, a net count cannot be measured directly, it is obtained by subtracting an 

independent blank count Xb from a gross count Xg, i. e. X = Xg – Xb. Thus: E(X) = µ 

(where E() denotes the mathematical expectation), and, due to the independence, 

var(X) = µ + 2 µb. More generally, if the background counting time equals n times the 

net signal counting time, X = Xg – Xb/n, E(X) = µ, and var(X) = µ + (n+1)/n µb. 

In the classical framework, µ is an unknown certain variable. The detection problem 

is translated into a hypothesis test, that of the null hypothesis H0 that µ = 0, against 

the alternative hypothesis H1 that µ > 0. Either H0 is true or not: if H0 is true, a classic 

test will wrongly reject H0 with a chosen probability or type I error risk !, and if it is 

false, the probability of error " of accepting H0, or type II error, is unknown. 
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In the Bayesian framework, µ is the realization of a random variable M, “H0 is true” 

(M = 0) and “H1 is true” (M > 0) are two random events forming a complete set of 

events. In this framework, it makes sense to talk about the probabilities of the two 

events, be they a priori, or a posteriori, i.e. given the observation of x. 

2.2. Bayesian estimates 

As a matter of fact, the posterior probabilities of the two events are provided by 

Bayes’ formula: 
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knowing the a priori probabilities of the hypotheses P(Hi) (with ! P(Hi) = 1), and the 

conditional densities of x, the f(x|Hi). Since the hypotheses depend on the value µ of 

M1, the conditional densities are expressed as: 
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where #0 = {0} and #1 = ]0 ; +"[, the $(µ|Hk) are the a priori densities of the true 

radioactivity, and f(x|µ) is the density of the observed net count given its true value. 

The posterior probabilities hence become: 
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Let us denote by $(µ) the a priori density of M: 
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where %0(µ) denotes the Dirac distribution. Let f(x) be the marginal density of x: 

 
 
f(x) = f(x |µ)!(µ)dµ"  (5) 

Since H0 is a simple hypothesis, we have: 

 
 
P(H

0
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f(x |µ = 0)P(H
0
)

f(x)
 (6) 

If costs cI and cII can be assigned to type I and type II errors respectively, it can be 

shown that H0 must be accepted if P(H0|x) > cII/(cI+cII) [8]. For instance, if the two 

costs are equal, one will decide in favor of H0 when P(H0|x) > 1/2, but if the type II 

error cost is much larger, P(H0|x) does not need to be that small for H0 to be rejected. 

Furthermore, it is possible to estimate the posterior density of µ: 

 

 

f(µ | x) =
f(x |µ)!(µ)

f(x |µ)!(µ)dµ"
=

f(x |µ)!(µ)

f(x)
 (7) 

                                            
1 They may depend on other parameters as well, but in order to simplify the presentation, we retain 

the dependency in µ only. See [9] for a presentation of models with several unknown parameters. 
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Thus, if µ cannot take negative values a priori (i.e. $(µ) = 0 if µ < 0), the same holds 

automatically for µ|x. The Bayesian estimator µ* of µ is the mathematical expectation 

of µ|x, i.e.: 

 
 
µ
*
= E(µ | x) = µf(µ | x)dµ!  (8) 

A 1 – & credibility interval [µ
– ; µ

+], i.e. such that P(M ' [µ
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be estimated, its bounds being such that: 
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Since f(µ|x) = 0 if µ < 0, the point estimate is necessarily positive and the credibility 

interval cannot contain negative values. 

To summarize, the posterior probability of H0 (i.e. of zero radioactivity) can be 

estimated, as well as a point estimate and a credibility interval for the true value µ of 

the radioactivity that are physically meaningful, provided values can be assigned to 

the following quantities: 

– f(x|µ), the distribution of the observed net count given the true radioactivity value, 

– P(H0), the a priori probability of no radioactivity, 

– $(µ|H1), the a priori distribution of the radioactivity when it is non zero. 

In principle, f(x|µ) is the difference of two Poisson distributions. For simplicity, we will 

assume in the following that the counts are large enough for the Gaussian 

approximation to be valid, i.e. X ( N(µ, )2 = µ+2µb). Thus, we will use f(x|µ) = 1/) 

*( (x–µ)/)) where * denotes the normal distribution. 

Thus, the problem that remains is how to assign values to P(H0) and $(µ|H1).  

2.3. Discussion of Bayesian priors 

Bayes formula (1) is widely used in medicine for the correct evaluation of the result of 

a medical test, or even in court in order to make adequate use of legal evidence such 

as DNA signatures [9-10]. Let us take the example of medical diagnosis in its 

simplest form: the goal is to evaluate the probabilities of two events, disease (H1) or 

no disease (H0), given the result of some medical test, positive (x = “+”) or negative 

(x = “–“). Of course, the application of Bayes formula assumes the knowledge of 

P(H1), the a priori probability of disease (or disease prevalence), and of the 

conditional probabilities P(x=”+”|H1) (the sensitivity of the test) and P(x=”+”|H0) (the 

test’s false positive rate). However, even in a perfectly “frequentist” approach to 

statistics, i.e. where probabilities are interpreted as limiting values of frequencies, it 

raises no theoretical problem to estimate these unknown probabilities with 

frequencies observed on a sufficiently large and representative sample of patients. In 

other terms, the status of a priori and conditional probabilities is not much different 

from that of observed data: it is the synthesis of past observations. In particular, prior 
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information does necessarily have the status of belief, a criticism that is often 

formulated against the Bayesian approach. The only practical problem is the 

availability of large and representative sets of past observations. 

In principle, the case of radioactivity detection does not differ from the medical 

diagnosis problem. Measurements being collected by the International Monitoring 

System (IMS) of the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) 

[11-13] using various detection systems [14-17] daily and world-wide, it should be 

possible to estimate the a priori probability P(H0) and the conditional density $(µ|H1) 

using this data, and hence to apply the Bayesian framework described in the 

previous section. In practice, the problem is more complex due to two factors: 

- in the medical diagnosis example, the observed variable being discrete (x = “+” or 

x = “–“), the prior information merely consists of the three probabilities P(H0), 

P(x=”+”|H0) and P(x=”+”|H1), whereas for radioactivity detection, the radioactivity µ 

taking real positive values, the continuous density function $(µ|H1) (i.e. the whole 

radioactivity profile) has to be estimated. 

- whereas the characteristics of the medical test are not expected to change if the 

test itself is not modified, the stationary character of the radioactivity profile due to 

unknown environmental factors or human activity may be questioned. 

In the next section, we first discuss a few approaches proposed in recent years to 

adapt the Bayesian inference framework to radioactivity detection. We then expose 

the solution we propose. 

3. Implementations of the Bayesian framework 

3.1. Existing implementations 

3.1.1. Improper prior approach 

This is how we name the Bayesian approach implemented in [6] by Zähringer & 

Kirchner, who classically consider that if no other information is available, the 

Heaviside step function can be used as prior to reflect the basic fact that the true 

activity cannot be negative [9]: 
 

  
!(µ) = I

[0;+"[
(µ)  (10) 

where IA(x) denotes the indicator function for interval A. This prior is improper since 

its integral is infinite. However, the posterior density of µ can be computed directly 

from (7), hence the following point estimate and confidence interval: 
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where +(x) denotes the normal cumulative distribution. These estimates certainly 

have one advantage: they are always positive, and hence physically more 

meaningful than the classic ones. If x >> ), we have µ* , x, and µ
± = x ± ) +–1(1 – 

&/2), i.e. the Bayesian estimates coincide with the classic ones (even though their 

meaning is different). Nevertheless, this approach suffers two problems: 

- the prior $(µ) (10) being improper, the marginal density f(x) cannot be estimated, 

and hence cannot be compared to the observed one, 

- since there is no Dirac peak at µ = 0 in the prior $(µ), there is none in f(µ|x) either, 

P(H0|x) is necessarily equal to zero, whatever the observed x. 

This implementation of the Bayesian framework hence deprives itself from most 

advantages of the Bayesian approach listed in section 2.2. 

3.1.2. Implicit prior approach 

This is how we name the implementation proposed in [7], which aims precisely at 

correcting the previous approach so that P(H0|x) is not necessarily equal to zero. 

However, this implementation is rather heterodox. Starting from Zähringer & 

Kirchner’s expression of f(µ|x) as given in (11), Vivier et al. state that the 

normalization by the factor +(x/)) is not adequate: “this conditioned reflex is not 

pertinent” [7], and instead add a Dirac peak with area 1 – +(x/)) to the numerator: 

 
  
f(µ | x) = f(x |µ)I

[0;+![
(µ) + 1" # x $( )( )%0

(µ)  (12) 

In this way, the posterior probability of H0 is indeed non zero: P(H0|x) equals 1 – 

+(x/)). However, this solution hardly finds a justification in the Bayesian framework: 

the notion of prior is implicit, and as in [6], no marginal density f(x) can be estimated. 

The fact that, whatever the value of ), P(H0|x = 0) = 0.5, is also difficult to justify. As a 

matter of fact, intuitively, the smaller )  (due to a smaller true blank), the larger 

P(H0|x) should be. Finally, note that the positive part of the posterior density and the 

point and interval estimates are obtained by multiplying those in (11) by +(x/)). 

3.2. Proposed implementation 

The first problem with Zähringer & Kirchner’s approach, namely the nullity of the a 

posteriori probability of no radioactivity, is simply due to the fact that the prior they 

use has no Dirac peak at µ = 0, i.e. it comes from the implicit nullity of the a priori 

probability of no radioactivity. This problem is avoided with any prior of the form: 
 

 
!( ) = P(H

0
)
0
( ) + (1#P(H

0
))!( |H

1
)  (13) 

with P(H0) > 0. Moreover, in order for the Bayesian approach to be fully operational, 

in particular in order to allow to derive an expression for the marginal density f(x) and 

to fit it to observed data, it is necessary to use a proper prior, i.e. the prior $(µ|H1) 
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must indeed be a density with unit area (see [8] for the discussion of the improper 

prior with a Dirac peak at zero $(µ) = # %0(µ) + # I]0; +"[). 

We propose to use proper priors of the form (13) that depend on adjustable 

parameters, to estimate these parameter as well as P(H0) by fitting the marginal 

density f(x) to previous data by maximum likelihood estimation, and finally to choose 

a prior that fits the data, if there is any. 

3.2.1. The three proposed priors 

Our choice of parameterized densities for $(µ|H1) was subject to the following 

constraints: the computations of equations (5) to (9) should be tractable, they should 

have a small number of parameters, and they should be realistic in the sense that 

they should tend to zero when µ tends to infinity. This led us to three densities 

defined by a single parameter: a uniform density over a finite interval, an exponential 

density, and a half-Gaussian shaped density. 

• Uniform prior: under the hypothesis of strictly positive radioactivity, the latter is 

assumed to be uniformly distributed in ] 0 ; d[, with d > 0: 

 
  
!( |H

1
) =

1

d
I

]0;d[
( )  (14) 

• Exponential prior: the non-zero activity is assumed to be exponentially distributed 

with parameter - > 0: 

 
  

!( |H
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1

"
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"
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• Half-Gaussian prior: the non-zero activity is assumed to be normally distributed 

with parameter . > 0, with positive values only: 

 
  

!(µ |H
1
) =

2

"
#

µ

"
$
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'
()
I

]0;+*[
(µ)  (16) 

Note that it could be interesting to extend this case to a Gaussian with positive 

mean (also truncated at zero). However, this necessitates the addition of a 

position parameter, and though the computations of equations (5) to (9) are still 

tractable, they are quite heavy and postponed to a future study. 

For each of the three priors $(µ|H1), the marginal density f(x), the a posteriori 

probability of H0 P(H0|x), the posterior density of µ f(µ|x), the Bayesian point estimate 

µ* = E(µ|x) and the credibility interval for µ are given in the Appendix. 

3.2.2. Extension to a mean dependent variance 

The integrations over µ in the Appendix have been performed with constant ) in the 

conditional distribution f(x|µ) = 1/) *( (x–µ)/)). However, ) itself depends on µ since 

for a given value of µb, )
2 = µ + 2µb. The corresponding analytical computations 

being considerably more complex, we have checked empirically through simulations 
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that the results still hold in that case, i.e. that the results are identical provided )2 is 

replaced by x+2µb (x + (n+1)/n µb when the background counting time is n times 

larger than that of the net signal) in the Equations of the Appendix (this necessitates 

that x > –(n+1)/n µb, which proved true in practical situations). This will be illustrated 

numerically in section 4.1. 

3.2.3. Estimation of the prior parameters 

If for a given radionuclide station, measurements of the past activity are available, 

assuming a prior of known form among (14), (15), or (16), it is possible to estimate 

the unknown a priori parameters in these equations (p0 and d, p0 and -, and p0 and . 

respectively) by fitting the corresponding marginal density f(x) (i.e. the functions (A3), 

(A6), and (A9)) to these measurements. We propose to perform this fit using 

maximum likelihood, and finally to retain a prior that leads to a correct fit. For 

simplicity, the parameters of the three priors d, -, and . will be merged into a single 

one, d, by taking - and . such that d is the 1 – / = 95% percentile of these priors: 

 
 

! =
"d

ln(#)
,  $ =

"d

%
"1(1" # / 2)

 

3.2.4. Validation 

The proposed method assumes a constant true blank signal µb. We propose first to 

check that the blank count is indeed Poisson distributed around a constant value, 

and if yes, to introduce its estimate in Eqs. (A3), (A6), and (A9). This will be detailed 

in section 4.2. devoted to the application of the approach to experimental results. 

4. Results 

4.1. Numerical validation of the results for mean dependant 

variance 

On one hand, for fixed µb, we have computed the marginal density of the net count 

f(x), the posterior density f(µ|x), the Bayesian point estimate µ* = E(µ|x) and the 

credibility interval according to the equations of the Appendix for each of the three 

priors under H1, where )2 was replaced by x+2µb. 

On the other hand, we have simulated N = 106 realizations of Gaussian net counts 

according to f(x|µ) = 1/) *( (x–µ)/)), with )2 = µ+2µb where µb is fixed, and the 

density $(µ) according to (13) and one of (14), (15) and (16). We could hence: 

– obtain the histogram of the values of x, which estimates the marginal density f(x), 

– for small intervals centered on regularly spaced values of x: 

• evaluate the proportion of counts corresponding to H0 (i.e. estimate the posterior 

probability P(H0|x))  
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• obtain a histogram of the value of µ (i.e. estimate the posterior density f(µ|x) 

• compute the mean of µ (i.e. estimate µ*)  

• evaluate the proportion of values of µ in the 95% credibility interval. 

Results obtained for µb = 200, p0 = 0.5 and d = 100 are shown in Figure 1. Figure 1a 

displays the computed (thick lines) and simulated (thin lines) estimates of P(H0|x), 

while Figure 1b shows the estimates of the marginal density f(x). There is perfect 

agreement between simulated and computed estimates. The estimates of f(µ|x) are 

displayed for X = xobs = 80 in Figure 1c, 1d, 1e. They are all positive, the thick vertical 

thick line at µ = 0 materializing the Dirac peak of area P(H0|X = xobs). There is still 

excellent agreement between the computed and simulated estimates. In addition, for 

the three different priors under H1, we compared the simulated and computed 

estimates of µ*, see Table 1. We checked the quality of the credibility interval by 

estimating its actual credibility level. 

 

 Estimates of µ* 95% credibility interval 

 computed simulated computed  actual 

credibility level 

Uniform 72.77 72.80 [34.23 ;98.35] 95.26 % 

Exponential 65.27 66.17 [20.47 ;108.51] 95.36 % 

Half-Gaussian 67.20 67.58 [26.21 ;106.96] 95.26 % 
Table 1. Validation of the results with mean dependant variance when µb = 200, p0 = 0.5, 

d = 100, xobs =80. 

 

The effect of lowering µb and xobs is shown in Figure 2, where µb = 50 (instead of 200) 

and xobs = 20 (instead of 80), and as in Figure 1, p0 = 0.5, and d = 100. The 

agreement between simulations and computations is still excellent, as also shown by 

Table 2. Interestingly, the Bayesian point estimate µ* of the true activity µ is 

systematically smaller than its classic counterpart (xobs), especially when xobs is not 

much larger that than the standard deviation ) = (µ+2µb)
1/2. 

 

 Estimates of µ* 95% credibility interval 

 computed simulated computed  actual 

credibility level 

Uniform 12.18 12.08 [0.00 ; 39.01] 95.46 % 

Exponential 12.59 12.18 [0.00 ; 36.51] 96.13 % 

Half-Gaussian 13.31 13.11 [0.00 ; 38.36] 95.70 %) 
Table 2. Validation of the results with mean dependant variance when µb = 50, p0 = 0.5, 

d = 100, xobs =20. 
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Figure 1. µb = 200, p0 = 0.5, d = 100, xobs = 80 (thick vertical black line on all figures). 

a) Computed (thick) and simulated (thin) estimates of P(H0|x) for the three priors under 

H1: uniform (red), exponential (green), half-Gaussian (blue); the horizontal thin black line 

materializes the a priori probability of H0, p0. b) Estimates of the marginal density f(x). c), 

d), e): computed (thick) and simulated (thin) estimates of f(µ|X = xobs), prior $(µ|H1) (thin 

dashed colored line), computed estimate of µ* and of the credibility interval (thin vertical 

black lines). 
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Figure 2. Same as in Figure 1 (p0 = 0.5, d = 100), but for µb = 50 instead of 200 and 

xobs = 20 instead of 80. 

 

The effect of having a smaller value of µb is that the posterior probability of H0 as a 

function of x decreases faster to zero. However, having xobs much smaller increases 

P(H0|X = xobs) and pushes the estimate of µ* towards zero. Note that the lower bound 

of the credibility interval does not become negative. 
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4.2. Experimental results 

4.2.1. Available records and pre-processing 

Experimental records from twelve stations equipped with SAUNA detection systems 

[16] over a six-months period of daily measurements were studied, some stations 

being exposed to a low but steady radioactivity level (such as that of nuclear power 

plants (NPP) or medical isotope production facilities), others far from any known 

source of radioactivity. These stations detecting xenon fission gas are part of the 

CTBTO IMS that has been described in [18], and a map of their locations is available 

at www.ctbto.org/map#. The daily environmental observations provide records 

relative to the atmospheric concentrations of the xenon isotopes 131mXe, 133mXe, 
133Xe and 135Xe, and have been discussed in several publications [19-21]. 

More precisely, the records provide, for each isotope, the values of the net count, as 

well as Currie’s critical level and detection limit in Bq/m3, as defined in [1] and 

computed according to [16]. Thus, a first pre-processing step consisted in deducing 

the corresponding value of the blank count from these values. Second, prior to our 

analysis, the data went through a filtering step in order to ensure its good quality: 

state of health parameters describing the sampling and measurement conditions, 

(volume of air sampled, sampling and counting times) were checked to be within 

normal operating range. As a result, 7% of the available data was filtered out. 

We present results pertaining to the 131mXe isotope. Due to its lower production rate 

and its longer half-life as compared to the other xenon isotopes, 131mXe exhibits the 

lowest concentrations that can be observed over long periods of time, and is hence a 

good example to illustrate the potentials of our approach for low-level measurements. 

Moreover, when analyzing a possible violation of the Treaty [22], a proven detection 

of this isotope would be important for two reasons: first, with its comparatively low 

yield when produced by the fission of uranium or plutonium [23], its detection - unless 

at extremely low concentrations compared to 133Xe - is rather indicative of fissions 

accumulated over time (like from operating NPP) as opposed to non-detectable 

concentrations (with minimal containment of a nuclear test) that would be released 

from the instantaneous fissions of a covert nuclear explosion; second, its presence 

may not only reveal a different fission scenario, but it is also a tracer of long term 

atmospheric transport, and a potential indicator of mixtures of air masses that need 

to be taken into account when ascribing consistent source terms and scenarios to the 

observations. 

4.2.2. Checking for the Poisson distribution of the blank count 

The results established in section 2 assume a constant blank count. In that case, the 

distribution of the blank should display a Poisson distribution. However, even for a 
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station with nearly constant blank, there may be outliers due to significantly different 

concentration levels or lower quality data that have escaped our first pre-processing 

step. Thus, we have performed a first fit of the (deduced) blank histogram by a 

Poisson distribution, and removed the values larger than its 99th percentile. After 

cleaning, half of the twelve stations display a Poisson or quasi-Poisson distribution. 

For these stations, the proposed framework is hence decided applicable. Figure 3 

displays the results obtained for station USX79 (Hawai, USA): after cleaning, a 

second Poisson fit leads to an estimate value for µb of 4, with a 02 goodness of fit p-

value of 0.23, i.e. the density can be considered Poissonian. 

 
Figure 3. Deduced blank count based data cleaning for station USX79 (decided Poisson 

distributed after cleaning). Top left: whole data set and first Poisson fit. Bottom left: 

corresponding recorded net counts. Top right: remaining data and second Poisson fit. 

Bottom right: remaining recorded net counts. 

4.2.3. Estimation of the prior parameters 

Thus, for the stations whose blank level µb can be assumed constant, we also have 

available the cleaned histogram of the blank count, which is nothing else than the 

empirical marginal density f(x). The expressions of f(x) (A3), (A6) and (A9) with 

parameters p0 and d are fitted to the empirical histogram by maximum likelihood, i.e. 

by minimizing minus the log likelihood function of the data –ln(L(p0, d)), with the 

constraints that p0 ' [0, 1] and d $ 0. For each fit, in order to maximize the probability 

to converge to the global minimum, 10 initializations of the two parameters are 

performed: the initial value of the estimate of p0 is chosen uniformly distributed in [0, 

1], and the initial value of the estimate of d is chosen uniformly distributed in [0, 2
 
µ

b
], 

where 
 
µ

b
 is the estimate of the true blank count estimate obtained with the Poisson 
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fit on the cleaned data. For each initialization, the constrained optimization problem is 

solved by sequential quadratic programming [24]. 

 

 
Figure 4. Prior fitting for station USX79 (with true blank considered constant). For each 

prior, the fit of the marginal density f(x) is on the left, and the corresponding estimate of 

the prior $(µ|H1) on the right. 

 

Figure 4 shows the fits obtained for station USX79 with constant blank level 

estimated at 
 
µ

b
 = 4, see previous section. The fit is visually much better with the 

uniform and exponential priors than with the half-Gaussian prior, see also the values 

of the average cost –ln(L)/n after minimization on Figure 4. Both the uniform and the 

exponential priors agree on a prior probability of H0, i.e. of no radioactivity around 

2/3, and therefore also on a small a priori level of radioactivity. These estimates are 

consistent with the station’s location far from any industrial source of xenon. Note 

that we verified that the Gaussian approximation holds for such small counts, see [3] 

for the exact density of the difference of two Poisson variables, and also [25] for a 

discussion of the validity of the Poisson-normal approximation. 

4.2.4. Bayesian estimates and comparisons to other approaches 

For each observed net count x at station USX79, we can estimate the posterior 

probability of zero radioactivity P(H0|x), the Bayesian estimate µ* for the true 
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radioactivity µ, and its credibility interval [µ– ; µ+]. For the computation of these 

estimates, we used the exponential prior which leads to a good fit of the marginal 

density. As stated previously, the estimate of P(H0|x), shown in Figure 5a, is not 

available in the classic framework (and would even be meaningless), and the 

credibility interval, shown in Figure 5b, has the advantage with respect to the classic 

confidence interval not to include negative values. It is also interesting to note that 

the Bayesian estimate µ* of the true activity µ is much smaller than the classic 

estimate (simply equal to the observed count x). This effect was already noticeable in 

the simulated examples (see Table 1 and Table 2), though less strong because in 

these examples the observed x was larger as compared to its standard deviation 

(µ+2µb)
1/2 than in the case of station USX79. 

 

 
Figure 5. Bayesian estimates for station USX79 obtained with the exponential prior and 

the implicit prior approach: a) posterior probability of zero radioactivity P(H0|x) with both 

approaches, b) point and interval estimates for the true net activity µ obtained with the 

exponential prior; c) estimates obtained with the implicit prior approach. 

 

In order to illustrate the implicit prior approach proposed in [7], and to compare it to 

the proposed approach based on an empirically fitted prior, its results are also shown 
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in Figure 5. As depicted in section 3.1.2, even though the blank level is very small, 

the probability of no radioactivity automatically equals # for x = 0 (whereas the 

proposed approach makes an evaluation around 0.7). Point and interval estimates 

can be computed, but since the prior is implicit, the marginal density cannot be 

estimated nor related to any prior distribution of the radioactivity. 

In order to make further comparisons with the classic decision framework, we can 

also plot the posterior probability estimate as a function of x – LC, where Currie’s 

critical level LC = +11(1 – !) (2 xb)
1/2 is computed with a type I error risk ! of 5%, see 

Figure 6. In the classic framework, H0 is rejected if the observed count x exceeds LC, 

hence in the right part of the graph. Interestingly, for this station, this coincides with 

the posterior probability of no radioactivity P(H0|x) being smaller than 1/2. 

 

 
Figure 6. Same Bayesian estimate of the posterior probability of zero radioactivity P(H0|x) 

as in Figure 5, but here as a function of x – LC, where LC is Currie’s critical level. 

 

But the two approaches do not systematically coincide. Let us consider another 

station with quasi-constant blank level, SEX63 (Stockholm, Sweden). The true blank 

count µb is estimated at 6, and the exponential prior leads to the best fit, with a small 

prior probability estimate of zero radioactivity of 0.13 and a maximum net count d = 

7.1, i.e. a small net activity is very likely for this station. This is consistent with the 

station location in northern Europe, in the vicinity of NPPs. The posterior probability 

of no radioactivity P(H0|x) for this station as a function of x – LC is depicted in Figure 

7. This time, with a threshold of 1/2 for P(H0|x), the proposed approach would detect 

more radioactive events than the classic test. 

However, in the Bayesian framework, the decision threshold should depend on the 

costs associated to the two types of error, as explained in section 2.2. It equals one 

half only in the case of equal costs. But if missing a real event costs more than a 

false alarm, the posterior probability does not need to be as small as 0.5 small in 

order to reject H0. This possibility to modulate the threshold is very appealing, but 

also raises the difficult question of the quantification of the costs, the economic cost 

of analysts for the interactive study of the false alarms (CI), and the diplomatic cost of 

missing a real event (CII). 
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Figure 7. Same as Figure 6, but for station SEX63. 

 

The results of the implicit prior approach as a function of the classic ones are also 

given for both stations in Figure 6 (USX79) and Figure 7 (SEX63): the implicit prior 

approach detects more radioactive events than the classic framework for both 

stations. The interesting difference of behavior detected by the empirically fitted prior 

approach between a station far from any industrial source of radioxenon and one 

close to NPPs is not made clear by the implicit prior approach. 

5. Discussion 

Several points need to be discussed and/or further improved. 

First, concerning the estimation of value of the background noise level µb, one could 

think of including µb in the set of parameters to be estimated for the fit of the marginal 

density, i.e. together with p0 and d, instead of estimating it separately from the 

background measurements only. This is indeed a possibility, but it would deprive us 

from a means to detect undesired variations of µb, and to clean the data by removing 

the corresponding outliers. As a matter of fact, we think that it is a quality of the 

method that, for each new observation, it requires first to test whether the observed 

xb is likely to be generated by a Poisson process with the estimated value of µb, and 

that the answer be yes in order to apply the Bayesian scheme. Alternatively, if 

xb >> µb, one can still resort to the classic scheme. The possibility to deal with a 

varying blank in a Bayesian framework is further discussed below. 

Another reason not to include µb in the parameters to be estimated by the maximum 

likelihood fit is that, for the moment, the goodness of the fit is not very well quantified 

by the value of the log-likelihood function, as pointed out for example in [26]. As a 

matter of fact, we used maximum likelihood estimation because the records that are 

available to us at the moment are too small to be able to work on binned data. In the 

case of sufficiently large data sets, it is possible to adjust the distribution via least 

squares on the binned data and, in that case, the goodness of the fit can be 

assessed through a 02 test. Thus, either we will dispose of much larger data sets in 

the future, and the problem disappears, or this issue will have to be answered in a 
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more satisfactory fashion. Larger data sets can already be obtained, but need so far 

time consuming interactive review to validate their quality. 

A last point concerns the possibility of generalizing the proposed method to a varying 

blank level µb. This is theoretically feasible, but with some additional practical and 

theoretical difficulties. First, the observed background signal xb will have to be 

included in the Bayesian analysis; second, enough data should be available in order 

to be able to identify the joint marginal density of both net signal x and background 

signal xb. From the few practical results we already have, we feel that for many 

stations, the background level will be either constant or take a few different values 

only, and that it is hence worth to test the proposed method as it is, but if necessary 

with the possibility to switch between several models, one for each level of µb. 

6. Conclusion 

In this paper, we have discussed a few approaches described in recent years to 

adapt Bayesian inference to the detection of low levels of radioactivity in the 

environment. With the help of mathematical considerations, we have pointed out the 

inherent drawbacks of these approaches and in particular the fact that they do not 

make the best use of the Bayesian notion of prior. In return, we have proposed and 

illustrated an innovative methodology that is closer to Bayesian principles and makes 

an extensive use of past environmental observations for prior estimation. This allows 

to analyze a new observation taking the available a priori knowledge into account, 

and to provide the probability for this observation to correspond to a truly radioactive 

sample, together with physically meaningful estimates of the true radioactivity value. 

Appendix: Bayesian estimates for the proposed priors 

In order to lighten the notations, the a priori probability of zero activity P(H0) is 

denoted by p0 in the following results. According to (6), since f(x|µ) = 1/) *((x–µ)/)), 

the a posteriori probability of H0 is always of the form: 
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According to (7), the posterior density of µ is always of the form: 
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The marginal density f(x), the Bayesian point estimate (8), and the credibility interval 

(9) for µ are given below for the three priors. 

A.1. Uniform prior 

With the uniform prior (13), the marginal density is given by: 
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Bayesian point estimate: 
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1 – & credibility interval: 
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A.2. Exponential prior 

Marginal density with the exponential prior (14): 
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Bayesian point estimate: 
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1 – & credibility interval: 
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A.3. Half-Gaussian prior 

Let us define 2 according to: 
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Marginal density with the half-Gaussian prior (15): 
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Bayesian point estimate: 
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1 – & credibility interval: 
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