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Quentin Barthélemy, Anthony Larue, Jerome Mars. 3D Rotation Invariant Decomposition of
Motion Signals. 3rd Workshop on Analysis and Retrieval of Tracked Events and Motion in
Imagery Streams ARTEMIS, Oct 2012, Florence, Italy. pp.ID 575, 2012. <hal-00802075>

HAL Id: hal-00802075

https://hal.archives-ouvertes.fr/hal-00802075

Submitted on 19 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
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émanant des établissements d’enseignement et de
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Abstract. A new model for describing a three-dimensional (3D) tra-
jectory is introduced in this article. The studied object is viewed as a
linear combination of rotatable 3D patterns. The resulting model is now
3D rotation invariant (3DRI). Moreover, the temporal patterns are con-
sidered as shift-invariant. A novel 3DRI decomposition problem consists
of estimating the active patterns, their coefficients, their rotations and
their shift parameters. Sparsity allows to select few patterns among mul-
tiple ones. Based on the sparse approximation principle, a non-convex
optimization called 3DRI matching pursuit (3DRI-MP) is proposed to
solve this problem. This algorithm is applied to real and simulated data,
and compared in order to evaluate its performances.

Key words: 3D, motion trajectory, rotation invariant, shift-invariant,
matching pursuit, Procrustes, registration.

1 Introduction

In 3D space, a time-varying 3D trajectory composed of N temporal samples is
considered. This trajectory is decomposed on elementary patterns and is thus
described as the sum of K vectors. Different models can be considered.

In computer vision, Akhter et al. [1] described a non-rigid 3D object of P
points as P temporal trajectories of N samples. A single point will be considered
in this work. Thus, the 3D trajectory y∈R3×N is defined as:

y =

K∑
k=1

ak θk , (1)

where ak ∈ R3×1 are the coefficients, and θk ∈ R1×N are the trajectory basis
vectors. The trajectory y is the sum of K trajectory basis vectors {θk}Kk=1, as
illustrated in Fig. 1 (top). Contrary to its dual model based on a shape basis
[2], the advantage of a trajectory basis [1] is to be defined independently of
the data. So, generic basis as fast transforms can be employed with this model.
More particularly, discret cosinus transform (DCT) appears to be a well-adapted
generic basis to study motion signals (as also noticed in [3]).
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Fig. 1. Illustration of the three models to describe a 3D trajectory. Akter’s et al. model
(top), Barthélemy’s et al. model (middle) and the introduced 3DRI model (bottom).

In signal processing, Barthélemy et al. [3] described a multicomponent tem-
poral signal as the sum of multicomponent patterns. They used a redundant
basis composed of M>N elements which is called dictionary. In this case, ele-
ments of the dictionary are no more called vectors but atoms. Considering here
the particular case of tricomponent data, a 3D trajectory of N samples is viewed
as the sum of K 3D trajectories. The trajectory y∈R3×N is defined as:

y =

K∑
k=1

xk φk , (2)

where xk ∈ R are the coefficients, and φk ∈ R3×N are the 3D atoms. Thereby,
as seen in Fig. 1 (middle), the trajectory y is viewed as a weighted sum of K
3D atoms. This model is different from the Akhter model. Indeed, in model (1),
each unicomponent trajectory θk (1D pattern) is multiplied by three coefficients,
one by dimension. In model (2), each tricomponent trajectory φk (3D pattern)
is multiplied by a scale factor. Here, the advantage of using this model is to
deal with 3D trajectory patterns φk ∈ R3×N whose the three components can
be different contrary to model (1) which has the same pattern on the three
components. The differences between model (1), called multichannel framework,
and model (2), called multivariate, are well detailed in [3].

The purpose of this article is to provide a 3D rotation invariant (3DRI)
model. Thus, a rotation matrix Rk ∈ R3×3 is added to each 3D atoms φk and
model (2) becomes:

y =

K∑
k=1

xk Rk φk . (3)
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Each rotation matrix Rk has to be orthogonal, so it has to verify the condition:
RkR

T
k =Id. Finally, the trajectory y is represented as a weighted sum of rotatable

3D atoms as seen in Fig. 1 (bottom).
In 3DRI decomposition, we are interested in the estimation of coefficients

x = {xk}Kk=1 and rotation matrices R = {Rk}Kk=1 of the model (3). The problem
to solve here is:

minx,R

∥∥∥∥∥ y −
K∑
k=1

xk Rk φk

∥∥∥∥∥
2

s.t. ∀k∈NK , RkRTk =Id , (4)

where ‖.‖ is the Frobenius norm and 〈A,B〉 = trace(ABT ) is the associated
matrix inner product, with (.)T the transpose operator. To the best of our
knowledge, this problem has not been addressed and we ignore if an analytic
solution exists to solve it. It can be viewed as a generalization of the orthogonal
Procrustes problem [4, 5] which usually deals with the registration of a single
pattern. Moreover, the shift-invariant case will be considered hereafter. Using a
sparsity constraint, we propose a nonconvex optimization to solve this more com-
plex problem, based on the matching pursuit (MP) principle. This introduced
algorithm is called 3D rotation invariant matching pursuit (3DRI-MP).

We first present existing methods to solve 3D registration problems in Section
2 and then the shift and 3D rotation invariance problem is defined. 3D rotation
invariant MP is introduced in Section 3 and is illustrated on real data in Section
4. As validation, experiments on simulation data are shown in Section 5.

2 State of the art and Problem

In this section, the state of the art in rigid 3D registration is first presented and
the shift and 3D rotation invariance problem is then detailed.

2.1 State of the art in rigid 3D registration

In this paragraph, 3D decomposition problems related to problem (4) are men-
tioned. A rigid transformation composed of a 3D rotation R and a spatial trans-
lation T is considered here between the trivariate pattern φ and the original
signal y. The rigid 3D registration, also called orthogonal Procrustes problem,
consists of finding parameters R and T such that:

minR,T ‖ y −R φ− T ‖2 s.t. RRT = Id. (5)

Eggert et al. [4] reviewed the several methods that give an analytical solution
to this rigid 3D registration problem: singular value decomposition (SVD), unit
quaternions, and orthonormal matrix.

In [5], Gower and Dijksterhuis reviewed multiple different Procrustes prob-
lems and many generalizations, notably the generalized Procrustes analysis (GPA)
[5]. However, problem (4) is not addressed. Note also that neither the multiview
reconstruction problem [6] nor the iterative closest point (ICP) algorithm [7]
solve problem (4).



4 3D Rotation Invariant Decomposition of Motion Signals

2.2 Shift and 3D rotation invariance problem

In this paragraph, the shift-invariance and the sparse approximation are first
detailed, and the shift and 3D rotation invariance problem is then explained.

In the shift-invariant case, we want to sparsely code the signal y as a sum of
a few short structures, known as kernels, that are characterized independently of
their positions. This model is usually applied to time-series data, and it avoids
block effects in the analysis of largely periodic signals and provides a compact
kernel dictionary [3]. The L shiftable kernels of the compact dictionary Ψ are
replicated at all of the positions, to provide the M atoms of the dictionary Φ.
The N samples of the signal y, the residual error ε, and the atoms φm are indexed
1 by t. The kernels {ψl}Ll=1 can have different lengths. The kernel ψl(t) is shifted
in the τ samples to generate the atom ψl(t − τ), and the subset σl collects the
translations τ of the kernel ψl(t). For the few kernels that generate all of the
atoms, we have:

y(t) =

M∑
m=1

xm φm(t) + ε(t) =

L∑
l=1

∑
τ∈σl

xl,τ ψl(t−τ) + ε(t) . (6)

The signal y is thus approximated as a weighted sum of shiftable kernels ψl.

Due to shift-invariance, the dictionary Φ is the concatenation of L Toeplitz
matrices [3] and is overcomplete. Since M > N , the dictionary is redundant
and the linear system is thus under-determined and has multiple solutions. The
introduction of constraints such as sparsity allows the solution to be regularized.
The sparse approximation selects only K active atoms among the M possible and
computes the associated coefficients vector x to have the better approximation
of the signal y. One way to formalize the sparse approximation is:

minx

∥∥∥∥∥ y(t)−
L∑
l=1

∑
τ∈σl

xl,τ ψl(t−τ)

∥∥∥∥∥
2

s.t. ‖x‖0≤K , (7)

where K�M is a constant and ‖x‖0 is the number of nonzero elements of vector
x. But this problem is NP-hard [8]. So, non-convex pursuits tackle sequentially
it such as matching pursuit (MP) [9]. The orthogonal matching pursuit (OMP)
[10] assures that coefficients x are the orthogonal projection of the signal over
the selected atoms. Using only K active atoms among the M possible, sparsity
provides the compactness so much quested by [1]. From the beginning of this
paragraph, explanations have been given for univariate signals. But they are
extended to trivariate signals by the multivariate OMP (M-OMP) [3] which
makes the atoms choice and the coefficients estimation. The introduced model
(3) allows atoms to rotate but needs an appropriate approximation method to
estimate the associated rotation matrices besides.

1 Note that a(t) and a(t − t0) do not represent samples, but the signal a and its
translation of t0 samples.
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Now combining shift and 3D rotation invariances problems, we obtain the
following problem to solve:

minx,R

∥∥∥∥∥ y(t)−
L∑
l=1

∑
τ∈σl

xl,τ Rl,τ ψl(t−τ)

∥∥∥∥∥
2

s.t. ‖x‖0≤K and ∀l∈NL,∀τ ∈σl, Rl,τRTl,τ =Id . (8)

More than Eq.(4), Eq.(8) is the real issue that is addressed in this article. Eq.(8)
combines Eq.(4) which we ignore if an analytic solution exists and Eq.(7) which
is NP-hard. We propose a non-convex optimization to solve this particularly
hard problem.

Note that 2DRI-OMP [3] simply tackles Eq.(8) in the 2D case. The pre-
sented article can be viewed as a non-trivial 3D extension (without orthogonal
projection), that explains the name of the method presented.

3 3D Rotation Invariant Matching Pursuit

In this section, our proposed sparse 3DRI decomposition algorithm is introduced.
We first detail the chosen method for the 3D registration, which will be the core
of the introduced algorithm. Then, a non-convex optimization based on MP
principle is introduced to solve Eq.(8) and is called 3DRI-MP.

3.1 3D registration by SVD

Registration problem (5) is considered here with a normed trivariate pattern
φ∈R3×N , but without spatial translation. The sought parameters are the rotation
R and the scale factor x:

minx,R ‖ y − x R φ ‖2 s.t. RRT = Id . (9)

For solving this 3D registration problem, the SVD method is chosen among the
other possible methods because it is the cheapest and it simply deals with the
particular cases of noise and planar patterns [4].

The method chosen is described in Algorithm 1. After having computed the
correlation matrix Mc = yφT ∈R3×3 (step 1), its SVD is carried out: (U,Λ1, V ) =
SVD(Mc) (step 2). Defining matrix Λ2 such that Λ2 = diag(1, 1, det(UV T )), the
optimal rotation is: R = UΛ2V

T (step 3). The correlation value which provides
the scale factor is computed such that: x = trace(RφyT ) ≥ 0 (step 4).

Algorithm 1 : (x,R) := Reg_SVD (phi,y)

begin

1: Mc := y*phi^T ;

2: (U,Lambda_1,V) := SVD(Mc) ;

3: R := U*Lambda_2*V^T ;

4: x := trace(R*phi*y^T) ;

end.
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3.2 3DRI-MP description

In this section, the 3DRI-MP is going to be explained step by step. A trivariate
signal y ∈ R3×N and a dictionary Ψ = {ψl}Ll=1 of shiftable trivariate normed
kernels are considered. Given this redundant trivariate dictionary, 3DRI-MP
produces a sparse approximation of the signal y (Algorithm 2).

The initialization (step 1) allocates the studied signal y to the residue ε0. At
the current iteration k, the algorithm selects the atom that produces the absolute

strongest decrease in the mean square error (MSE)
∥∥εk−1∥∥2. This is equivalent

to finding the registered atom that is the most correlated to the residue εk−1 (see

Appendix). The correlation value xkl,τ = trace(Rkl,τψl(t−τ)εk−1(t)
T

) is computed

for each shift τ , with Rkl,τ the optimal rotation matrix to register ψl(t − τ) on

εk−1(t). To carry out this step, algorithm Reg SVD is applied for each τ and each
l=1..L (step 5), and then, the maximum of the values xkl,τ (≥ 0) is searched for

to select the optimal atom (step 7), characterized by its kernel index lk and its
position τk. Selected atoms form an active dictionary. The vector x accumulates
the active (i.e. nonzero) coefficients that are the maximum correlation values
(step 8). Associated rotation matrices are grouped in R (step 9) and the current
residue is computed (step 10).

A threshold on k the number of iterations or a threshold on the relative root
MSE (rRMSE)

∥∥εk∥∥/‖y‖ can be used as stopping criteria (step 12). In the end,
the 3DRI-OMP provides a K-sparse approximation of y using the K selected
active elements:

ŷK =

K∑
k=1

xklk,τk R
k
lk,τk ψlk(t−τk) . (10)

Without considering the nonconvexity of the algorithm, if there is no overlap
between the selected atoms, 3DRI-MP gives the orthogonal projection of the
signal on the active dictionary in Eq. (8). Otherwise, it is suboptimal since atom
overlaps generate cross terms that are not treated by 3DRI-MP.

Algorithm 2 : (x,R) := 3DRI_MP (y,Psi)

begin

1: initialization: k:=1, epsilon^0:=y, x:=[], R:=[] ;

2: repeat

3: for l = 1 .. L

4: 3D Registration for each tau:

5: (x^k_{l,tau}, R^k_{l,tau}) :=

Reg_SVD (psi_l(t-tau),epsilon^{k-1}(t)) ;

6: end for

7: (l^k,tau^k) := arg max_{l,tau} x^k_{l,tau} ;

8: x := x U x^k_{l^k,tau^k} ;

9: R := R U R^k_{l^k,tau^k} ;

10: epsilon^k := epsilon^{k-1}

- x^k_{l^k,tau^k}*R^k_{l^k,tau^k}*psi_{l^k}(t-tau^k) ;

11: k := k + 1 ;
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12: until stopping criterion

end.

4 Illustration on real data

An application of 3DRI-MP on real data is shown in this section. Studied data are
motion signals of French cued speech, which is a gestural language to complement
speech reading [11]. This language associates speech articulation to cues formed
by the hand. To make the acquisition, retroreflective markers are put on the
hand of a skilled cuer. Data are acquired by an optical system which records
the 3D coordinates of the markers. At the end of the acquisition, tricomponent
coordinates are obtained for each marker, and we focus on the one located on
the top on the thumb. Velocity signals v = [ vx ; vy ; vz ]T are the inputs of the
3DRI-MP, and a dictionary of L= 6 kernels is designed to be adapted to such
data. These few kernels represent the main motion primitives.

The original velocity signal v is plotted in Fig. 2 (top), and is composed
of the three velocity components vx (solid blue line), vy (dashed red) and vz
(dotted green). This signal is processed by 3DRI-MP with K=10 iterations and
gives the approximated signal v̂ plotted in Fig. 2 (bottom). The rRMSE of this
approximation is 28.8 %. This error is quite high, but the goal is to decompose
the signal on its main motion primitives, and not to code all the variabilities
with numerous small coefficients.

Velocity signals are integrated to have a more visual representation of the
data. The original trajectory associated to the studied signal v is plotted in
Fig. 3 (top left). Now, we are interested by the contributions of the largest
atoms. The trajectory is reconstructed using the contributions of the K = 5

Fig. 2. The original signal (top) and its approximation with K = 10 atoms (bottom).
Each signal is composed of the three velocity components vx (solid blue line), vy (dashed
red) and vz (dotted green).
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largest coefficients of the 3DRI-MP decomposition. The reconstruction is plotted
in Fig. 3 (top right), showing each of the 5 atoms of the approximation. The
stars represent the beginning of the kernels trajectories. In Fig. 3 (top right),
we remark that kernel l = 6 (dashed red line) is employed three times with
different orientations (and with different coefficients and shifts). This shows the
3D rotation invariance of the 3DRI-MP which provides a good matching of the
studied trajectory allowing the kernels rotation. The original trajectory is now
randomly rotated in Fig. 3 (bottom left), and it is reconstructed with its K= 5

Fig. 3. The original (resp. rotated) trajectory (top left) (resp. (bottom left)) and its
reconstruction with the contributions of the K = 5 largest atoms (top right) (resp.
(bottom right)).
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largest coefficients in Fig. 3 (bottom right). Recontructions of Fig. 3 (top right)
and (bottom right) are similar, taking into account the rotation: this highlights
the rotation robustness of the 3DRI-MP.

5 Comparisons on simulation data

In this section, in order to evaluate its performances, 3DRI-MP is applied to
simulation data and compared to M-OMP used in a trivariate case. Remark
that it is not possible to compare 3DRI-MP to algorithm dealing with model (1)
mentioned in Introduction since it is too much different.

In the first experiment, a dictionary Ψ of L=50 trivariate kernels is randomly
created: kernels are drawn from white Gaussian noise and they are then normed.
The kernels length is T =65 samples. One hundred signals of N =1600 samples
are composed of the sum of K = 15 atoms, for which the coefficients (strictly
positive), the rotation matrices and the kernels indices are randomly drawn on
a uniform distribution. Shift parameters are drawn in a way that atoms do not
overlap. Each signal is approximated by 3DRI-MP and M-OMP with K = 15
iterations in order to recover the 15 atoms. The rRMSE

∥∥εk∥∥/‖y‖ is averaged
(mean and standard deviation) over the 100 signals and is plotted in Fig. 4
(left) as a function of the inner iterations k = 1..K of the two algorithms. We
observe that 3DRI-MP gives better approximation performances than M-OMP.
At the end of the K iterations, 3DRI-MP has a rRMSE of 0% whereas M-OMP
has a rRMSE of 92.0%. The rRMSE of M-OMP is huge since it is not able
to recover the good atoms. It shows that this algorithm is not appropriate for
rotated data. This experiment highlights the relevance of 3DRI algorithm for
the decomposition of revolved data.

Fig. 4. Comparisons between the performances of 3DRI-MP and M-OMP without (left)
and with (right) atoms overlaps. The rRMSE, averaged over 100 signals, is plotted as
a function of the inner iteration k.
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The second experiment is close to the first one. The difference is that the
signals length is now N = 250, and the shift parameters are randomly drawn
on a uniform distribution. As a consequence, the different atoms overlap. In the
same way, the averaged rRMSE is plotted in Fig. 4 (right) as a function of the
inner iterations k. The final rRMSE is 12.8% for 3DRI-MP, that is worse than
the first experiment. In fact, when atoms overlap, 3DRI-MP which does not
provide the orthogonal projection of Eq. (8) since it does not take into account
the cross terms due to overlaps. This experiment shows the need to improve the
3DRI decomposition method. Concerning M-OMP, the final rRMSE is 80.2%, so
performances seem to be improved. In fact, it does not recover the atoms better
than in the first experiment. Signal energy is more compact since atoms overlap,
so M-OMP approximates more energy at each iteration.

6 Conclusion and Prospects

This article has proposed a new model for describing a time-varying 3D object
as the sum of rotatable 3D patterns. The considered model combines the 3D
rotation invariance (3DRI) and the shift-invariance of the patterns. The intro-
duced 3DRI-MP solves the 3DRI decomposition problem estimating the active
atoms, their coefficients, their matrices and their shifts. It has been illustrated
on real data and evaluated on simulation data. There are multiple applications
in various domains: non-rigid structure-from-motion, 3D curve matching, 3D
tracking, gesture representation and analysis and all other processings based on
3DRI decomposition.

The considered prospects are to improve the 3DRI decomposition method
for coping with overlaps, to present a dictionary learning algorithm able to learn
a kernels dictionary with model (3) and to add a classification step to make
gesture recognition.
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Appendix: Selection step of 3DRI-MP

Defining the error as: ε = y −
∑M
m=1 xm Rm φm, the derivation of the criterion

J = ‖ε‖2 = trace(εεT ) with respect to xm gives:

∂J

∂xm
= −2 trace(Rmφmε

T ) = −2 〈Rmφm, ε〉 , (11)

and in the shift-invariant formalism, it provides the selection step of Section 3.2:

−1

2

∂ ‖ ε ‖2

∂xl,τ
= trace(Rl,τψl(t− τ) εT ) = 〈Rl,τψl(t− τ), ε〉 . (12)


