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Abstract 

 

Brain-Computer Interface (BCI) is a technology that translates the brain electrical activity into a 

command for a device such as a robotic arm, a wheelchair or a spelling device. BCIs have long been 

described as an assistive technology for severely disabled patients because they completely bypass 

the need for muscular activity. The clinical reality is however dramatically different and most patients 

who use BCIs today are doing so as part of constraining clinical trials. To achieve the technological 

transfer from bench to bedside, BCI must gain ease of use and robustness of both measure 

(Electroencephalography, EEG) and interface (signal processing and applications). 

The RoBIK project (Robust Brain-computer Interface for virtual Keyboard) aimed at the development 

of a BCI system for communication that could be used on a daily basis by patients without the help of 

a trained team of researchers. To guide further developments clinicians first assessed patients’ 

needs. The prototype subsequently developed consisted in a 14 felt-pad electrodes EEG headset 

sampling at 256 Hz by an electronic component capable of transmitting signals wirelessly. The 

application was a virtual keyboard generating a novel stimulation paradigm to elicit P300 Evoked 

Related Potentials (ERPs) for communication. Raw EEG signals were treated with OpenViBE open-

source software including novel signal processing and stimulation techniques. 
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Introduction 

Brain-Computer Interfaces (BCI) is an old technology [1] that translates the brain electrical activity 

into a command for a device [2]. As illustrated in Figure 1, BCIs are usually characterized by: (1) an 

EEG recording modality, (2) a paradigm that relates stimulations or neurofeedback to some specific 

brain activity and (3) an interface usually connecting an application by the mean of pattern 

recognition techniques.  

 

In practice, BCI can be achieved with any modality recording the brain’s activity, the choice of which 

is driven by the desired trade-off between performance and the risks associated with the technique: 

typically, the more invasive the technique, the higher the performance and the lower its safety [3]. 

For instance, microarray electrodes, which are directly connected to neurons, offer unequalled 

capabilities [4] but are associated with important risks, in addition to a relatively short lifetime of a 

few months [3]. Electrocorticography (ECoG) [5, 6] records signals below the scalp without 

penetrating the dura mera, which offers an interesting balance between performance and risks even 

though this still requires a major surgical procedure. Non invasive modalities are more widely used 

and consist of a large variety of techniques such as functional Magnetic Resonance Imagery (fMRI) [7-

9], Magneto-EncephaloGraphy (MEG) [10, 11], Near Infrared Spectroscopy (NIRS) [12, 13], or 

Electroencephalography (EEG) [14-17].  

 

EEG based BCIs have gained great popularity amongst researchers thanks to its convenience and the 

dramatic drop in price that resulted in the recent progress in electronic components mass 

production. However, despite its widespread use, EEG modality has seen very little improvements 



over the past two decades and still suffers from major drawbacks [18]: electrode setup is a tricky and 

time-consuming process, which is prohibitive to daily use by patients. In particular caretakers do not 

necessarily have the time or the skill to use current EEG systems. Attempts to address such issues 

includes the use of caps with pre-positioned gel-based [19] or dry [20-22] electrodes potentially 

interfaced with active systems [23-25]. More recently, the Emotiv headset [26-28] has open the path 

to low cost EEG for public that could successfully be used in BCI designs even though its performance 

was proven to be overall lower than traditional systems [29-31]. 

 

BCI paradigms are numerous and are typically divided into synchronous or asynchronous ones 

depending on whether the speed of the system is fixed (and related to the stimulation pace) or not. 

An asynchronous paradigm, like the motor rhythms [32-34], usually requires a few neurofeedback 

training sessions (over a few days) for the subject to control the EEG feature that will be used to 

control the interface. The system speed will then solely be related to the user’s ability to control his 

cerebral pattern leaving room for progress and finally offering an intuitive interface. A synchronous 

paradigm on the other hand exploits subject cerebral response to various types of stimulations. The 

response can be exogenous (that is directly related to the stimulus characteristics) like in Steady 

State Visual Evoked Potentials (SSVEP) [35, 36] or endogenous (related to the subject’s cognitive 

activity) like in “P300” designs. A P300 is a positive Event Related Potential (ERP) occurring about 300 

ms after the presentation of a “rare” stimulus [37], which has been broadly used in different type of 

BCI paradigm, mainly visual [38, 39] and auditory ones [40]. Synchronous paradigms usually require 

shorter training period (typically a few minutes) during which algorithms will try to optimize 

recognition of the subject’s EEG features. 



 

In most BCI applications, stimulations, signal pre-processing [41] and pattern recognition algorithms 

[42] are handled by the same platform [43, 44]. Identification of specific EEG features finally allows 

control of a device or an application without the need of any sort of muscular activity. Thanks to this 

specificity and possibly because of the relatively slow throughput of these systems, applications have 

so far concentrated on restoration of control and communication in severely disabled patients [45]. 

Non-invasive BCIs have indeed successfully been used to control wheelchairs [46, 47], a robotic arm 

[48], computer applications [49] and spelling devices such as the broadly used “P300 speller” [39, 

50]. Despite recent effort of the scientific community, the deployment of these applications still 

requires the skill of highly trained and experienced staff. 

 

Indeed, the tremendous scientific and medical literature hides a dramatically different clinical reality: 

most patients using this technology nowadays are included in clinical trials [50-54] and therefore 

benefit from an important support from medical and technical staffs. To date, it seems very unlikely 

for a patient’s family at home, or a medical staff in a rehabilitation or an intensive care unit, to have 

both the availability and the skill to install an EEG system and therefore run a BCI application. To 

complete the technological transfer from “bench to bedside”, BCI must gain ease of use and 

robustness both in terms of measure and interface (signal processing and applications). 

 

The RoBIK project (Robust Brain-computer Interface for virtual Keyboard) aimed at the development 

of a BCI system for communication that could be used on a daily basis by patients without the help of 

a trained team of researchers. In order to achieve such a challenging goal, a translational approach 



was chosen and developments were carefully framed with clinical specifications before the 

developments and clinical validation afterwards. To guide initial developments, clinicians first 

assessed patients’ needs. The prototype developed consisted in a 14 felt-pad electrodes EEG headset 

sampling at 256 Hz by an electronic component capable of transmitting signals wirelessly. The 

application was a virtual keyboard generating a novel stimulation paradigm to elicit P300 Evoked 

Related Potentials (ERPs) for communication. Raw EEG signals were treated with OpenViBE open-

source software running a specific signal processing chain including a novel Signal Quality Index (SQI) 

based on Riemannian geometry for artefacts rejection.  

Feasibility and evaluation of clinical needs  

Transferring BCIs from computer sciences laboratories to patients’ bedsides requires two important 

steps forward. First of all, the entire system (hardware and software) must comply with both patients 

and caretakers’ needs. Second, applications tested with healthy volunteers needs to be evaluated 

with different populations of potential users in the very context of use, that is possibly flooded with 

many sort of noise: mechanical ventilation, various monitoring devices, and vibrating bed to cite few 

instances.  

 

A questionnaire was written with occupational therapists specialized in providing effective assistive 

technology to patients presenting with a wide range of disabilities. The questionnaire was composed 

of three sections: general use of BCI, BCI headset, and application. This survey (n=40) highlighted the 

need for easy-to-install systems (installation time shorter than 15 min in 82% of responses). It also 

stressed the importance of mechanical comfort (selected as main priority by 72% of users and 60% of 



medical staff) with a daily use expected to be higher than 2 hours. In terms of application, 

communication was cited as a primary need by a large majority of patients followed by access to the 

Internet, emailing and demotic interfaces. 

 

Evaluation of patients’ needs also highlighted the presence of two distinct populations: patients with 

chronic disabilities such as neurodegenerative disorders and patients with acute conditions such as 

stroke and trauma patients. The chronic population is at home or in rehabilitation unit and 

sometimes already uses an assistive technology that must be over-performed to raise interest in 

BCIs. The acute population on the other hand, suddenly needs to fill the gap of communication, 

which could possibly be addressed by BCIs. In particular, quadriplegic patients who undergo 

mechanical ventilation are suddenly left speechless and can hardly benefit from other types of 

assistive technologies. Unfortunately, their environment (often Intensive Care Unit) is adverse for 

EEG measurement because of numerous uncontrolled sources of noise (electromagnetic, acoustic 

and mechanical). Moreover, acute conditions requires treatments that often includes different types 

of Central Nervous System (CNS) depressant, which can interfere with the BCI EEG features of 

interest. 

 

Twelve quadriplegic patients admitted to ICU for whom verbal communication was compromised, 

were therefore enrolled in a feasibility study after giving informed consent. The aim of the clinical 

study is to assess the feasibility of a state-of-the-art BCI for communication [39]. Sixteen Ag-Cl disc 

electrodes were fitted to 10/20 standard locations and signals were sampled at 256 Hz with a Porti32 

from TMSi (Twente, Netherlands). Digital signals and stimulations were handled by the open-source 



platform OpenViBE. Signals were filtered and transformed with the xDAWN spatial filter [55] prior to 

SVM voting classifier [56] . Results showed that BCIs can be used in an Intensive Care Unit for 

restoration of communication despite, mechanical ventilation and use of CNS depressants. 

An EEG headset for Brain-Computer Interface 

The headset is composed of three main components: 

1) 14 wet felt-pad electrodes, 

2) The mechanical structure to hold the electrodes and the electronic module, 

3) An electronic module to amplify, digitize and transmit EEG signal to the processing unit. 

General electronics architecture for miniaturized EEG amplifier 

Our goal was to develop a miniaturized electronics for EEG recording with a large number of 

electrodes (up to 32), while using as much as possible COTS (commercial-off-the-shelf) components. 

We used a MSP430 ultra-low power microcontroller to provide the control of the different modules, 

and a USB module from Silicon Labs. No component was identified as commercially available for EEG 

signal amplification and analog to digital conversion. Therefore, a dedicated Application Specific 

Integrated Component (ASIC) has been developed. 

Integrated Electronic: ASIC circuit for neural signal conversion (CINESIC) 

Interfacing electrodes using discrete electronics rapidly limits the number of channels, creating the 

need for highly integrated solutions to achieve sufficient spatial resolution. For this purpose, a 



dedicated ASIC CINESIC32 (CIrcuit for NEuronal SIgnal Conversion) has been developed with the two 

major constraints in mind: ultra low power consumption and patient’s safety. 

The ASIC filters, amplifies and digitizes the EEG data acquired from the electrodes. The architecture 

of CINESIC32 is shown in Figure 2. Each input channel is combined with an external capacitor (1.5nF) 

in order to suppress the risk of leaking current in a first default condition, which is essential for 

medical applications. The analogue channel is comprised of a fully differential low-noise amplifier, 

followed by a voltage gain amplifier and a programmable low-pass filter. The consumption of one 

analog channel is about 34μA. 

 

Digital peripherals such as configuration registers and a SPI (Serial Peripheral Interface) controller are 

also integrated on the chip. A special attention was paid on configurability to target different 

applications. A dedicated protocol was defined to address configuration registers. Consequently, the 

user can enable or disable each channel, configure the input switches in different modes, set the 

amplification stages in different gain (4 possible values: 1, 5, 200 and 1000) and set the frequency 

bandwidth (BW1= [0.5-300Hz], BW2=[0.5-5000Hz]). For EEG applications, the channels will be 

configured to a [0.5-300Hz] bandwidth and a 60dB voltage gain. Each analogue data is digitized 

through a 12-bit analog to digital converter (ADC). The nominal sampling frequency is 1kHz per 

channel. The CINESIC 32 chip was designed in complementary metal–oxide–semiconductor (CMOS) 

technology (0.35μm). 

Microcontroller module 

The MSP430F2618-EP from Texas Instruments was chosen for its ultra low power characteristics, its 

multiple communication interfaces. The MSP430 controls both the USB link and the data acquisition 



from the ASIC. A 3-axis accelerometer (ADXL345 from Analog Devices) is also connected to the 

microcontroller. 

The WIBEEM platform 

The WIBEEM (WIreless BCI EEG Electronics module) platform has been designed to take into account 

all the constraints of a wearable medical device: ultra-low power, miniaturization, safety and 

reliability and to be embedded on the headset. It is based on the general architecture presented 

above. The electronics module consumption at full data streaming conditions is around 13mA at 

3.3V. To guarantee 24 hours of continuous operation, the electronics operates on one high energy 

density 3.6V lithium battery.  As shown in Figure 3, the WIBEEM module is made up of two printed 

circuit boards (PCB) linked by a board-to-board connector. The main components (ASIC and 

microcontroller) are placed on one side of the PCB (at the bottom) while the other PCB (at the top) 

contains the interface components (USB, LEDs, switch and connectors). 

RoBIK Graphical user interface 

The WIBEEM platform offers a Graphical User Interface (GUI) allowing rapid and easy setting of 

acquisition parameters like sampling frequency of the device and the gain of each electrode 

depending on the measured electrical activity. Through this GUI, EEG data are sent to the OpenViBE 

acquisition server through the fieldtrip buffer [57]. Furthermore, all data from the 32 channels can be 

saved and reloaded with the ROBIK GUI. 

A EEG headset 

 



In order to easily connect electrodes and get rid of the different steps of classical EEG recording (skin 

preparation, disc electrodes setup with gel, glue and tape) we designed an easy-to-use EEG headset. 

Electrodes are composed of a disposable felt pad (wet with saline solution) in contact with a Silver-

Chloride electrode. Electrodes are mounted to a polyamide structure designed from a collection of 3D 

head models as seen on Figure 4. At each electrode site, a polyethurane handle controls the release 

of a spring that applies pressure on the scalp with the electrode offering a good contact and thereby a 

good signal quality. Ground and reference electrodes are disposable ECG electrodes to be located at 

each mastoïd. It takes less than 5 minutes to setup the whole system.   

A novel P300 Speller application  

Signal Quality Index based on Riemannian geometry for artefact detection  

EEG artefacts can be divided in three families: biological, environmental and instrumental, with each 

family comprising several kind of artefacts.  Depending on the amplitude and spatial distribution of 

the artefact the performance of a P300 BCI may be influenced very widely. We require to detect 

artefacts so as to minimize classification errors due to insufficient signal-to-noise ratio in the relevant 

EEG segment. Instead of trying to characterize every possible artefact, we have proposed to 

characterized the artefact-free state instead (Barachant et al., in press). The goal of the detection 

algorithm is to determine if a segment of EEG signal belongs to the artefact-free state or not. In order 

to do so, we work with the covariance matrices of the EEG segments. Covariance matrices belong to 

a special Riemann manifold wherein a Riemann metric can be used to define a distance between 

covariance matrices [58]. Using a few seconds of resting artefact-free data we estimate a region in 

the manifold using its barycentre and the variability of observations. More precisely, the region is 



defined as the mean ± 2.5 standard deviations; when a new covariance matrix falls outside this 

region it is rejected. Since the Riemannian metric is non-linear, this region of interest corresponds to 

a “potato” in the Riemannian manifold, that is why in Barachant et al. (in press) the method is named 

"Riemann potato". 

Novel stimulation sequence for P300 generation 

In the original P300-speller paradigm symbols flash by rows and columns. Often detection errors 

arise because of the “adjacency-distraction” phenomenon [59, 60] non-target symbols in rows or 

columns adjacent to the target attract the user’s attention when they flash, producing a P300 that 

makes the detection of the target P300 more difficult. To mitigate this effect we flash the symbols by 

random groups [61]. Not only the “adjacency-distraction” effect is mitigated, we also obtain that the 

pattern of flashing becomes totally unpredictable, which is expected to sustain the attention of the 

user. Noteworthy, random-group flashing allows arbitrary positioning of the symbols on the screen 

(no more need to arrange symbols on a grid), which greatly expand the usability of the P300 

paradigm. This feature has been exploited in our user interface (see below). 

 

Usually, the stimulus interval (the flashing time) and the inter-stimulus interval (ISI: the time between 

two flashes) are kept constant. The periodic flashing is annoying and tiring because the visual cortex 

is driven to oscillate at the flashing frequency, which is usually far away from the natural talamo-

cortical loop oscillation of this region, which is in the alpha range (8-12 Hz). Furthermore, the periodic 

flashing makes the flashing pattern predictable and boring. To eliminate all these effects we may use 

random ISI drawn from a random exponential distribution. The exponential distribution (also called 



“waiting-time” distribution) with parameter λ and both population mean and population standard 

deviation=1/λ is the distribution of the time passing in between two events of random series 

following a Poisson process with the same parameter λ, population mean=λ and population standard 

deviation=√λ. This is a process in which events occur continuously and independently at a constant 

average rate. For example, it is the natural distribution for modelling time between system failures, 

telephone calls, customer arrivals, accidents at a street intersection, etc.  

Brainmium: A P300-based web browser 

Brainmium is a standalone web browser that enables navigating within a web page using the P300 

Speller paradigm. More precisely, Brainmium is a software framework that allows the execution and 

development of P300-based web applications, which we refer as "Brainmium apps". A Brainmium 

app is defined such as a standard web page, in HTML and JavaScript, but enhanced, either statically 

or at runtime, by some Brainmium-specific tags. Brainmium engine infers the HTML elements of 

interest from these tags. In general, these elements correspond to the HTML links or images 

contained within a web page. In order to select a given element, Brainmium makes use of a state-of-

the-art P300 spelling paradigm [61]. 

 

A few studies made in the literature have proposed to address the needs of browsing the World 

Wide Web (WWW) using a P300 paradigm [62-65]. In most of these proposals, however, the BCI 

system is built on top of a regular web browser coupled to a separate P300 Speller application (i.e. 

run into separate windows). This speller matrix usually consists in the largest possible set of symbols 

necessary to navigate between links or to use the browser native functions. The navigation itself 



could therefore become increasingly difficult depending on the web content, resulting in a slow 

throughput and finally users disinterest in the tool [62]. Visual complexity of web contents [66] is one 

of the reason to explain the poor performance of these paradigms. 

 

With Brainmium, we adopted a different approach to leverage this complexity. In fact, our main 

focus is not really tied to browsing Internet resources, even though this is possible. Instead, we rely 

upon web technologies to facilitate the prototyping and development of P300-based applications. 

Our system is in fact developed in a way reminiscent to that of modern mobile systems [67]. In other 

words, Brainmium acts as an application container that proposes a subset of the facilities usually 

found in mobile systems, such as an application dashboard, a configurable virtual keyboard. A 

development toolkit will be proposed to achieve this goal. It is also important to note that unlike a 

conventional P300 Speller implementation, the symbols are not necessarily arranged into a square 

matrix. Flashing items into random groups makes this strategy possible and efficient [61]. 

 

As detailed in Figure 5, Brainmium relies upon the OpenVibe platform [43] to acquire EEG data and 

treat them in order to detect P300 evoked response potentials. In this regard, the main task of 

Brainmium is to take care of displaying frame-accurate visual stimuli and to communicate the 

respective timestamps to OpenViBE. Brainmium and OpenViBE are connected through a shared 

memory module, which offers a very fast and almost negligible transfer time. Once a P300 event is 

detected, OpenViBE uses a Virtual-Reality Peripheral Network 

(VRPN) tunnel [43] to send the data back to Brainmium, which performs target selection. 

 



Brainmium is developed in C# and its rendering engine is built on top of Microsoft XNA / DirectX to 

obtain an accurate timing for P300 flashes. For the experiments, we have considered a fixed frame-

rate set to 120 Frame-Per-Second.  

Conclusion 

The future of BCIs as an assistive technology depends on the good understanding of patients’ and 

caretakers’ needs. In particular, the distinction between different subsets of patients (such as chronic 

versus acute) allows the identification of adequate paradigms and applications. Our clinical survey 

(n=40) placed communication as a primary need and revealed the importance of a short setup time 

(t<15min) for the whole system. The prototype developed during the RoBIK project was therefore an 

easy-to-set-up EEG headset with fourteen wet electrodes, allowing the control of a web based P300 

spelling interface. The EEG headset was connected to a high quality electronic component designed 

with low noise and high input impedance. The application embedded novel signal processing and 

classification algorithms based on Riemannian geometry offering unequal performance together with 

an automated rejection of artefacts. The performance of the whole system is currently being 

investigated in a multicentre randomized control trial comparing its performance to the one of 

traditional scanning spelling systems. 
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Figures 

 

 

Figure 1: Principle of a Brain Computer Interface (BCI) based on Evoked Related Potentials (ERPs): 
EEG signals are recorded (1) while a computer generates a series of stimulations that generates 
EEG features (2)  
 
 

 



 
Figure 2: Architecture of the circuit for neural signal conversion (CINESIC) Application Specific 
Integrated Component (ASIC). 
 
 

 

Figure 3: Pictures of the WIreless BCI EEG Electronics Module (WIBEEM): bottom and top de la 
printed circuit board (PCB). 
 
 



 
Figure 4: 3D view of the RoBIK headset showing the electrode handle (purple) and the box 

(blue) containing the electronics and battery. 

 

 
 

 

Figure 5: Brainmium architecture 

 


