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émanant des établissements d’enseignement et de
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Abstract.

We consider the reconstruction of a two-dimensional discrete image from a set of

tomographic measurements corresponding to the Radon projection. Assuming that

the image has a structure where neighbouring pixels have a larger probability to

take the same value, we follow a Bayesian approach and introduce a fast message-

passing reconstruction algorithm based on belief propagation. For numerical results,

we specialize to the case of binary tomography. We test the algorithm on binary

synthetic images with different length scales and compare our results against a more

usual convex optimization approach. We investigate the reconstruction error as a

function of the number of tomographic measurements, corresponding to the number

of projection angles. The belief propagation algorithm turns out to be more efficient

than the convex-optimization algorithm, both in terms of recovery bounds for noise-

free projections, and in terms of reconstruction quality when moderate Gaussian noise

is added to the projections.

Submitted to: Inverse Problems



Belief Propagation Reconstruction for Discrete Tomography 2

x

y

Figure 1. Geometry of the tomography problem: the tomographic measurements y

are line sums of the image x along different angles.

1. Introduction

X-ray computed tomography (CT) [1, 2] is a classical 3-D imaging technique in materials

science or for medical applications. The X-ray beam transmitted through the sample

is recorded on a planar detector, for different angles of incidence of the beam on the

sample. Using the Beer-Lambert law for photons absorption, the reconstruction of the

absorption x of the sample from the measurements y is a linear problem

y = Fx+w, (1)

with F the tomography projection matrix and w the measure noise. For a parallel X-ray

beam, each pixel line of the detector measures the total absorption integrated along a

horizontal light-ray through the sample. The geometry of tomographic measurements

in shown on the schematic of Fig. 1. For a detector line of L pixels, a square image of

N = L2 pixels has to be reconstructed from M = L×nθ measurements, where nθ is the

number of angles, also called number of projections.

Classical reconstruction algorithms such as filtered back-projection (FBP) [3, 4, 1]

require the linear system (1) to be sufficiently determined. Therefore, the number of

angles nθ needed is generally close to the number of pixels along a line, L. Nevertheless,

many applications would benefit from being able to reconstruct from a smaller number

of angles. In medical imaging for example, reducing the total X-ray dose absorbed by

the patient is highly desirable. For in-situ tomography where the sample is evolving

while it is imaged [5, 6], reducing the number of angles increases the acquisition speed,

hence the time-resolution of the observations.
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Filtered back-projection fares poorly for a limited number of angles, and algorithms

incorporating prior information on the sample are needed to improve the quality

of the reconstruction. For example, a positivity constraint on the absorption

incorporated in the Algebraic Reconstruction Technique (ART) improves the result of

the reconstruction [7]. More specific priors can also be used. In particular, samples

with a discrete number of phases and absorption values are frequently encountered in

materials science. Using this information can make up for the lack of measurements and

result in a satisfying reconstruction. The field of discrete tomography [8] encompasses

the large class of algorithms that have been proposed to solve this problem. Various

approaches have been proposed, from heuristic methods [9] to the approximate

resolution of the combinatorial problem [10], or of its convex relaxation [11].

In this article, we propose a new algorithm for discrete tomography, that estimates

the marginal probability for every pixel value. We use a Bayesian approach in order to

write the a-posteriori probability distribution of discrete images, and a fast approximate

message passing scheme relying on belief propagation to find the marginal probabilities.

Within this framework, constraints imposed by the measurements are satisfied by

iteratively solving a graphical model along the light-rays crossing the sample, known

as the Potts model in statistical physics. For the specific case of binary images, this

amounts to solving 1-D Ising models for all light-rays and measurements. The Potts

and Ising models are specific examples of Markov random fields (MRF). In the case of

image segmentation, these models can be solved using graph-cuts methods [12].

We start this article with a short review of the state of the art on discrete

tomography, where we introduce the convex algorithm based on total variation, used

for comparison with our algorithm. Then we move on to the presentation of our belief-

propagation tomographic reconstruction algorithm (BP-tomo) and its relation to the

field of statistical physics. Numerical results on synthetic data are presented for the case

of binary images. We establish empirically the recovery phase diagram by decreasing the

number of projections and determining the undersampling rate separating successful and

failed reconstruction; it is found that the transition corresponds to an undersampling

rate of the order of the density of gradients in the image. This bound on undersampling

rates is a significant improvement over performances of traditional compressed sensing.

In the realistic case of noisy measurements, reconstructions obtained with BP-tomo are

compared with results obtained with a constrained total-variation minimization. For

moderate noise, BP-tomo is found to give a much more accurate reconstruction above

the critical undersampling rate of the noise-free case.
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2. State of the art in discrete tomography

Discrete tomography algorithms perform at the same time the tomographic

reconstruction and the segmentation of the reconstructed image into objects with a

finite number of known absorption values. In addition to the constraints on the discrete

pixel levels, that strongly restrict the space of possible images, additional constraints

on the gradients of the image are often enforced in order to obtain smooth images. A

large range of methods has been proposed for discrete tomography, for a review see [8].

Here, we only cite a few representative examples, in order to discuss briefly their scope

of application and performance.

Theoretical studies [13, 8] have addressed the problem of the minimal number of

angles needed to reconstruct a binary image, in the noise-free case. An important result

of geometric tomography [13] is that four different projections are enough to reconstruct

uniquely a uniform convex object [14]. For more complicated images, degenerate binary

solutions may exist for the same set of projections, but it is possible to bound the

distance between two solutions using the projection error of the thresholded filtered-

back projection solution [15]. It is also possible [16] to determine the set of pixels

uniquely determined (in the absence of noise) by their projections.

As for reconstruction algorithms, a first class of methods [10, 17, 18, 19, 20] adopts a

Bayesian approach in order to make the most of the available information on the sample.

The a posteriori probability distribution of a discrete image x given measurements y is

P (x|y) = P (y|x)P0(x)

P (y)
, (2)

with P0(x) the a priori probability distribution on the space of images. In the Maximum

A Posteriori (MAP) setting, the image maximizing the posterior distribution is searched

for:

xMAP = argmax P (x|y). (3)

Finding xMAP is an NP-hard combinatorial problem. An MCMC (Monte-Carlo Markov

Chain) algorithm is used in [10, 17, 18, 19] in order to sample the Gibbs distribution

and to obtain an approximation of xMAP. Gibbs sampling being very costly in terms

of numbers of iterations, such algorithms are limited to small images. Therefore, these

methods are more suitable for techniques with lower spatial resolution than computed

tomography, such as positron emission tomography (PET) for example. For faster

computations, a variational Bayes approach was used in [20]. The Bayesian approach is

very flexible in terms of prior distribution on the images, allowing for a tuned weighting

of local binary patterns in the image [17]. For binary images, a popular model for

smooth images is the Ising model from statistical physics, that we shall use as well in

our belief-propagation algorithm.

A second class of algorithms [21, 22, 23, 24, 25] consider relaxations of the MAP

estimation falling into the scope of linear optimization. In this setting, the searched-for

image x is found by solving a set of linear constraints, such as the constraint y = Fx,
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or an interval constraint. For mixtures of convex and concave constraints, methods

from DC (Difference of Convex functions) programming are used to converge to a local

minimum of the objective function [23, 26, 24, 25].

Since the seminal papers by Candes, Romberg, Tao and Donoho [27, 28, 29], the field

of compressed sensing has breathed a new lease of life into the use of convex optimization

for finding sparse solutions to underdetermined inverse problems. Compressed sensing

proposes to find sparse solutions using a regularization with the convex ℓ1 norm, instead

of the ℓ0 norm measuring sparsity: problems can then be solved using classical techniques

of convex optimization [30, 31]. In general, convex optimization methods can be

computationally less intensive than other types of methods, hence more suitable for large

images. Candes et al. [28] proved under certain hypotheses that perfect reconstruction

can be obtained with the ℓ1 norm in the noiseless case, and that the error is at most

proportional to the noise level. These solid mathematical foundations have contributed

greatly to the success of compressed sensing. Although tomographic projection does

not satisfy the restrictive hypotheses of the compressed sensing setting, compressed-

sensing techniques have proven to work well for tomographic reconstruction. In fact,

the founding paper of compressed sensing [27] demonstrated perfect reconstruction

with ℓ1 regularization using the example of incomplete tomographic projections of the

piecewise-constant Shepp-Logan phantom [3]. For the piecewise-constant images of

discrete tomography, the regularization is on the ℓ1 norm of the gradient of the image,

that is its total variation (TV)

TV(x) =
N
∑

i=0

|∇xi| , (4)

where ∇xi is the discrete gradient of the image evaluated at pixel i. Therefore, several

papers [32, 11, 33, 34, 35, 36, 37] have used the following convex minimization to

reconstruct discrete tomography images:

xTV = argmin
x

1

2
||y − Fx||2 + βTV(x) (5)

where ||y − Fx||2 is the ℓ2 data fidelity term (corresponding to a Gaussian noise prior

in the MAP setting), and the parameter β controls the amount of regularization. It has

been shown [32, 11, 33, 34, 35, 36, 37] that the total variation reconstruction greatly

improves the quality of the reconstruction of discrete images for a reduced number of

projections. There is often a trade-off (controlled by the parameter β) between removing

the noise and smoothing out small features [34]. For enforcing spatial regularization,

it is also possible to use frame representations [38, 39] – especially for medical images

that are often more complex than piecewise-constant – or to combine frames and total

variation [39].

In this paper, we use a total-variation minimization algorithm to benchmark the

quality of the reconstruction of the belief-propagation algorithm. Compared to Eq. (5),

we also constrain the solution to have values between the minimal discrete value a and
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the maximal value b [39]. We solve

xcTV = argmin
x

1

2
||y− Fx||2 + βTV(x) + I[a,b](x), (6)

where I[a,b](x) is the multivariate indicator function of the interval [a, b]. In order

to solve the minimization problem, we use proximal methods [31] that perform

subgradient iterations on non-differentiable terms. Several methods [38, 40] are suited

for a sum of non-differentiable functionals (such as I[a,b] and TV), we use here the

generalized forward-backward splitting [40]. We have verified experimentally that with

the additional interval constraint, better reconstruction results are obtained with Eq.

(6) than with Eq. (5). For the total variation proximal operator, we use the second-order

FISTA scheme of Beck and Teboulle [41] for the isotropic total variation.

Finally, several heuristic algorithms have been proposed for discrete tomography.

One of the simplest [42] consists in alternating gradient iterations on the data fidelity

term and clipping (thresholding) continuous values on the discrete labels. Batenburg [43]

proposed a network-flow algorithm where constraints imposed by pairs of directions are

satisfied iteratively for binary pixel values. For binary image, Batenburg also introduced

DART [9], a variation on the gradient descent - clipping method: pixels are progressively

labeled from the interior of objects to the more uncertain boundaries. This algorithm

takes into account the spatial continuity of the objects as well as their binary nature.

Along the same lines, another algorithm was recently proposed by Roux et al. [44], where

the reconstruction is done for the continuous probability of pixels values, reducing the

risk of clipping too early the value of a pixel.

Compared to the existing literature on discrete tomography, we shall see that our

belief propagation algorithm combines the full power of the Bayesian approach and the

efficiency of iterative reconstruction algorithms.
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3. Image reconstruction as a statistical physics problem

3.1. The Bayesian approach

Let us first fix the notations. The image that we want to reconstruct sits on a

two-dimensional grid, and each of its N pixels i takes a value in a q-ary alphabet:

xi = χ1, . . . , χq. For instance, binary tomography corresponds to the case where q = 2,

and χ1 = −1, χ2 = 1. We suppose that M tomographic measurements, µ = 1 . . .M ,

have been made. Each such measurement gives a number yµ which is the sum of variables

along a light ray µ:

yµ =
∑

i∈µ

xi + wµ (7)

where i ∈ µ denotes the set of all variables xi that belong to the measurement line µ,

and wµ is the additive noise on measure µ. Notice that, in a slightly more general

setting, one would measure yµ =
∑

i∈µ Fµixi + wµ, where Fµi is a geometrical factor

giving the fraction of pixel i that is covered by the ray corresponding to measurement

µ [45]. This more general setting can be handled as well by our method. Furthermore,

it does not make much difference when the image has a structure in domains, as soon

as the typical domain size is much larger than one pixel. To keep notations simple we

thus keep hereafter to the case where Fµi = 1, the straightforward extension to more

general cases is left to the reader.

The problem is now to reconstruct the original image (that is the N-dimensional

vector x) from the values of the projection (the M-dimensional vector y).

Here, we shall adopt a Bayesian approach. As a prior information, we use the fact

that the image to measure is not a random one, but has a structure in domains, such that

if a pixel i has the value χr, then the neighboring pixel has a large probability to have

the same value. We shall enforce this bias in each direction µ in which a measurement

has been made. This is a very natural prior for a large class of images. Following the

Bayesian approach, our goal is thus to sample from the a posteriori distribution given

by

P (x|y) = P (y|x)P0(x)

P (y)
=

1

Z(y)

∏

µ

δ

(

yµ −
∑

i∈µ

xi

)

P0(x) (8)

where, following the convention in statistical physics, we have rewritten the

normalization factor of P (x|y) as Z(y). (In the following, we shall incorporate all

normalization factors into Z.) Here the δ function implements the equality yµ =
∑

i∈µ xi

if the measurement is perfect (wµ = 0). In the case of noisy measurement, this δ

function should be smoothed in order to take into account our information on the noise.

For instance, when the measurement has Gaussian noise of variance ∆ one could use a

function δ(x) = exp(−x2/(2∆))/
√
2π∆.
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Let us denote by pµ the a priori probability for neighboring pixels to have the same

value along the line µ. Then

P0(x) =
∏

µ

∏

(ij)∈µ

p
δxi,xj
µ (1− pµ)

1−δxi,xj =
∏

µ

(1− pµ)
Nµ

∏

µ

e
∑

(ij)∈µ log
(

pµ

1−pµ

)

δxi,xj

= cst
∏

µ

e
∑

(ij)∈µ Jµδxi,xj (9)

where Nµ is the number of pixels along line µ, (ij) ∈ µ denote pairs of neighboring

pixels along direction µ (for instance, in the case of line µ = 3 in Fig.2, there would

be an interaction between pixels (i) and (ii) and another one between (ii) and (iii)) and

cst is a constant that does not depend on the values of the variables, and that we shall

thus incorporate into the normalization factor through a redefinition of Z(y). In (9) we

have introduced the so-called “coupling constant” Jµ = log pµ
1−pµ

.

With these notations, the a posteriori probability can thus be written as a product

of M terms, each corresponding to one tomographic projection:

P (x|y) = 1

Z

M
∏

µ=1

[

δ

(

yµ −
∑

i∈µ

xi

)

eJµ
∑

(ij)∈µ δxi,xj

]

(10)

The value of Jµ can be fixed based on previous knowledge of the spatial structure of

the sample. It would also be possible to learn its value in the course of the algorithm, by

maximizing the probability of Jµ given the measures y (this amounts to maximizing the

partition function Z in Eq. (10)). This can be done for instance using the Expectation

Maximization approach [46].

3.2. A message passing approach: Belief Propagation

Sampling from the distribution in Eq. (8) is a notoriously difficult problem [10, 8].

We shall here use an approach based on a message-passing algorithm called “Belief-

Propagation” (BP) [47, 48, 49, 50]. It is not an exact algorithm (at least for the present

problem), in the sense that it is not guaranteed to sample correctly from the distribution

(8). However, we shall see that the approximate sampling obtained from BP performs

empirically very well.

Let us first reformulate the problem as a graphical model [47, 50]. We have

N variables xi and M factor nodes, each one implementing the weight δ(yµ −
∑

i∈µ xi)e
Jµ

∑

(ij)∈µ xixj . The corresponding factor graph is shown in Fig. 2.

We shall not review here the derivation of the belief-propagation algorithm, and

refer instead to classical books and articles on the subject [49, 50]. There are essentially

two equivalent ways to derive the BP recursion: one is to see it as a recursion that would

be exact if the factor graph were a tree (i.e. if it had no loop). Another one is to see it

as an Ansatz in the usual variational Bayesian inference approach that usually improves

on the factorized ”mean-field” one, leading to an expression for the log-likelihood whose

maximization leads to the belief-propagation equations. The result is a set of message

passing equations relating messages that go from variables to nodes and from nodes to
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2
1

3

1 2

3

(ii)(i) (iii)(ii)(i) (iii)

Figure 2. Construction of the factor graph for the tomographic reconstruction. Each

tomographic line in the image (left) corresponds to a factor node in the corresponding

graphical model (right). Each of the 1, . . . ,M factor nodes imposes the statistical

weight in eq. (8). Here, for instance, the variables denoted (i),(ii) and (iii) are all

linked to the factor node number 3.

variables

factor nodes µ = 1, . . . ,M

x1,...,N

m̃

µ
→
i
(x

i
)

m
j
→

γ (
x
j )

Figure 3. Message passing on the graphical model. Each variable j = 1, . . . , N sends a

message mj→γ(xi) to all the factor nodes γ that are connected with it, and each factor

node µ = 1, . . . ,M sends a message m̃µ→i(xi) to all variables i that are connected with

it.
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variables. The message mi→γ from a variable i to a node γ is the marginal probability

of the variable xi in absence of the constraint γ (see Fig. 3). On the other hand, the

message m̃µ→i from the factor µ to the variable i is the marginal probability of the

variable xi when only constraint µ is present (see Fig. 3). The message mi→γ is easily

written in terms of the messages m̃µ→i:

mi→γ(xi) ∝
∏

µ∈i 6=γ

m̃µ→i(xi) (11)

where µ ∈ i denotes all the factor nodes (tomographic lines) that contain variable i.

Note that mi→γ(xi) should be normalized , in the sense that
∑

x mi→γ(x) = 1 (we prefer

however not to write explicitly the normalisation factor and will therefore use the sign

∝ instead of =). The message from a factor node to a variable, on the other hand,

reads:

m̃µ→i(xi) ∝
∑

xj ;j∈µ6=i

δ(yµ −
∑

j∈µ

xj)e
Jµ

∑

(jk)∈µ δxj ,xk
∏

j∈µ6=i

mj→µ(xj) (12)

Equations (11) and (12) build a closed set of equations that should be solved for the

values of the messages. Usually one seeks a solution by iterating these equations starting

from some randomly chosen initial condition. Assuming that a fixed point of this

iteration is reached, one obtains a set of messages that solve the BP equations. The BP

estimate for the marginal distribution of xi is then given by

mi(xi) ∝
∏

µ∈i

m̃µ→i(xi) (13)

Let us now take a closer look at the recursion: While the iteration from variables to

factors (in eq. (11)) is easy to compute (a simple multiplication), the one from nodes

to variables (in eq. (12)) is unfortunately more complicated, as it involves a sum over

all the q possible values of each variable x in the line µ. Moreover, we have to do it

for each of the Nµ variables in this line, and for each value it can take. At first sight,

this seems to give a complexity of order Nµq
Nµ for each iteration. However, one can

compute the message in (12) in a much more efficient way, namely in O(qNµ) iterations.

Indeed, in physics language, one can recognize that estimating m̃µ→i(xi) in Eq. (12) is

nothing else that estimating the marginal of xi in a one-dimensional graphical model

known in physics as the Potts ferromagnet in a random field at fixed total magnetization,

which can be done efficiently by transfer matrix techniques, which are equivalent for this

problem to using BP. The solution is thus to use BP in order to compute the messages

of the initial BP problem.

3.3. Computing messages: belief propagation within belief propagation

Let us now focus on the following sub-problem: we want to estimate the marginal of a

variable xi coupled in a chain of Nµ variables, with a statistical weight given by

Pµ→i(x) ∝ δ(yµ −
∑

j∈µ

xj)e
Jµ

∑

(jk)∈µ δxj,xk
∏

j∈µ6=i

mj→µ(xj) . (14)
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mi→µ(xi) mj→µ(xj)

η
R
j→j−1

(xj)η
L

i→i+1(xi)

xi xj

Figure 4. Message-passing for the solving the sub-problem of estimating the marginal

on each constraint. The left-moving message and the right-moving message should be

computed on a one-dimensional line.

There are two methods to deal with the delta function which we shall refer to (using

the statistical physics language) as the ”canonical method” and the ”micro-canonical

method”. The exact solution is to use the microcanonical method where one is indeed

summing only over the configurations of the variables that satisfy the delta function

in Eq. (14). This can be done efficiently using a transfer matrix approach, and we

have thus implemented this method. It turns out, however, that the canonical method

is faster. It is also a more natural approach when there exist errors or noise in the

measurement process. We shall therefore use the latter method in the following.

The canonical method amounts to relaxing the δ(yµ −
∑

j∈µ xj) constraint, and

treating it only as an approximate constraint that should hold on average, up to some

small fluctuations. More precisely, in the canonical method we replace the delta function

using a Lagrange multiplier H (the ”field” in physics language) that we shall fix later

on in order to enforce the constraint on average. The statistical weight thus becomes,

instead of (14):

PH
µ→i(x) ∝ e−H(yµ−

∑

j∈µ xj)eJµ
∑

(jk)∈µ δxj,xk
∏

j∈µ6=i

mj→µ(xj) , . (15)

The value of H is computed using E
H(
∑

j∈µ xj) = yµ, where E
H denotes the expectation

value with respect to the measure PH. Of course, the value of H depends on both µ,

and i. Now, it turns out that one can compute H with an error that becomes negligible

(in the limit where the number of variables involved in the measurement µ is large),

by considering the complete problem obtained from (15) by including all the messages

mj→µ. This complete problem is defined by:

PH
µ (x) ∝ e−H(yµ−

∑

j∈µ xj)eJµ
∑

(jk)∈µ δxj ,xk
∏

j∈µ

mj→µ(xj) . (16)

We now write the nested belief propagation equations for this complete sub-problem.

Since the interaction is a two-body one, one can write it using a version that involves

only one type of message, from variables to variables (see [51, 50] and Fig. 4). It is also

equivalent to the so-called transfer matrix approach in statistical mechanics [50]. The

recursion for the BP messages is easily written. In order to keep notations simple, let

us assume that the numbering of variables is such that variable i is neighbour to i+ 1
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along direction µ. We shall denote the messages going from right to left of the line

as the right-moving messages ηRi→i−1(xi), i = 2, . . . , Nµ and the ones going from left to

right as the left-moving messages ηLi→i+1(xi), i = 1, . . . , Nµ − 1 (see Fig. 4). ηRi→i−1(xi)

is the marginal of xi in the absence of the left part of the chain beyond xi. Then one

has (for the left-moving messages):

ηLi→i+1(xi) =
mi→µ(xi)

Z
eHxi



ηLi−1→i(xi)e
Jµ +

∑

xi−1 6=xi

ηLi−1→i(xi−1)





=
mi→µ(xi)

Z
eHxi

[

1 + ηLi−1→i(xi)(e
Jµ − 1)

]

, (17)

where we have used that
∑

xi
ηLi→i+1(xi) = 1 and Z is the corresponding normalization

factor. The recursion for the right-moving messages is similar, with the i+ 1 and i− 1

playing reverse roles.

Once all the ηL and ηR are computed, one can then obtain the desired m̃µ→i(xi),

taking care of the fact that the message mi→µ(xi) should not be included (see eq. 12),

using

m̃µ→i(xi) =
eHxi

Z

[

1 + ηLi−1→i(xi)(e
Jµ − 1)

] [

1 + ηRi+1→i(xi)(e
Jµ − 1)

]

, (18)

where Z is again a normalization.

Finally, the expected value of the variable yµ =
∑

i∈µ xi can be computed using the

average value of xi in presence of the random field (and this time therefore including

the term mi→µ) given by

E(xi) =

∑

xi
xim̃µ→i(xi)mi→µ(xi)

∑

xi
m̃µ→i(xi)mi→µ(xi)

, (19)

from which we can compute the expected value of the sum of the variables M(H) along

the line µ:

M(H) = E

(

∑

i∈µ

xi

)

=
∑

i∈µ

E(xi) . (20)

A standard result of statistical physics is that M(H) is a monotonous function of H .

This is a consequence of the fact that there are no phase transitions in a one-dimensional

Potts model [52, 53]. This means that one can apply safely a dichotomy algorithm to

find the value of H such that yµ = M(H).

With the canonical method, one cannot fix exactly
∑

i∈µ xi but rather its

expectation, and this means that we are allowing fluctuations (typically of orderO(
√
yµ))

around the strict tomographic constraint. Of course, one might also want to enforce

strictly this constraint, in which case one has to resort to the microcanonical method.

Given these equations, the complete marginals for each variable can be computed

using Eq. (13). The marginal mi(xi) denotes the probability that variable i is assigned

the value xi; and the most likely labeling is thus given, at each step of the algorithm,

by

x∗
i = argmaxximi(xi). (21)
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After convergence of the algorithm, the values x∗
i thus represent the segmentation into

discrete labels that is looked for.

3.4. A special case: binary tomography

We shall now specialize for the rest of this paper to binary tomography, that is, the

case q = 2, where the variables take values xi = −1, 1 (after a suitable rescaling of

experimental data) ‡. In physics terminology, this amounts to the Ising model, and

we shall sometimes use the term “spins” for pixels. In this case, it is convenient to

rewrite the expressions in a simpler way. Indeed, for binary variables x one can write a

probability using a real variable h (which we will call the field) via:

P (x) =
ehx

2 coshh
. (22)

Therefore, we define the fields hi→µ and h̃µ→i by

mi→µ(xi) =
ehi→µxi

2 cosh hi→µ

, (23)

m̃µ→i(xi) =
eh̃µ→ixi

2 cosh h̃µ→i

. (24)

Using this notation, we can rewrite the message from a variable to a node eq. (11)

as follows:

hi→γ =
∑

µ∈i 6=γ

h̃µ→i . (25)

The message from a node to a variable, on the other hand, reads:

m̃µ→i(xi) ∝
∑

xj ;j∈µ6=i

δ(yµ −
∑

j∈µ

xj)e
Jµ

∑

(jk)∈µ xjxk

∏

j∈µ6=i

mj→µ(xj) (26)

∝
∑

xj ;j∈µ6=i

δ(yµ −
∑

j∈µ

xj)e
Jµ

∑

(jk)∈µ xjxk+
∑

j∈µ6=i xjhj→µ . (27)

The marginal m̃µ→i(xi) thus corresponds to the one of a one-dimensional random field

Ising model, where the external fields are given by hj→µ, and constrained to have a

total magnetization yµ. The recursion “within a line” (corresponding to Eq. (17) in

the general case) can also be written in terms of fields, using ηL(x) = eu
Lx

2 cosh uL and

ηR(x) = eu
Rx

2 coshuR , we have

uL
i→i+1 = atanh

[

tanh Jµ tanh (H + hi→µ + uL
i−1→i)

]

, (28)

uR
i→i−1 = atanh

[

tanh Jµ tanh (H + hi→µ + uR
i+1→i)

]

. (29)

Again, once these are computed, the marginal can be expressed as

m̃µ→i(xi) =
eh̃µ→ixi

2 cosh h̃µ→i

, (30)

h̃µ→i = uL
i−1→i + uR

i+1→i +H . (31)

‡ Even if the exact values of the discrete levels are not known, a method for estimating the discrete

values has been proposed by Batenburg et al. [54]



Belief Propagation Reconstruction for Discrete Tomography 14

Finally, the expected value of the variable yµ =
∑

i∈µ xi, that is needed to fix the correct

value of H , is given by summing the average value of xi (with all random fields), each

of them given by

E(xi) = tanh (hi→µ + h̃µ→i) , (32)

which is the analog of eq. (19) for the binary case. Finally, the most likely assignment

for the values xi at each step of the algorithm is given by

x∗
i = sign

(

tanh
∑

µ∈i

h̃µ→ı

)

= sign

(

∑

µ∈i

h̃µ→ı

)

. (33)

3.5. Implementation of the binary algorithm

We shall now summarize the complete algorithm for the binary case. Let us start by a

few comments about the practical implementation.

• An efficient way to initialize the fields h̃µ→i is to compute their equilibrium value

for J = 0:

h̃µ→i = atanh (yµ/Nµ) , (34)

where Nµ is the number of variables on the line µ. This initialization is also used

in [44].

• Along a light ray slanted with respect to the pixel grid, the distance between

successive spins can be larger than 1. In this case, we use a coupling between

the spins that decreases when the distance between neighbors increases. We use

Jµ = atanh
(

tanhD J
)

where D is the ℓ1 distance (Manhattan or taxi-cab distance)

between successive variables on the line µ. This choice, suggested by the so-called

high-temperature approximation [55], mimics the effective correlation between two

variables at distance D in the two-dimensional Ising model.

• We have observed that the results x∗
i depend only weakly on the value of J , as long

as J = O(1). Hence, we did not optimize the value of J : all the results presented

here were obtained with J = 0.2.

• In the case of noise-free measures, we stop the algorithm when all line-sums

constraints are satisfied by the x∗
i . For noisy measures, we stop the algorithm

when the number of flipping spins saturates; this criterion is discussed in Sec. 5.

• We have observed empirically that damping the update of the fields is sometimes

necessary for a proper convergence of the algorithm. We thus replaced eq.(31) by

h̃t+1
µ→i = sh̃t

µ→i + (1− s)
(

uL
i−1→i + uR

i+1→i +H
)

. (35)

In our implementation, we have fixed empirically the damping value s to 1−1.6/nθ.

This scaling was found to ensure convergence for all the values of nθ and N tested.

• In order to avoid overflow or underflow problems, we clip the value of the different

fields inside an interval [−B,B]. We set B to 400, a value large enough for the

result to be independent of B.
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• In order to find the value of the external field H , a few dichotomy iterations are

enough to find H up to a good precision ǫ (we use ǫ = 0.05). In order to speed up

the computation of H , we use Newton’s method when the total magnetization is

close enough to yµ.

BP-TOMO(yµ, criterion, tmax)

1 Initialize the messages h̃ as described above.

2 while conv > criterion and t < tmax:

3 do

4 t← t+ 1.

5 for each µ; i ∈ µ:

6 do Update hi→µ according to eq. (25).

7 for each µ; i ∈ µ:

8 do

9 while
(
∣

∣

∣
yµ −

∑

i∈µ E (xi)
∣

∣

∣
< ǫ
)

10 do Compute the messages uL and uR according to eq. (28-29).

11 Compute the new value of
∑

i∈µ E (xi), update H (e.g. by dichotomy).

12 Update the h̃µ→i according to eq. (35).

13 do Compute the new values x∗
i from eq.(33) and check for convergence.

14 return signal components x∗
i .

Note that this algorithm is of the embarrassingly parallel type, since each line µ

can be handled separately when computing line 7 in the above pseudo-code. This

could be used to speed up the algorithm by solving each line separately on different

cores. A Python code (with some C extensions) of the current version is available on

https://github.com/eddam/bp-for-tomo, under a free-software BSD license.
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Figure 5. Synthetic data generated for p = 14, 28, 38, and a size 256× 256.

4. Numerical test in the zero-noise case

4.1. Generation of synthetic data

In order to measure the performance of our algorithm, we generate synthetic images

with different levels of sparsity of the gradients, but a similar binary microstructure.

We obtain such a set of images with a controlled level of gradient sparsity as follows:

p2 pixels are picked at random inside the image and set to 1 while the background is

set to 0, then a Gaussian filter of width proportional to 1/p is applied to the image.

The resulting continuous-valued image is finally thresholded at the mean intensity to

obtain a binary image. Examples of binary images with different values of p are shown

in Fig. 5. A simple measure of the sparsity of our images is given by

ρ(x) =
ℓ(x)

N
, (36)

where ℓ(x) is the length of the internal boundary of one of the two phases in the image.

The internal boundary is the set of pixels that have within their 4-connected neighbours

at least one pixel belonging to the other phase §. ρ therefore measures the fraction of

pixels lying on the boundary. We choose this measure since the original image can be

retrieved from the knowledge of the internal boundary (and the value of a single pixel). It

would also have been possible to choose the set of pixels for which the finite-differences

gradient of the image is non-zero. However, the latter set of pixels is redundant for

retrieving the image, and leads to a slight over-estimation of the sparsity of the image.

Using the definition of Eq. (36), we find that ρ scales linearly with p.

4.2. Reconstruction in the absence of noise

Let us first investigate the effect of the number of angles on the reconstruction of a given

image, when no noise is added to the projections: y = Fx. We define the undersampling

§ The internal boundary can be computed by simple mathematical morphology operations [56], as the

difference between the origin image and its morphological erosion. Morphological erosion is one of the

two fundamental operations in mathematical morphology [56], realizing the intuitive idea of eroding

binary sets from their boundaries.
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Figure 6. (a) Decay of the number of errors w.r.t. ground truth vs. the number

of iterations of BP-tomo, for p = 15, L = 256 and a number of angles varying from

66 (blue) to 20 (red). The same value of J = 0.2 was used for all cases. Note how

the error reduction becomes slower when the number of projections is decreased. For

smaller number of projections (not shown here), the fraction of errors saturates at an

important level. (b) Number of iterations required to reach an exact reconstruction

versus undersampling rate α, for p = 22 and J = 0.2. The number of iterations

diverges when the transition between exact reconstruction and faulty reconstruction is

approached. (c) Critical undersampling rate αc vs. boundary density ρ.
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rate by the ratio between the number of measures and the number of variables:

α =
M

N
. (37)

Since belief propagation is not an exact algorithm, it is not guaranteed to reconstruct

the exact original image. Nevertheless, we find experimentally that for a sufficient

number of measures, the algorithm always reconstructs the exact image after a finite

number of iterations. Once all spins have reached the correct orientation, we observe

that their orientation does not change any more. For a given image, the evolution of the

discrepancy between the segmentation of the magnetization (Eq. (33)) and the ground

truth is plotted in Fig. 6 (a) against the number of iterations, for different measurement

rates α. The number of errors decays roughly exponentially with time, but the decay

rate increases with the number of measurements: the convergence towards the exact

image is faster when more measurements are available. Also, a sharp transition is

observed for a critical α, under which the number of errors does not reach zero, and

eventually increases again at long times. The transition between the two regimes is hard

to estimate accurately, since the convergence time seems to diverges when the transition

is approached, as shown in Fig. 6 (b). We estimate the critical undersampling rate

from the lowest number of angles for which exact reconstruction is reached before 400

iterations.

We have measured the critical undersampling rate αc for images with different sizes

of the microstructure, hence different levels of sparsity. The critical undersampling rate

is plotted against the boundary density ρ (Eq. (36)) in Fig. 6 (c). We observe a linear

relationship

αc ≃ ρ. (38)

This simple relationship corresponds to a very good recovery performance, since ρN can

be seen as the number of unknowns needed to retrieve the image. Therefore, we only

need a number of measurements M = αN comparable to the number of unknowns for

an exact reconstruction of the image.
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5. Numerical test in the noisy case

Now that we have established the phase diagram of our algorithm, we wish to assess

its performance for noisy measurements. Different sources of noise may corrupt the

measurements in X-ray tomography [57]. Here we add a Gaussian white noise of fixed

amplitude to the projections. We define the measure noise to signal ratio (NSR) by

NSR =
σ

L
, (39)

where σ is the standard deviation of the additive noise.

In the noisy case, it is not possible any more to stop the algorithm when all

constraints are satisfied. Nevertheless, for a small value of the noise the algorithm

still converges to an exact reconstruction (Fig. 7). When there is convergence to the

exact solution, we observe that this solution is stable: all spins keep their orientation

during further iterations of the algorithm. Convergence is reached after a number of

iterations similar to the noise-free case. For a larger amplitude of the noise, a finite

fraction of errors remains. We observe that the fraction of errors first decreases and

reaches a minimum, then starts to slowly increase again. A good choice of the stop

criterion is therefore important in order to optimize the quality of the reconstruction.

Empirically, we found that the best number of iterations correlates well with the number

of iterations needed to reach exact reconstruction in the small-noise case. It can also be

detected by a change of slope in the decay of spins flipped between successive iterations

(see the inset in Fig. 7).

5.1. Robustness to noise

In Fig. 8, we have plotted the reconstruction error for the same image against the

measure noise to signal ratio, for two values of the measurement rate α = 1/4 and

α = 1/10. An image with p = 14 (Fig. 5 left) was used, and J = 0.2 was used for

all values of the NSR. We have also computed the reconstruction error for the convex

minimization of Eq. (6). For a fair comparison, the best value of β minimizing the

reconstruction error was computed using Brent’s method (whereas no parameter was

optimized for BP-tomo). We observe that the reconstruction quality is better for BP-

tomo than for the convex algorithm, up to a threshold above which the error is greater for

BP-tomo. For the smaller undersampling rate α = 1/10, the values of the error reached

at the threshold are too high for a satisfying reconstruction for several applications (most

pixels lying on boundaries are wrongly labeled). Interestingly, there is a first regime for

small noise, for which the fraction of errors is zero or very small for BP-tomo, while

the error increases much faster for the convex algorithm. For large noise, however, the

convex algorithm gives better results.

Fig. 9 shows that the reconstruction errors are mostly located on the boundaries

between the two phases for the two algorithms (except for a few isolated errors for BP-

tomo), but that a larger fraction of the interfaces are correctly reconstructed for BP-

tomo. Fig. 9 also displays the continuous magnetization, as well as the non-segmented
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Figure 7. Stop criterion in the noisy case - Main axes: for α = 1/10, p = 14,

fraction of error compared to ground truth vs. number of iterations n for a signal to

noise ratio of 0.6 % (•), 1 % (H) and 2 % (⋆). For a small amplitude of the noise, the

number of errors converges to zero (SNR = 0.6%). For a large amplitude of the noise,

the fraction of errors reaches a minimum after the number of iterations needed to reach

an exact reconstruction for a smaller value of the noise (here, n = 15). Inset: number

of flipped spins between two iterations vs. number of iterations. We observe that the

minimum fraction or errors correlates well with a change of slope for the number of

flipped spins.
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Figure 8. Fraction of error Ne/L
2 vs. normalized measure noise σ/L, for BP-tomo

and the convex algorithm (TV). These numerical tests have been performed for two

different undersampling rates α. For a small noise, BP-tomo always outperforms the

convex algorithm. In particular, there is a finite interval of noise intensity for which

the reconstruction is error-free.
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(a) BP-tomo

(b) Total Variation regularization

Figure 9. (a) BP-tomo, α = 1/10, p = 14, reconstructions for σ/L =

0.006, 0.01, 0.02, 0.03 (from left to right). The top row shows the magnetization of

the pixels, and the bottom row the segmentation, with segmentation errors contoured

in blue (resp. magenta) for wrong pixels in the x = −1 (resp. x = 1) phase. Note how

the absolute value of the magnetization decreases when the measure noise increases,

revealing a greater uncertainty. (b) TV (convex algorithm), α = 1/10, p = 14,

reconstructions for x/L = 0.006, 0.01, 0.02, 0.03 (from left to right). The top row

displays the result of the convex optimization, and the bottom row its segmentation.

For a low noise amplitude, boundaries between domains are not as sharp as for BP-

tomo, resulting in more segmentation errors close to boundaries.
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Figure 10. Fraction or error Ne/L
2 as a function of the measurement rate α, for BP-

tomo and the convex algorithm (TV) (inset in log-log coordinates). These numerical

tests have been performed for a small noise σ/L = 0.002. For both algorithms, the

number of errors decrease when the measurement rate is increased, but the evolution

is very different. For BP-tomo, the evolution is very sharp: above a certain threshold,

the reconstruction is error-free. However, below this threshold the number of errors

displays a sharp transition and increases quickly to high values. The convex algorithm

gives similar results as BP below the BP-tomo threshold, but does not have a ”phase

transition”, so that it is outperformed by BP above the threshold.

minimization of the convex algorithm. We see that the contours of the objects are

delineated more accurately for BP-tomo than for the convex algorithm, especially for

objects with concavities.

For a given value of the NSR, we observe in Fig. 8 that the reconstruction error

increases when the measurement rate decreases. The effect of the measurement rate in

the noisy case is studied in the next paragraph.

5.2. Influence of the number of measures

For the same image (p = 14, J = 0.2), we have fixed the SNR to 0.002 and computed

the reconstruction error as a function as the measurement rate, for the two algorithms.

Results are shown in Fig. 10. For BP-tomo, we observe a sharp transition between an

exact reconstruction to a failed reconstruction when the measurement rate is decreased

(a score of 0.5 would be obtained when labeling pixels at random). Therefore, the

noisy case displays a transition between failure and success as in the noise-free case

(Fig. 6). The transition is observed at the same measurement rate as the noise-free

case. Approaching the transition from above, a finite error fraction appears (see the
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Figure 11. Fraction or error Ne/L
2 as a function of the measurement rate α, for BP-

tomo and two different values of the noise amplitude (inset in log-log coordinates). The

transition is sharper for a small noise. In the inset, the dashed vertical line represents

the empirical value of the noise-free critical undersampling rate.

log-log inset in Fig. 10). In the noise-free case, exact reconstruction could be reached

until the transition, but an increasing number of iterations was needed when approaching

the transition (Fig. 6 (b)).

In contrast, the evolution of the error fraction when decreasing the measurement

rate is much smoother for the convex algorithm, and does not display a phase transition

in Fig. 10. As a result, the error fraction is larger for the convex algorithm above the

BP-tomo transition. At low measurement rates, the error fraction is comparable for the

two algorithms, but this regime corresponds to values of the error fraction that are not

acceptable for most applications.

For a larger value of the noise, Fig. 11 shows that a transition between good and

failed reconstruction is still observed. However, the fraction of errors is larger, therefore

the transition is not as sharp as for smaller NSR. Comparing Fig. 10 and Fig. 11, we

conclude that the reconstruction quality is better above the transition for a SNR of 0.01

than for the convex algorithm for a SNR five times smaller.
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6. Discussions and perspectives

The belief-propagation algorithm presented in this article is found to have excellent

recovery properties for tomographic binary reconstruction. Indeed, in the noise-free case

the exact original image can be reconstructed from a number of tomographic measures

approximately equal to the number of pixels lying on the internal boundary of the

objects, that can be viewed as the number of unknowns in our problem. We are not aware

of other studies on discrete tomography where the empirical computation of the critical

undersampling rate as a function of the data sparsity was performed. In Batenburg’s

DART algorithm [9], a sharp transition between exact and faulty reconstruction is also

observable for the different kinds of phantoms studied, but the relation between the

complexity of the data and the critical undersampling rate was not described. Our

search for recovery bounds is inspired by empirical and theoretical results obtained in

the field of compressed sensing about phase transitions in recovery [58, 59, 60, 61].

Obtaining theoretical results for the discrete tomography problem is more difficult

than for signals sparse in a known basis – our measure of image “sparsity” comes

from set theory and mathematical morphology, and applies only to discrete images.

Nevertheless, it is possible to obtain empirical bounds as we did in Section 4. For a

more complete phase diagram of our algorithm, one should also investigate corrections

depending on the size of the data N , that appear for example in the ℓ0 − ℓ1 Donoho-

Tanner phase transition [58]. A probability of exact recovery could also be obtained

by computing the critical undersampling rate for a large number of images sharing the

same sparsity [58, 59].

When Gaussian noise corrupts the measurements, we observe that an exact

reconstruction can still be retrieved for small noise and a sufficient number of

measurements. For a fixed non-zero level of noise, the fraction of segmentation errors

grows when the number of measurements is decreased, but the fraction of errors is

smaller than the value of the noise over signal ratio for a large window of undersampling

rates. At the noise-free critical undersampling rate, the fraction of errors grows very fast

when the number of measurements is decreased further. Above the noise-free critical

undersampling rate and for moderate noise, we find that our algorithm systematically

outperforms a convex algorithm implementing the convex relaxation of the binary

tomography problem. The value of the noise corresponding to the crossover when the

convex algorithm becomes better increases when the undersampling rates increases (i.e.,

when one moves away from the transition). At the crossover, the reconstruction error

is high when the undersampling rate α is small – typically, most pixels lying on objects

boundaries are wrong –, making the reconstruction unsuitable for further processing

or interpretation in many cases. We therefore conclude that the belief-propagation

algorithm is better in most cases where further processing of the images needs to be

done.

For practical applications, if the measurement noise is known and the

undersampling rate can be selected, we suggest that the operator should select the
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undersampling rate to allow for a comfortable margin with respect to the critical noise-

free undersampling rate. This will speed up the convergence rate (see Fig. 6 (b)) and

reduce significantly the measurement error when the noise is important (compare the

plots in Fig. 8 for α = 1/4 and α = 1/10 for 1% of noise and more). In other words,

trying to approach the limit αc ≃ ρ is more interesting for theoretical than practical

reasons. However, the good news is that one does not need to go very far from the

transition αc for an efficient and accurate reconstruction, all the more for a small noise

amplitude. A systematic evaluation of the reconstruction error as a function of α, ρ and

the NSR is out of the scope of this article, but would be of interest for applications.

In future work, the recovery properties of our algorithm should be tested on real

experimental data. In our prototype code, the BP algorithm is a few times (about 5

times) slower than the TV algorithm, principally because of the iterations needed to

find H . However, the number of iterations needed to converge is much smaller for the

BP algorithm, and we expect the speed of the algorithms to depend very much on the

implementation. In order to reconstruct large 3-D volumes in a reasonable time, our

prototype implementation of the algorithm can be improved on the numerical side –

for example with an implementation coded on the graphics processing unit (GPU) –

and probably also on the algorithmic side. For example, a different update scheme

for the message passing might accelerate the convergence of the algorithm. For a

better precision when the density of boundaries in the image is high (large ρ), the

geometrical factors Fµi (see Section 3) should be computed, as they are in usual algebraic

reconstruction algorithms. For 3-D images, the additional knowledge that neighboring

horizontal slices are likely to have the same pixel values can be easily implemented in

the algorithm as well. In the same way, a time-regularization in a timeseries of several

images could also be used [39, 62], corresponding to a 3D + time regularization. This

should lead to an even better recovery compared to the 2-D case.

We also plan to test the recovery properties in the multilabel case (q > 2). When q

becomes large, it remains an open question to know how the discrete algorithm performs

compared to the convex continuous algorithm.

Finally, for in-situ tomography [5] the sample is rotating continuously to speed-up

the acquisition rate, in the case of fast transformations. It would therefore be interesting

to adapt our algorithm to the case of continuous acquisition, when one image taken on

the detector integrates the projection of the sample over a finite angular sector.
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compressed sensing: algorithms, phase diagrams, and threshold achieving matrices. Journal of

Statistical Mechanics: Theory and Experiment, 2012(08):P08009, 2012.

[62] L. Chaari, S. Mériaux, S. Badillo, J.-Ch. Pesquet, and P. Ciuciu. Multidimensional wavelet-

based regularized reconstruction for parallel acquisition in neuroimaging. EURASIP Journal

on Advances in Signal Processing, December 2011. Under revision.


