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CONSTRUCTION AND CONVERGENCE STUDY OF SCHEMES
PRESERVING THE ELLIPTIC LOCAL MAXIMUM PRINCIPLE∗

JÉRÔME DRONIOU† AND CHRISTOPHE LE POTIER‡

Abstract. We present a method to approximate (in any space dimension) diffusion equations
with schemes having a specific structure; this structure ensures that the discrete local maximum
and minimum principles are respected, and that no spurious oscillations appear in the solutions.
When applied in a transient setting on models of concentration equations, it guaranties in particular
that the approximate solutions stay between the physical bounds. We make a theoretical study of
the constructed schemes, proving under a coercivity assumption that their solutions converge to the
solution of the PDE. Several numerical results are also provided; they help us understand how the
parameters of the method should be chosen. These results also show the practical efficiency of the
method, even when applied to complex models.
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1. Introduction. Let Ω be an open bounded connected polygonal domain of
R

N . We consider the following problem:

(1)

⎧⎨⎩
�q = −D∇u in Ω ,
div �q = f in Ω ,
u = u∂ on ∂Ω

with
(i) f , the source term, belonging to L2(Ω);
(ii) u, the concentration of the radioactive element;
(iii) D, the permeability, a symmetric tensor-valued function such that (a) D

is piecewise Lipschitz-continuous on Ω and (b) the set of the eigenvalues of D(x) is
included in [λmin, λmax] (with λmin > 0) for all x ∈ Ω;

(iv) u∂, the boundary data.
This basic equation (or its transient version) is at the core of complex mod-

els of flows in porous media, used, for example, in petroleum engineering or in the
framework of nuclear waste disposal. In such situations, it is crucial to have robust
approximations of the solution to (1). This robustness is, in particular, measured
through the respect of the physical bounds; for instance, in models of two-phase flows
in porous media [36], ensuring that the numerically computed concentration stays be-
tween 0 and 1 is of utmost importance; this is also the case when coupling transport
equations with chemical models.

If the grid used for the discretization of the PDE has specific orthogonality con-
ditions (depending on D), the classical finite volume scheme [22] (in which numerical
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fluxes are approximated by a two-point finite difference expression) provides a solu-
tion that respects these bounds. However, in practical situations such a very specific
grid is not available, and might not even be constructible. Several methods have been
recently developed to construct schemes for elliptic PDEs on generic meshes: multi-
point flux approximations [1, 2, 3], discontinuous Galerkin [17, 37], discrete duality
finite volume [18, 8], mimetic finite difference [9, 10, 5], hybrid finite volume [23] (see
also the cell-centered variant [24]), mixed finite volume [19, 21] (these last three turn
out to be identical [20]). None of these methods, however, ensures that the above-
mentioned physical bounds are satisfied in every situation, as shown in the FVCA5
benchmark organized in 2008 [25].

Some methods have been specifically designed to discretize (1) by ensuring that
the approximate solution satisfies a discrete maximum and/or minimum principle.
As it has been proved in [28, 11, 27], no linear consistent nine-point control volume
scheme constructed on square meshes with a very anisotropic tensor (or on very
distorted quadrangular cells with an isotropic tensor) can respect the maximum or
minimum principle. One must therefore look for nonlinear schemes in order to satisfy
these principles.

In [12], a nonlinear correction of the classical linear P1 finite element is proposed,
but heterogeneous anisotropic tensors are not taken into account. In [6], an interest-
ing nonlinear method is proposed for homogeneous isotropic diffusions. Unfortunately,
the positivity properties are obtained under restrictive geometric constraints. In [30],
a cell-centered finite volume discretization for diffusion operators is proposed, and
its robustness and accuracy are shown through comparisons with analytical solutions.
This scheme satisfies either the minimum or the maximum principle but not both prin-
ciples simultaneously; it has been extended in [26, 34, 35, 38] on polygonal meshes and
tetrahedrons. However, no scheme developed in these articles satisfies with certainty
both the minimum and the maximum principles simultaneously, and no theoretical
proof of convergence is given.

We can also cite the recent work [32] on a linear scheme satisfying a maximum
principle for anisotropic diffusion operators on distorted grids in dimension 2. Unfor-
tunately, this method is, in general, only of order 1 in space and has a nonstandard
stencil.

In [33], a new finite volume method for highly anisotropic diffusion operators is in-
troduced on triangular meshes. This scheme satisfies a discrete version of the classical
local maximum (and minimum) principle for elliptic equations without geometrical
constraints on the mesh and restrictive conditions on the anisotropy ratio.

Our goal in the present work is to extend this method to very generic grids in any
space dimension. Moreover, we improve the precision of the scheme in some cases of
discontinuous diffusion tensor. We also prove its convergence toward the solution of
(1) as the size of the mesh tends to 0; this theoretical study is not just a mathematical
amusement since it leads us to an understanding of how to choose the parameters of
the method in order to obtain good approximations of the solution.

The finite volume framework is chosen because it ensures that the approximation
satisfies the local conservation of mass, an essential physical property. The maximum
and minimum principles are harder to satisfy, and thus more rarely considered in the
construction of finite volume schemes; they are, however, also quite important: they
ensure not only that the approximate concentration stays within the physical bounds,
but also that it does not develop spurious oscillations. The schemes that satisfy these
principles are therefore very robust.
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The articulation of the paper is as follows. In the rest of this introduction, we
define a structure of schemes that ensures that the discrete maximum and minimum
principles are respected; this structure also makes sure that the approximate solution
does not develop spurious oscillations. In section 2, we present a method to construct
schemes satisfying this structure on generic meshes, while having a simple nine-point
stencil on most quadrangular grids (even in the presence of strong anisotropy). We
start with the simpler case of the isotropic homogeneous tensor D = Id before detail-
ing the case of a generic anisotropic heterogeneous tensor. In section 3, the theoretical
study of the obtained schemes is developed, from the proof of the existence of solu-
tions to their convergence toward the continuous solution (as the mesh size tends
to 0). As this is the case for other schemes based on flux balances and multipoint
approximations of the fluxes, the coercivity of the method cannot be theoretically
ensured in any situation; the proof of convergence is thus made under a coercivity
assumption. The numerical results we present in section 4, however, show that this
assumption seems to hold quite well in practice, even for strongly anisotropic and het-
erogeneous permeabilities. In this section, we also take advantage of findings made
during the theoretical study to present adequate choices for the parameters of the
method. We discuss in particular the case of discontinuous diffusion tensors; this case
is very important in practice, but few papers in the literature on monotone schemes
seem to fully take it into account. Finally, we numerically illustrate the efficiency of
our method by comparing it with other (linear) schemes in the case of a strongly dis-
continuous diffusion tensor, and on the more realistic COUPLEX 1 benchmark from
[7]. A short conclusion closes the article.

1.1. The local maximum principle structure. The basic assumptions and
notation on the discretization of Ω are the following.

Definition 1.1 (admissible mesh). An admissible mesh of Ω is triplet D =
(T ,A,P) where

1. T is a finite family of nonempty connected open disjoint subsets of Ω (the
cells or control volumes) such that Ω = ∪K∈T K;

2. A is a finite family of subsets of Ω (the edges—faces in dimension 3) such
that any a ∈ A is a nonempty closed subset of a hyperplane of R

N with positive
(N − 1)-dimensional measure, and such that the intersection of two different edges
has zero (N − 1)-dimensional measure. We also assume that, for all K ∈ T , there
exists a subset AK of A such that ∂K = ∪a∈AKa and that any edge is contained either
in ∂Ω or in AK ∩ AL for two distinct control volumes K and L;

3. P = (XK)K∈T is a family of points (the cell centers—not necessarily the
center of gravity of the cells) of Ω such that, for all K ∈ T , XK ∈ K.

Remark 1.2. Notice that, although it is not mandatory for the construction
and study of the scheme, the considered meshes are nearly always aligned with the
discontinuities of D (i.e., for all K ∈ T , D is continuous on K). The discontinuities
of D are in general due to the geological layers, and the mesh usually follows these
layers; hence, the alignment of the mesh with these discontinuities is quite natural.

For all K ∈ T , |K| is the N -dimensional measure of K. For a ∈ A, |a| is the
(N − 1)-dimensional measure of a. The edges a contained in ∂Ω are called boundary
edges, with the other edges being interior edges; Aext is the set of boundary edges, and
Aint is the set of interior edges. If a ∈ AK , the unit normal to a in the outer direction
of K is �nK,a. The size of the mesh is size(D) = supK∈T diam(K), where diam(K) is
the diameter of K. The Euclidean distance is denoted by d, and the Euclidean norm
of a vector �v is written |�v|.
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A numerical scheme for (1) is an equation on some unknowns (uK)K∈T , assumed
to be approximate values of the solution to this PDE at the cell centers (XK)K∈T .

Definition 1.3 (LMP structure). Let D be an admissible mesh of Ω. We say
that a scheme for (1) using the unknowns u = (uK)K∈T has the local maximum
principle structure (LMP structure for short) if it can be written in the form

(2) ∀K ∈ T :
∑
L∈T

τK,L(u)(uK − uL) +
∑

a∈Aext

τK,a(u)(uK − ua) =

∫
K

f

for some functions τK,L : RCard(T ) �→ R
+ (for (K,L) ∈ T 2) and τK,a : RCard(T ) �→ R

+

(for K ∈ T and a ∈ Aext) satisfying, for all v ∈ R
Card(T ),

(3)
∀(K,L) ∈ T 2 such that AK ∩ AL 	= ∅ : τK,L(v) > 0,

∀K ∈ T , ∀a ∈ AK ∩ Aext : τK,a(v) > 0.

In (2), ua stands for some value of u∂ on a; we assume that this value is between the
minimum and maximum values of u∂.

This definition is set in order that the classical proofs of the discrete maximum
and minimum principles (proofs that are used, for example, in the case of two-point
fluxes finite volume methods) can be straightforwardly adapted to schemes having the
LMP structure. It is also important to notice that the LMP structure ensures that
both principles simultaneously hold; this is not the case for most schemes built on
general grids: as pointed out in the introduction, schemes on general grids oftentimes
enjoy only one, or none, of these two principles.

Proposition 1.4 (discrete local maximum and minimum principles). Assume
that u∂ = 0. If f ≥ 0 (resp., f ≤ 0) and u = (uK)K∈T is a solution to a scheme
having the LMP structure then minK∈T uK ≥ 0 (resp., maxK∈T uK ≤ 0).

Moreover, if this minimum (resp., maximum) is attained in a cell K such that
τK,a(·) = 0 for all a ∈ Aext, then u is locally constant around K: the values of u
in this cell and all the neighboring cells are identical. In particular, if the scheme is
such that τK,a(·) = 0 for all K ∈ T and all a 	∈ AK then, unless it is constant, u
cannot attain its minimum (resp., maximum) in an interior cell (i.e., a cell K such
that AK ∩ Aext = ∅).

Similarly, the proof of the following nonoscillating property is an easy consequence
of the LMP structure.

Proposition 1.5 (nonoscillating property). Let f = 0 and u = (uK)K∈T be a
solution to a scheme having the LMP structure; for K ∈ T , we define V (K) = {L ∈
T | τK,L(u) 	= 0} and E(K) = {a ∈ Aext | τK,a(u) 	= 0}. Then, for any cell K, we
have min(minJ∈V (K) uJ ,mina∈E(K) ua) ≤ uK ≤ max(maxJ∈V (K) uJ ,maxa∈E(K) ua).

Once a scheme for the stationary equation (1) is available, it is straightforward
to build a scheme for the corresponding parabolic equation

(4)

⎧⎨⎩
∂tu = div(D∇u) in ]0,∞[×Ω ,
u = u∂ on ]0,∞[×∂Ω ,
u = u0 on {0} × Ω.

Assume that a scheme for (1) is written SD(u) = (
∫
K
f)K∈T with SD : RCard(T ) →

R
Card(T ) (in the case of an LMP structure, SD(u)K is the left-hand side of (2)); then,

using a time-implicit discretization, a scheme for (4) is given by

(5)

∀n ≥ 0 , ∀K ∈ T : |K|un+1
K + δtSD(u

n+1)K = |K|un
K ,

∀K ∈ T : u0
K =

1

|K|

∫
K

u0.
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Another easy property of schemes having the LMP structure is the following.
Proposition 1.6 (preservation of the initial bounds). Assume that 0 ≤ u0 ≤ 1

and that 0 ≤ u∂ ≤ 1. If SD defines a scheme having the LMP structure and if
u = (un

K)K∈T , n≥0 is a solution to (5), then for all n ≥ 0 and all K ∈ T we have
0 ≤ un

K ≤ 1.

2. Presentation of the method. The construction of schemes having the LMP
structure demands some local geometrical reasoning and is a little bit easier to present
in the isotropic homogeneous case D = Id. We thus first handle this case before
turning to the more general diffusion tensor.

In the following sections, we present a family of schemes, each one corresponding
to specific choices of parameters that appear during the construction. We discuss
these choices in section 4, using the theoretical study of section 3 as a guide to select
“proper” parameters.

2.1. Isotropic homogeneous case: D = Id. We add the following assump-
tion on the mesh, the statement of which is easily understood by looking at Figure 1.

Assumption 2.1.

1. D is an admissible mesh.
2. For all boundary edges b ∈ Aext, denoting by T (b) the control volume such

that b ∈ AT (b), we assume that the half-line starting at XT (b) in the direction �nT (b),b

intersects b at some point denoted by Xb.
3. For all a ∈ Aint, we denote by T1(a) and T2(a) the control volumes on either

side of a, and we take two points M1,a and M2,a inside the convex hull of the cell
centers and boundary points ((XK)K∈T , (Xb)b∈Aext) such that

(i) M2,a belongs to the (open) half-line starting at XT1(a) and with direction
�nT1(a),a;

(ii) M1,a belongs to the (open) half-line starting at XT2(a) and with direction
�nT2(a),a.
We let M be the set of the chosen points (Mi,a)a∈Aint, i=1,2.

Remark 2.2. Note that Assumption 2.1 does not require that the straight lines
mentioned in items (3.i) and (3.ii) intersect the interior edge a. This intersection is
mandatory only for boundary edges in item (2); one can, for example, see in Figure 1
that the straight line starting at XT (b) and directed by �nT (b),c does not intersect the
edge c. See also Remark 2.7.

We then describe in three steps a method for constructing a scheme having the
LMP structure. This scheme is written using the unknowns (uK)K∈T playing the role
of approximate values of the solution at the cell centers (XK)K∈T .

In the following, we denote ub = u∂(Xb).
Step 1 (interpolation of additional approximate values of the solution). The points

Mi,a given by Assumption 2.1 can be written as convex combinations of cell centers
and boundary points. This allows us to define, by interpolation of (uK)K∈T and
(ub)b∈Aext , some approximate values uMi,a of the solution at Mi,a.

In the convex combination used to write Mi,a, the coefficient of XTi(a) plays a
particular role; we therefore give it a special name, say αi,a. We thus have Mi,a =

αi,aXTi(a)+
∑Ji,a

j=1 λi,a(j)Xi,a(j) (with αi,a ≥ 0, λi,a(j) ≥ 0, and αi,a+
∑Ji,a

j=1 λi,a(j) =
1, and, for each j, Xi,a(j) is either XK for some K ∈ T or Xb for some b ∈ Aext). It
is then natural to define

(6) uMi,a = αi,auTi(a) +

Ji,a∑
j=1

λi,a(j)uXi,a(j),
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Fig. 1. Illustration of Assumption 2.1 (choice of Mi,a in the homogeneous case).

with the following obvious notation: uXi,a(j) = uK if Xi,a(j) = XK with K ∈ T and
uXi,a(j) = ub if Xi,a(j) = Xb with b ∈ Aext. We assume that αi,a > 0, which is usually
not a restriction.

Remark 2.3. It is always possible to choose the points Xi,a(j) such that the
distance between these points and Mi,a is of order diam(Ti(a)). In fact, the points
Xi,a(j) lay, in general, within a few cells of Ti(a).

Step 2 (definition of the approximate value of the flux �q · �nK,a). This is of course
the key step in the construction of the scheme. In the following, the dependence of a
quantity Q on u = (uK)K∈T is explicitly indicated by Q(u); quantities that are not
indicated as such depend only on the mesh.

Let K ∈ T , and let a ∈ AK be a boundary edge. Taking into account Assump-
tion 2.1 and the vanishing boundary value in (1), a consistent approximation of �q ·�nK,a

is

(7) FK,a(u) =
uK − ua

d(XK , Xa)
.

Let us now assume that a ∈ AK is an interior edge. Thanks to Assumption 2.1,
using uT1(a), uT2(a), and the values uMi,a previously defined, we have two consistent
ways, F1,a(u) and F2,a(u), to approximate the flux of �q = −∇u through a (one outside
T1(a), and the other outside T2(a)):

F1,a(u) =
uT1(a) − uM2,a

d(XT1(a),M2,a)
and F2,a(u) =

uT2(a) − uM1,a

d(XT2(a),M1,a)
.
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Owing to (6), this means that

(8) F1,a(u) =
α2,a(uT1(a) − uT2(a)) +

∑J2,a

j=1 λ2,a(j)(uT1(a) − uX2,a(j))

d(XT1(a),M2,a)

and

(9) F2,a(u) =
α1,a(uT2(a) − uT1(a)) +

∑J1,a

j=1 λ1,a(j)(uT2(a) − uX1,a(j))

d(XT2(a),M1,a)
.

The approximation FK,a(u) chosen for �q · �nK,a is a well-chosen combination of
these two fluxes. As one might expect, the final finite volume scheme consists of
writing the flux balance

(10) ∀K ∈ T :
∑

a∈AK

|a|FK,a(u) =

∫
K

f.

In order to ensure that this scheme has the LMP structure, we intend on constructing
FK,a(u) so that it can be written in the form

(11) FK,a(u) =
∑
L∈T

νK,L,a(u)(uK − uL),

where νK,L,a(u) ≥ 0 for all L and νK,L,a(u) > 0 whenever L and K are neighboring
cells.1 If we manage to construct fluxes satisfying (11), equations (7) and (10) clearly
show that the resulting scheme has the LMP structure.

Let us first assume that K = T1(a). We now describe how to choose γ1,a(u)
and γ2,a(u), the coefficients of a convex combination FK,a(u) = γ1,a(u)F1,a(u) +
γ2,a(u)(−F2,a(u)) which ensure that (11) holds (recall that F2,a(u) is the flux outside
T2(a), so that −F2,a(u) is the flux outside T1(a) = K in our current assumption).

Fixing 0 < β1,a ≤ 2α1,a

d(XT2(a),M1,a)
and 0 < β2,a ≤ 2α2,a

d(XT1(a),M2,a)
, we notice from (8) and

(9) that

F1,a(u) = β2,a(uK−uT2(a))+G1,a(u) and −F2,a(u) = β1,a(uK−uT2(a))−G2,a(u),

where, denoting by “�” some generic nonnegative coefficients,

G1,a(u) =
∑
L∈T

�(uK − uL) +

(
α2,a

d(XT1(a),M2,a)
− β2,a

)
(uK − uT2(a)) ,

G2,a(u) =
∑
L∈T

�(uT2(a) − uL) +

(
α1,a

d(XT2(a),M1,a)
− β1,a

)
(uT2(a) − uK).

Of all the terms β2,a(uK−uT2(a)), G1,a(u), β1,a(uK−uT2(a)), and −G2,a(u) appearing
in F1,a(u) and −F2,a(u), only −G2,a(u) and the second part of G1,a(u) have a “bad”
form (not similar to (11)). The coefficients γ1,a(u) and γ2,a(u) are thus chosen in
order to give the necessary weight to F1,a(u) (and thus to G1,a(u)) and to cancel
out this possible bad term G2,a(u): the larger G2,a(u) is, the more we put weight on
F1,a(u). We take

γ1,a(u) =
|G2,a(u)|

|G1,a(u)|+ |G2,a(u)|
and γ2,a(u) =

|G1,a(u)|
|G1,a(u)|+ |G2,a(u)|

1In general, νK,L,a(u) = 0 if L and K are far apart.
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(if |G1,a(u)|+ |G2,a(u)| = 0, we let γ1,a(u) = γ2,a(u) =
1
2 ). The total flux FK,a(u) =

γ1,a(u)F1,a(u) + γ2,a(u)(−F2,a(u)) can then be written

FK,a(u) = (γ1,a(u)β2,a + γ2,a(u)β1,a)(uK − uT2(a))

+
|G2,a(u)|G1,a(u)− |G1,a(u)|G2,a(u)

|G1,a(u)|+ |G2,a(u)|
.

This expression shows that (11) holds: indeed, if G2,a(u) and G1,a(u) have the same
sign, then |G2,a(u)|G1,a(u)− |G1,a(u)|G2,a(u) = 0 and

FK,a(u) = (γ1,a(u)β2,a + γ2,a(u)β1,a)(uK − uT2(a))

and, if G2,a(u)G1,a(u) < 0, then we have |G2,a(u)|G1,a(u) − |G1,a(u)|G2,a(u) =
2|G2,a(u)|G1,a(u), and thus

FK,a(u) = (γ1,a(u)β2,a + γ2,a(u)β1,a)(uK − uT2(a))

+
2|G2,a(u)|

|G1,a(u)|+ |G2,a(u)|

(
α2,a

d(XT1(a),M2,a)
− β2,a

)
(uK − uT2(a))

+
∑
L∈T

�(uK − uL)

=

(
γ1,a(u)

(
2α2,a

d(XT1(a),M2,a)
− β2,a

)
+ γ2,a(u)β1,a

)
(uK − uT2(a))

+
∑
L∈T

�(uK − uL),

which shows that FK,a(u) satisfies (11) since 0 < β2,a ≤ 2α2,a

d(XT1(a),M2,a)
.

If K = T2(a), we just define, with the same βi,a and γi,a(u) as above (not de-
pending on K), FK,a(u) = −γ1,a(u)F1,a(u) + γ2,a(u)F2,a(u). In summary, the final
approximation of �q · �nK,a is

(12) FK,a(u) = γ1,a(u)ε1,KF1,a(u) + γ2,a(u)ε2,KF2,a(u),

where εi,K = +1 if K = Ti(a) and εi,K = −1 otherwise. These choices of signs clearly
ensure (since γi,a(u) and Fi,a(u) depend only on a, not on the cell K) that these fluxes
are conservative: if K and L are the control volumes on either side of a, then

(13) FK,a(u) + FL,a(u) = 0.

Remark 2.4. The parameters (βi,a)i=1,2 can be understood as the coefficients
of “two-point flux pieces” in the fluxes (Fi,a)i=1,2; in a sense, they represent the
“best part” of these fluxes since, whatever the case K = T1(a) or K = T2(a), they
always give a good contribution in FK,a with respect to (11). Moreover, in situations
where the grid is admissible in the sense of [22], the expected flux FK,a should be
a two-point flux (such a flux is the simplest consistent flux which satisfies (11)).
However, in general, two-point fluxes are clearly not sufficient to construct consistent
approximations; this is why we must take into account the rest of the fluxes, i.e., the
terms (Gi,a)i=1,2, and give some importance to these terms in the construction of the
complete flux FK,a.
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Fig. 2. Choice of Mi,a in the homogeneous case with a triangular mesh.

Step 3 (the scheme). As mentioned above, the scheme for (1) is obtained by
writing the flux balance: find u = (uK)K∈T such that

(14) ∀K ∈ T :
∑

a∈AK

|a|FK,a(u) =

∫
K

f.

Remark 2.5 (case of triangular cells in dimension d = 2). As described in [33],
possible choices for triangular meshes are as follows: the cell centers XK are the angle
bisectors of the triangles, and the points Mi,a are chosen on the segments of lines
going from these cell centers to the vertices of the edge a (see Figure 2).

Integrating div∇x = 0 and div∇y = 0 on a disk around the vertex Oi,a allows
us to express this vertex as a convex combination of the cell centers around it; this
gives a similar convex combination for Mi,a since

(15) Mi,a = μi,aXTi(a) + (1− μi,a)Oi,a.

Finally, we choose

β1,a = β2,a = min

(
μ1,a

d(XT2(a),M1,a)
;

μ2,a

d(XT1(a),M2,a)

)
.

It can easily be checked (from (15) and writing Oi,a as a convex combination of the cell

centers around it) that this value is smaller than both
2α1,a

d(XT2(a),M1,a)
and

2α2,a

d(XT1(a),M2,a)
,

with αi,a being the coefficient of XTi(a) in a convex combination giving Mi,a.

2.2. Anisotropic heterogeneous case. As in the isotropic homogeneous case,
we have to introduce an assumption; this is basically the same as Assumption 2.1,
except that the directions of the half-lines now follow D�n (with D varying inside each
cell). We let DK be the mean value of D on the cell K, and we refer to Figure 3 for
an illustration of the notation.

Assumption 2.6.

1. D is an admissible mesh.
2. For all boundary edge b ∈ Aext, denoting by T (b) the control volume such

that b ∈ AT (b), we assume that the half-line starting at XT (b) and with direction
DT (b)�nT (b),b intersects b at some point denoted by Xb.

3. For all a ∈ Aint, we denote by T1(a) and T2(a) the control volumes on either
side of a and we assume that, for i = 1, 2, the half-line starting at XTi(a) and with
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Fig. 3. Illustration of Assumption 2.6 (choice of Mi,a in the heterogeneous case).

direction DTi(a)�nTi(a),a intersects a at some point denoted by XTi(a),a. We then take
two points M1,a and M2,a inside the convex hull of the cell centers and boundary
points ((XK)K∈T , (Xb)b∈Aext) such that

(i) M2,a belongs to the (open) half-line starting at XT1(a),a and with direction
DT2(a)�nT1(a),a;

(ii) M1,a belongs to the (open) half-line starting at XT2(a),a and with direction
DT1(a)�nT2(a),a.
We let M be the set of the chosen points (Mi,a)a∈Aint , i=1,2.

Remark 2.7. The half-line starting at XTi(a) and with direction DTi(a)�nTi(a),a

does not really need to intersect a: if this is not the case, we define XTi(a),a as
the intersection of this half-line with the hyperplane containing a. The coercivity
assumption on D ensures that XTi(a),a stays within distance of order diam(Ti(a)) of
a, which is sufficient for the construction and study of the scheme.

The construction of the scheme follows the three steps presented in the isotropic
homogeneous case.

Step 1 (interpolation of additional approximate values of the solution). This step
is the same as in the isotropic homogeneous case. For each interior edge a and i = 1, 2,
we write

(16) Mi,a = αi,aXTi(a) +

Ji,a∑
j=1

λi,a(j)Xi,a(j)

(where (Xi,a(j))j=1,...,Ji,a are cell centers or boundary points and the coefficients
(αi,a, (λi,a(j))j=1,...,Ji,a) define a convex combination with αi,a > 0). In practice, we
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fix Ji,a = 2 and we search the closest points (Xi,a(j))j=1,2 such that Mi,a lays inside
the triangular cell (XTi(a), Xi,a(1), Xi,a(2)) (this search has a negligible computational
cost); note that there is some freedom in the choice of Mi,a, that can be moved if a
first choice does not belong to the convex hull of all the cell centers and boundary
points.

Then, we define

(17) uMi,a = αi,auTi(a) +

Ji,a∑
j=1

λi,a(j)uXi,a(j)

with uXi,a(j) = uK if Xi,a(j) = XK with K ∈ T and uXi,a(j) = ub if Xi,a(j) = Xb

with b ∈ Aext.
Remark 2.8. We do not yet define some approximate values of the solution at

the points XTi(a),a: such values will be imposed by the conservativity of the fluxes.
Step 2 (definition of the approximate value of the flux �q · �nK,a). Let K be a cell

and a ∈ AK . If a is a boundary edge and �na is any unit normal to a, a consistent
approximation of the flux of �q = −D∇u through a outside the control volume K is
given by

(18) FK,a(u) = |DK�na|
uK − ua

d(Xa, XK)
.

If a is an interior edge, denoting by uTi(a),a an approximate value (not yet known)
of the solution at XTi(a),a, we have four consistent ways, F

1
1,a(u), F

2
1,a(u), F

1
2,a(u), and

F 2
2,a(u), to compute the flux of �q going through a (the first two corresponding to fluxes

outside T1(a), the last two to fluxes outside T2(a)):

(19)

F 1
1,a(u) =

∣∣DT1(a)�na

∣∣ uT1(a) − uT1(a),a

d(XT1(a), XT1(a),a)
, F 2

1,a(u) =
∣∣DT2(a)�na

∣∣ uT1(a),a − uM2,a

d(XT1(a),a,M2,a)
,

F 1
2,a(u) =

∣∣DT2(a)�na

∣∣ uT2(a) − uT2(a),a

d(XT2(a), XT2(a),a)
, F 2

2,a(u) =
∣∣DT1(a)�na

∣∣ uT2(a),a − uM1,a

d(XT2(a),a,M1,a)
.

Imposing the conservativity relations F 1
1,a(u) = F 2

1,a(u) and F 1
2,a(u) = F 2

2,a(u) allows
us to compute the edge values as convex combinations of (uTi(a))i=1,2 and (uMi,a)i=1,2:

(20)

uT1(a),a =

|DT2(a)�na|
d(XT1(a),a,M2,a)

uM2,a +
|DT1(a)�na|

d(XT1(a),XT1(a),a)
uT1(a)

|DT2(a)�na|
d(XT1(a),a,M2,a)

+
|DT1(a)�na|

d(XT1(a),XT1(a),a)

,

uT2(a),a =

|DT1(a)�na|
d(XT2(a),a,M1,a)

uM1,a +
|DT2(a)�na|

d(XT2(a),XT2(a),a)
uT2(a)

|DT1(a)�na|
d(XT2(a),a,M1,a)

+
|DT2(a)�na|

d(XT2(a),XT2(a),a)

.

Defining

(21)

δ1,a =
d(XT2(a),a,M1,a)∣∣DT1(a)�na

∣∣ +
d(XT2(a), XT2(a),a)∣∣DT2(a)�na

∣∣ ,

δ2,a =
d(XT1(a),a,M2,a)∣∣DT2(a)�na

∣∣ +
d(XT1(a), XT1(a),a)∣∣DT1(a)�na

∣∣ ,
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the fluxes outside T1(a) and outside T2(a) then have the following expressions:

(22) F1,a(u) =
uT1(a) − uM2,a

δ2,a
and F2,a(u) =

uT2(a) − uM1,a

δ1,a
.

Using (17), this leads to

(23)

F1,a(u) =
α2,a(uT1(a) − uT2(a)) +

∑J2,a

j=1 λ2,a(j)(uT1(a) − uX2,a(j))

δ2,a
,

F2,a(u) =
α1,a(uT2(a) − uT1(a)) +

∑J1,a

j=1 λ1,a(j)(uT2(a) − uX1,a(j))

δ1,a
.

The rest is identical to the isotropic homogeneous case (the anisotropy and het-
erogeneity have been taken into account in δ1,a and δ2,a). We take

(24) 0 < β1,a ≤ 2
α1,a

δ1,a
and 0 < β2,a ≤ 2

α2,a

δ2,a
,

we define

G1,a(u) = F1,a(u)− β2,a(uT1(a) − uT2(a)) , G2,a(u) = F2,a(u)− β1,a(uT2(a) − uT1(a)),

and we let

(25)

(i) if |G1,a(u)|+ |G2,a(u)| 	= 0:

γ1,a(u) =
|G2,a(u)|

|G1,a(u)|+ |G2,a(u)|
and γ2,a(u) =

|G1,a(u)|
|G1,a(u)|+ |G2,a(u)|

,

(ii) else γ1,a(u) = γ2,a(u) =
1

2
.

Letting εi,K = +1 if K = Ti(a) and εi,K = −1 otherwise, the approximation of �q ·�nK,a

is then

(26) FK,a(u) = γ1,a(u)ε1,KF1,a(u) + γ2,a(u)ε2,KF2,a(u).

Step 3 (the scheme). The scheme is the same as (14): find u = (uK)K∈T such
that

(27) ∀K ∈ T :
∑

a∈AK

|a|FK,a(u) =

∫
K

f.

Remark 2.9 (case of triangular cells in dimension d = 2). We refer to [33] for
a description of possible choices of the cell centers and the other parameters of the
scheme in the case of a triangular mesh in dimension d = 2.

3. Study of the scheme. Assumption 2.6 being satisfied, we denote by S the
scheme (27), where the interior fluxes are given by (26) and the boundary fluxes are
given by (18), with the notation (16), (17), (21), (23), and (25) and the choice (24).

In this section, we provide some theoretical results on S, starting by recalling the
following proposition that has been proved during the construction of the scheme.
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Proposition 3.1. The scheme S has the LMP structure.
Remark 3.2. For most meshes, if Ti(a) is an interior cell (i.e., such that no edge of

Ti(a) belongs to Aext), it is possible to choose the convex combination (16) such that
all the Xi,a(j) are cell centers and not boundary points; in this case, boundary values
can be involved in the definition (26) of FK,a(u) only if K is a boundary cell or the
neighbor of a boundary cell (i.e., K belongs to the “first and second layers” of cells
from ∂Ω). Proposition 1.4 then shows that, for a nonnegative right-hand side and
homogeneous boundary conditions, the solution to the scheme attains its minimum
in a cell within the first or second layers from ∂Ω.

If one manages to write all the convex combinations (16) using only cell centers,
then (26) involves boundary values only ifK is a boundary cell (i.e., AK∩Aext 	= ∅); in
this case, for f ≥ 0 and u∂ = 0, the solution to the scheme cannot attain is minimum
on an interior cell unless it is constant.

3.1. Convergence. To simplify the notation and reasoning, we assume in this
section that the boundary conditions are homogeneous: u∂ = 0.

Let SD : RCard(T ) �→ R
Card(T ) be defined by SD(u)K = −

∑
a∈AK

|a|FK,a(u).
Finding a solution to the scheme S consists of solving in u = (uK)K∈T the nonlinear
equation SD(u) = (

∫
K
f)K∈T ; a usual requirement when solving such an equation,

especially if one wants a numerically stable solution, is the continuity of SD. Under
the general framework we consider above, this continuity is not obvious since γi,a(u)
given by (25) can be noncontinuous. One way to solve this issue is to impose that, if
the denominator involved in the definition of γi,a(u) tends to zero, then both fluxes
ε1,KF1,a(u) and ε2,KF2,a(u) tend to the same value; this can be done by choosing the
βi,a (depending only on the mesh) in (24) such that

(28) ∀a ∈ Aint : β1,a = β2,a.

Indeed, in this case, if

|G1,a(u)|+ |G2,a(u)|
= |F1,a(u)− β2,a(uT1(a) − uT2(a))|+ |F2,a(u)− β1,a(uT2(a) − uT1(a))| → 0

as u tends to some ũ, then ε1,KF1,a(u) and ε2,KF2,a(u) both tend to the same quantity
ε1,Kβ2,a(ũT1(a) − ũT2(a)) = ε2,Kβ1,a(ũT2(a) − ũT1(a)) = ε1,KF1,a(ũ) = ε2,KF2,a(ũ)
(recall that ε1,K = −ε2,K). Hence, whatever the values then taken by γ1,a(u) and
γ2,a(u) as u → ũ, the convex combination γ1,a(u)ε1,KF1,a(u) + γ2,a(u)ε2,KF2,a(u)
tends to ε1,KF1,a(ũ) = ε2,KF2,a(ũ) = γ1,a(ũ)ε1,KF1,a(ũ) + γ2,a(ũ)ε2,KF2,a(ũ).

The proof of convergence of finite volume schemes for elliptic equations requires
some discrete H1

0 estimates on the solution. These estimates then give compactness
properties that ensure that the solution to the scheme converges as the mesh size
tends to 0 to a function in H1

0 ; the reasoning is then concluded by proving that this
function is the weak solution to the PDE.

These discrete H1
0 estimates come from some coercivity property of the scheme,

similar to the classical coercivity property of the bilinear form used in the variational
formulation of (1). If the definition of the scheme is based on a scalar product,
such as in the HMM or DDFV methods (see [20, 18]), then the coercivity property
is immediate; in general, however, the maximum principle is lost in such methods.
For schemes that first define fluxes and then write their balance, such as [15, 3] or
the schemes we consider here, the coercivity property is not automatic (although
numerically often satisfied), and it must be assumed during the theoretical study.
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In the scheme S, the fluxes FK,a(u) are nonlinear convex combinations of linear
fluxes Fi,a(u) (the nonlinearity being solely concentrated in the functions γi,a(u));
we take advantage of this special form to give a proof of convergence of S inspired
from the technique developed in a linear setting in [3] (the main adaptations are in the
separation of the linear and nonlinear parts of the fluxes, as well as in the consideration
that some of the fluxes can be nonconsistent—see Lemma 3.5 and section 3.1.3. The
coercivity assumption we adopt is therefore close to the one selected in [3].

If K ∈ T and a ∈ AK , we denote by dK,a the orthogonal distance between XK

and the hyperplane containing a; we define da = dT1(a),a + dT2(a),a if a ∈ Aint and
da = dT (a),a if a ∈ Aext. The coercivity property we assume on the fluxes is

(29)

∃ζ > 0 such that, ∀v = (vK)K∈T :∑
a∈Aint

|a|min
[
ε1,KF1,a(v)(vK − vL); ε2,KF2,a(v)(vK − vL)

]
+
∑

a∈Aext

|a|FK,a(v)vK ≥ ζ

( ∑
a∈Aint

|a|
da

(vK − vL)
2 +

∑
a∈Aext

|a|
da

v2K

)
,

where, if a ∈ Aint, K and L denote the cells on each side of a, and, if a ∈ Aext, K is the
cell such that a ∈ AK . This relation basically demands that the linear fluxes F1,a(v)
and F2,a(v) have a “strong enough” coefficient along vT1(a) − vT2(a) (this quantity
being the one used, when the mesh is admissible, in the sense of [22], to construct the
two-point finite volume flux across a): one can heuristically consider that (29) asks
that the coefficients αi,a in (16) are large enough with respect to the coefficients λi,j

(see (23)). However, as mentioned above and as seen in [15, 3], for the kind of scheme
we consider there does not seem to exist easily verifiable mathematical assumptions
on the mesh, and the data that ensure that such a coercivity property holds. We
nevertheless give in section 4 some comments on the general validity of (29), based
on numerical computations.

It will be convenient to identify v = (vK)K∈T ∈ R
Card(T ) with the piecewise-

constant function v on Ω that takes the value vK inside the cell K; we let H(T ) be
the space of such piecewise-constant functions.

The right-hand side in (29) is the discreteH1
0 norm of interest to us; it will play an

important role in the study of the scheme; thus with the same conventions as above,
we introduce the notation

(30) ||v||2D =
∑

a∈Aint

|a|
da

(vK − vL)
2 +

∑
a∈Aext

|a|
da

v2K .

3.1.1. A priori estimates. We need to introduce two quantities: the first one,

reg(D) = max
(K,L)∈T 2 | AK∩AL �=∅

diam(K)

diam(L)
+ max

K∈T , a∈AK

diam(K)

dK,a
+max

K∈T
Card(AK),

is a measure of the pure geometrical regularity of the mesh, and the second one,

regD(D,M) = reg(D) + max
a∈Aint

(
diam(T1(a))

d(XT2(a),a,M1,a)
+

diam(T2(a))

d(XT1(a),a,M2,a)

)
,

evaluates, on top of the geometrical regularity, the degree of compatibility with re-
spect to D of the mesh and M = (Mi,a)a∈Aint , i=1,2 (points of interpolation of the
approximate solution, coming from Assumption 2.6).
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Proposition 3.3 (a priori estimates). Under Assumption 2.6, if θ is a real
number such that aθ ≥ regD(D,M) and (29) is satisfied, then there exists C1 > 0
depending only on θ and ζ such that, for any solution u ∈ H(T ) to the scheme S, we
have ||u||D ≤ C1||f ||L2(Ω).

Proof. Multiply (27) by uK , sum on K ∈ T , and use the conservativity of the
fluxes to gather the sum on the edges. This gives∫

Ω

fu =
∑
K∈T

∑
a∈AK

|a|FK,a(u)uK =
∑
a∈A

|a|FK,a(u)(uK − uL),

where, in the last sum, if a ∈ Aint, then K and L are the two cells on each side of
a, and, if a ∈ Aext, K is the cell such that a ∈ AK and uL = 0. If a is an interior
edge, since FK,a(u)(uK − uL) is a convex combination of ε1,KF1,a(u)(uK − uL) and
ε2,KF2,a(u)(uK − uL), we have

FK,a(u)(uK − uL) ≥ min
[
ε1,KF1,a(u)(uK − uL); ε2,KF2,a(u)(uK − uL)

]
,

and, by (26) and (29), we infer

(31)

∫
Ω

fu ≥ ζ||u||2D.

From [19, proof of Lemma 6.2] or [23, Lemma 5.2], one immediately sees that there
exists C2 depending only on θ such that, for all u ∈ H(T ),

(32) ||u||L2(Ω) ≤ C2||u||D

(this is a discrete Poincaré’s inequality). The conclusion of the proposition thus follows
by applying the Cauchy–Schwarz inequality to the left-hand side of (31).

3.1.2. Existence of a solution.
Proposition 3.4 (existence of a solution to the scheme). Under Assumption 2.6,

if (28) and (29) are satisfied, then there exists at least one solution to the scheme S.
Proof. The proof is a straightforward application of Brouwer’s topological degree

(see [16]). We let fT = (
∫
K
f)K∈T ∈ H(T ), and we show that there exists R > 0 such

that, for all t ∈ [0, 1], the L2(Ω) norm of any solution u to

(33) tu+ (1− t)SD(u) = fT

is bounded by R; this ensures that the degree of the continuous (see (28)) function
SD on the ball of radius R at fT is equal to the degree of the identity mapping; upon
increasing R, we can assume that the ball of radius R contains fT , and thus that this
degree is equal to 1, which implies the existence of a solution to SD(u) = fT .

The desired a priori estimate on the solutions to (33) can be obtained exactly in
the same way as in the proof of Proposition 3.3. Multiplying the coordinate K of the
system (33) by uK and summing on K we get, thanks to (29),∫

Ω

fu ≥ t
∑
K∈T

u2
K + (1− t)ζ||u||2D.

Then using (32) and defining mT = minK∈T (1/|K|), we find

min(mT , ζC
−2
2 )||u||L2(Ω) ≤ (tmT + (1− t)ζC−2

2 )||u||L2(Ω) ≤ ||f ||L2(Ω).

The value R = ||f ||L2(Ω)/min(mT , ζC
−2
2 ) is therefore acceptable.
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3.1.3. Convergence of the scheme. We first prove that, under a natural as-
sumption on the choice of Mi,a (see Remark 2.3) and for edges across which D is
continuous, the linear components of the flux (26) are consistent.

In the following lemma and after it, for any ϕ ∈ C2
c (Ω), we denote by ϕD ∈ H(T )

the function ϕD = (ϕ(XK))K∈T . We also define the norm

||ϕ||C2
c (Ω) = sup

x∈Ω

(
|ϕ(x)| + |∇ϕ(x)| + |D2ϕ(x)|

)
.

Lemma 3.5 (consistency of the flux). Let Assumption 2.6 hold, and let θ be a
real number such that θ ≥ regD(D,M). We also assume that

(34)
∃ρ > 0 such that ∀a ∈ Aint , ∀i = 1, 2 ,
∀X ∈ {XT1(a), XT2(a), Xi,a(j) ; j = 1, . . . , Ji,a} : d(Mi,a, X) ≤ ρdiam(Ti(a))

(the Xi,a(j) are the cell centers and boundary points chosen in (16)). Then there
exists C3 depending only on θ, ρ, and D such that, for all ϕ ∈ C2

c (Ω), all K ∈ T , all
a ∈ AK , and all i = 1, 2, if D is Lipschitz-continuous on T1(a) ∪ a ∪ T2(a),∣∣∣∣εi,KFi,a(ϕD)−

1

|K|

∫
K

(−D∇ϕ) · �nK,a

∣∣∣∣ ≤ C3||ϕ||C2
c (Ω)diam(K).

Proof. To simplify the proof we let i = 1; the various O we use here depend only
on θ, ρ, and D (i.e., O(z) is a quantity bounded, in absolute value, by C4|z| with C4

depending only on θ, ρ, and D).

Let us first check that the formula (20) for ϕT1(a),a is an order 2 approximation
of ϕ(XT1(a),a) (with ϕM2,a computed by convex combination of (ϕ(XK))K∈T through
(17)). Denoting by Da the mean value of D on a (D is continuous across a), we have,
by regularity of ϕ and Assumption (2.6),

Da∇ϕ(XT1(a),a) · �nT1(a),a = |Da�na|
ϕ(XT1(a),a)− ϕT1(a)

d(XT1(a),a, XT1(a))

+O
(
||ϕ||C2

c (Ω)diam(T1(a))
)

and

Da∇ϕ(XT1(a),a) · �nT1(a),a = |Da�na|
ϕ(M2,a)− ϕ(XT1(a),a)

d(M2,a, XT1(a),a)

+O
(
||ϕ||C2

c (Ω)diam(T1(a))
)
.

The equality of the two right-hand sides and the Lipschitz-continuity of D on T1(a)∪
a ∪ T2(a) give

∣∣DT1(a)�na

∣∣ ϕ(XT1(a),a)− ϕT1(a)

d(XT1(a),a, XT1(a))
=
∣∣DT2(a)�na

∣∣ ϕ(M2,a)− ϕ(XT1(a),a)

d(M2,a, XT1(a),a)

+O
(
||ϕ||C2

c (Ω)diam(T1(a))
)
.

But, by (16), (17), (34), and regularity of ϕ, we have

(35) ϕ(M2,a) = ϕM2,a +O
(
||ϕ||C2

c (Ω)diam(T1(a))
2
)
,
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and thus, using θ ≥ regD(D,M),

∣∣DT1(a)�na

∣∣ ϕ(XT1(a),a)− ϕT1(a)

d(XT1(a),a, XT1(a))
=
∣∣DT2(a)�na

∣∣ ϕM2,a − ϕ(XT1(a),a)

d(M2,a, XT1(a),a)

+O
(
||ϕ||C2

c (Ω)diam(T1(a))
)
.(36)

Since ∣∣DT2(a)�na

∣∣
d(M2,a, XT1(a),a)

+

∣∣DT1(a)�na

∣∣
d(XT1(a),a, XT1(a))

≥ C5

diam(T1(a))

with C5 depending only on D and θ, (36) and the definition (20) of ϕT1(a),a give

(37) ϕ(XT1(a),a) = ϕT1(a),a +O
(
||ϕ||C2

c (Ω)diam(T1(a))
2
)
.

From the second order approximations (35) and (37) and formula (19), we clearly
deduce

F 1
1,a(ϕD) = (−DT1(a)∇ϕ(XT1(a),a)) · �nT1(a),a +O

(
||ϕ||C2

c (Ω)diam(T1(a))
)

and

F 2
1,a(ϕD) = (−DT2(a)∇ϕ(XT1(a),a)) · �nT1(a),a +O

(
||ϕ||C2

c (Ω)diam(T1(a))
)
.

Recalling that F1,a(ϕD) = F 1
1,a(ϕD) = F 2

1,a(ϕD), the regularity of ϕ and the definition
of regD(D,M) conclude the proof.

As mentioned above, the proof of convergence relies on a compactness result
(Lemma 3.7) that ensures that, up to a subsequence, the solution to the scheme
converges to a function in H1

0 . The statement of this lemma requires the introduction
of a discrete gradient. If v ∈ H(T ), then we define

(38)
∀a ∈ Aint : va =

vT1(a) + vT2(a)

2
,

∀a ∈ Aext : va = 0,

and we define the discrete gradient of v as the piecewise-constant function ∇Dv : Ω �→
R

N such that

∀K ∈ T , ∀x ∈ K : ∇Dv(x) =
1

|K|
∑

a∈AK

|a|(va − vK)�nK,a.

The Cauchy–Schwarz inequality and the fact that
∑

a∈AK
|a|dK,a = N |K| (because

|a|dK,a

N is the measure of the convex hull of {XK} ∪ a) show that

(39) ||∇Dv||2L2(Ω)N ≤ N
∑
K∈T

∑
a∈AK

|a|
dK,a

(va − vK)2.

Moreover, it is easy to see that, if θ ≥ reg(D), there exists C6 depending only on θ
such that

(40)
∑
K∈T

∑
a∈AK

|a|
dK,a

(vK − va)
2 ≤ C6||v||2D .
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Remark 3.6. There is in fact a vast number of valid choices for the edge values
va; any value that ensures that the L2 norm of ∇Dv is bounded from above by ||v||D
can be used. This is, for example, the case, under the regularity assumptions on the
mesh, for va = vT1(a),a, va = vT2(a),a or any combination of these two values.

The following lemma is an immediate consequence of the definition of reg(D),
(39), (40) and of the technique used in [23, Lemma 4.2] (with the help of the discrete
Sobolev embeddings of [23, Lemma 5.2]; see also the proofs of [19, Lemmas 6.2 and 6.5]
and [14, Lemma 4.4], for example).

Lemma 3.7 (discrete compactness property). Let (Dn)n≥1 be a family of ad-
missible meshes such that (reg(Dn))n≥1 is bounded and size(Dn) → 0 as n → ∞. If
vn ∈ H(T n) is such that (||vn||Dn)n≥1 is bounded, then there exists v̄ ∈ H1

0 (Ω) such
that, up to a subsequence as n → ∞,

(i) vn → v̄ strongly in Lq(Ω) for all q < 2N
N−2 ;

(ii) ∇Dv
n → ∇v̄ weakly in L2(Ω)N .

We can now state and prove the convergence theorem for S.
Theorem 3.8 (convergence of the scheme). Let (Dn)n≥1 be a family of ad-

missible meshes satisfying Assumption 2.6 with sets of points (Mn)n≥1 such that
(regD(Dn,Mn))n≥1 is bounded. We also assume that size(Dn) → 0 as n → ∞ and
that, for each mesh in the family, (34) and (29) hold with ρ and ζ not depending on
n. We let un ∈ H(T n) be a solution to the scheme S with D = Dn, and let ū ∈ H1

0 (Ω)
be the weak solution to (1).

Then, as n → ∞, un converges to ū in Lq(Ω) for all q < 2N
N−2 .

Proof. From Proposition 3.3 and Lemma 3.7, there exists ū ∈ H1
0 (Ω) such that,

up to a subsequence, un → ū strongly in Lq(Ω) for all q < 2N
N−2 and ∇Du

n → ∇ū

weakly in L2(Ω)N . If we prove that ū is the weak solution to (1) then, this solution
being unique, reasoning on all the subsequences of (un)n≥1 gives the convergence of
the whole sequence and concludes the proof.

To simplify the notation, we drop the index n and assume that u = un converges
to ū as size(D) → 0, and we prove that ū is the weak solution to (1).

We denote, for (v, w) ∈ H(T ),

(41)
F̃K,a(v, w) = γ1,a(v)ε1,KF1,a(w) + γ2,a(v)ε2,KF2,a(w) if a ∈ AK ∩ Aint,

F̃K,a(v, w) = FK,a(w) if a ∈ AK ∩ Aext.

We have FK,a(v) = F̃K,a(v, v) (see (26)), F̃K,a(v, w) is conservative (i.e., F̃K,a(v, w)+

F̃L,a(v, w) = 0 if a is an edge between K and L), and, for all v, F̃K,a(v, ·) is linear.
Let ϕ ∈ C∞

c (Ω), ϕD = (ϕK)K∈T with ϕK = ϕ(XK) and v = u − ϕD. The
definition (41) shows that

F̃K,a(u, v)(vK − vL) ≥ min
[
ε1,KF1,a(v)(vK − vL); ε2,KF2,a(v)(vK − vL)

]
.

The coercivity assumption (29) thus gives

ζ||u− ϕD||2D ≤
∑
a∈A

|a|F̃K,a(u, u− ϕD)(vK − vL)

≤
∑
a∈A

|a|F̃K,a(u, u)(vK − vL)−
∑
a∈A

|a|F̃K,a(u, ϕD)(vK − vL).

Defining (ua)a∈A and (ϕa)a∈A (and thus va = ua − ϕa) from u and ϕD by (38) and



CONSTRUCTION AND CONVERGENCE STUDY OF LMP SCHEMES 477

using the conservativity of the fluxes, we obtain, by the balance equation (27),

ζ||u − ϕD||2D ≤
∑
a∈A

|a|FK,a(u)(vK − vL)−
∑
a∈A

|a|F̃K,a(u, ϕD)(vK − va − (vL − va))

≤
∑
K∈T

( ∑
a∈AK

|a|FK,a(u)

)
vK −

∑
K∈T

∑
a∈AK

|a|F̃K,a(u, ϕD)(vK − va)

≤
∫
Ω

f(u− ϕD)−QD
1 .(42)

Let us define RK,a = F̃K,a(u, ϕD)− 1
|K|
∫
K
(−D∇ϕ) · �nK,a. We can write

QD
1 =

∑
K∈T

∫
K

(−D∇ϕ) · 1

|K|
∑

a∈AK

|a|(vK − va)�nK,a +
∑
K∈T

∑
a∈AK

|a|RK,a(vK − va)

=

∫
Ω

D∇ϕ · ∇D(u− ϕD) +
∑
K∈T

∑
a∈AK

|a|RK,a(vK − va).

Therefore, thanks to the Cauchy–Schwarz inequality and (40),

∣∣∣∣QD
1 −

∫
Ω

D∇ϕ · ∇D(u− ϕD)

∣∣∣∣ ≤
(∑

K∈T

∑
a∈AK

|a|dK,aR
2
K,a

)1/2

C
1/2
6 ||u− ϕD||D.

The regularity of ϕ (as well as the boundedness of regD(D,M)) clearly shows that
||ϕD||D is bounded as size(D) → 0; applying Lemma 3.7, and since ϕD → ϕ, we see
that ∇DϕD → ∇ϕ weakly in L2(Ω)N ; hence, ||u||D remaining bounded and ∇Du
weakly converging to ∇ū in L2(Ω)N , we obtain C7 such that

(43)

lim sup
size(D)→0

∣∣∣∣QD
1 −

∫
Ω

D∇ϕ · ∇(ū − ϕ)

∣∣∣∣ ≤ C7 lim sup
size(D)→0

(∑
K∈T

∑
a∈AK

|a|dK,aR
2
K,a

)1/2

.

By Lemma 3.5 and the definition of RK,a, there exists C8 not depending on
the mesh such that, if T1(a) ∪ a ∪ T2(a) does not intersect a discontinuity of D,
then |RK,a| ≤ C8size(D). If D is not continuous on T1(a) ∪ a ∪ T2(a), then by
regularity of ϕ we just have |RK,a| ≤ C9 for some C9 not depending on the mesh. Let
AD = {a ∈ A | D is not continuous on T1(a) ∪ a ∪ T2(a)}; we have∑

K∈T

∑
a∈AK

|a|dK,aR
2
K,a =

∑
K∈T

∑
a∈AK\AD

|a|dK,aR
2
K,a +

∑
K∈T

∑
a∈AK∩AD

|a|dK,aR
2
K,a

≤ C2
8 size(D)2N |Ω|+ C2

9

∑
K∈T

∑
a∈AK∩AD

|a|dK,a.(44)

Let Λ be the set of discontinuities of D (Λ does not depend on the mesh). The
quantity

1

N

∑
K∈T

∑
a∈AK∩AD

|a|dK,a
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is the sum of the measures of the disjoint convex hulls of {XK}∪a such that a ∈ AD.
But any edge a belonging to AD lays within distance size(D) of Λ, and the convex
hull of {XK}∪a is thus contained in Λ2size(D) = {x ∈ Ω | d(x,Λ) ≤ 2size(D)}. Hence,∑

K∈T

∑
a∈AK∩AD

|a|dK,a ≤ N |Λ2size(D)|

and, coming back to (44), we obtain∑
K∈T

∑
a∈AK

|a|dK,aR
2
K,a ≤ C2

8 size(D)2N |Ω|+ C2
9N |Λ2size(D)|.

Since D is piecewise Lipschitz-continuous, Λ is a finite union of (N − 1)-dimensional
manifolds, and thus |Λ2size(D)| tends to 0 as size(D) → 0; we deduce that

(45)
∑
K∈T

∑
a∈AK

|a|dK,aR
2
K,a → 0 as size(D) → 0.

Using this in (43), we obtain

QD
1 →

∫
Ω

D∇ϕ · ∇(ū− ϕ).

Hence, we can pass to the limit in (42) to deduce

(46) lim sup
size(D)→0

||u− ϕD||2D ≤ 1

ζ

(∫
Ω

f(ū− ϕ)−
∫
Ω

D∇ϕ · ∇(ū− ϕ)

)
.

Inequalities (39) and (40) show that ||∇Du −∇DϕD||2L2(Ω)N ≤ NC6||u − ϕD||2D, and
the weak convergence in L2(Ω)N of ∇Du−∇DϕD toward ∇ū−∇ϕ therefore leads to

||∇ū −∇ϕ||2L2(Ω)N ≤ NC6

ζ

(∫
Ω

f(ū− ϕ)−
∫
Ω

D∇ϕ · ∇(ū− ϕ)

)
.

Letting ϕ ∈ C∞
c (Ω) tend strongly in H1

0 (Ω) to the weak solution ũ of (1) shows that
this inequality also holds with ϕ = ũ, in which case the right-hand side is equal to zero
(precisely because ũ is the solution to (1)). We conclude that ||∇ū−∇ũ||L2(Ω)N = 0,
that is, ū = ũ, and the proof is complete.

Following [3], it is also possible to reconstruct from the fluxes a discrete gradient
that strongly converges toward the gradient of the continuous solution. For any a ∈ A,
we let x̄a be the center of gravity of a. If v ∈ H(T ), we define the discrete gradient
∇D(v) : Ω → R

N by

∀K ∈ T , ∀x ∈ K : ∇D(v)(x) =
1

|K|D
−1
K

∑
a∈AK

|a|FK,a(v)(XK − x̄a),

where FK,a(v) is given by (26). Note that this discrete gradient ∇D is not a linear
operator; however, it has clearly identified linear and nonlinear parts: we will use this
in the proof of its strong convergence.

This proof requires a slightly more restrictive assumption than (34) on the choice
of the points used in the convex combinations (16):

(47)

∃ξ > 0 , ∃E ∈ N s.t. ∀a ∈ Aint , ∀i = 1, 2 , ∀j = 1, . . . , Ji,a , there exist
continuous paths between Xi,a(j) and XT1(a), XT2(a) that cross
at most E edges, all having an (N − 1)-dimensional measure in [ 1ξ |a|, ξ|a|].
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This assumption is in fact only formally stronger than (34): in practical situations,
the points involved in (16) are chosen within at most one or two cells of T1(a) and
T2(a), and both (34) and (47) are satisfied.

Theorem 3.9 (strong convergence of the gradient). Under the assumptions of
Theorem 3.8, if all the meshes satisfy (47) for some ξ and E not depending on n,
then ∇Dn(un) → ∇ū strongly in L2(Ω)N as n → ∞.

Proof. We drop the index n, and for (v, w) ∈ H(T ) we define ∇D,vw : Ω → R
N

by

(48) ∀K ∈ T , ∀x ∈ K : ∇D,vw(x) =
1

|K|D
−1
K

∑
a∈AK

|a|F̃K,a(v, w)(XK − x̄a),

where F̃K,a is given by (41). ∇D,v is a linear operator and ∇D,v(v) = ∇D(v). By
(47), a given cell center or boundary point can appear in (16) only if it is within at
most E cells of a; since regD(D,M) stays bounded, this shows that each cell center
or boundary point appears in the convex combinations (16) for at most C10 edges a,
with C10 not depending on the mesh. Hence, from the expressions (22) of Fi,a(w),
the definitions (17) of wMi,a , and (47), we obtain C11 not depending on the mesh or
(v, w) such that

(49) ||∇D,vw||L2(Ω)N ≤ C11||w||D.

Let ε > 0, and fix ϕ ∈ C∞
c (Ω) within distance ε of ū in H1

0 (Ω). We have

||∇D(u)−∇ū||L2(Ω)N ≤ ||∇D,uu−∇D,uϕD||L2(Ω)N + ||∇D,uϕD −∇ϕ||L2(Ω)N + ε

≤ C11||u− ϕD||D + ||∇D,uϕD −∇ϕ||L2(Ω)N + ε.

Using (46) and the fact that ||ϕ − ū||H1
0 (Ω) ≤ ε, we can write, if size(D) is small

enough,

||∇D(u)−∇ū||L2(Ω)N ≤ 2ε+ ||∇D,uϕD −∇ϕ||L2(Ω)N .

It remains to prove that ∇D,u is strongly consistent, i.e., that ||∇D,uϕD −∇ϕ||L2(Ω)N

tends to 0; this is a consequence of Lemma 3.5 and of the use of RK,a from the proof
of Theorem 3.8.

Let us define SK,a = F̃K,a(u, ϕD)− (−DK(∇ϕ)K) · �nK,a, where we let (∇ϕ)K =
1

|K|
∫
K
∇ϕ; we have, for all x ∈ K and invoking [19, Lemma 6.1],

∇D,uϕD(x) =
1

|K|
∑

a∈AK

|a|(∇ϕ)K · �nK,a(x̄a −XK)

+
1

|K|D
−1
K

∑
a∈AK

|a|SK,a(XK − x̄a)

= (∇ϕ)K +
1

|K|D
−1
K

∑
a∈AK

|a|SK,a(XK − x̄a).

Hence, from the boundedness of regD(D,M) we obtain C12 not depending on the
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mesh such that

||∇D,uϕD −∇ϕ||2L2(Ω)N ≤ C12

∑
K∈T

1

|K|

( ∑
a∈AK

|a| |SK,a|dK,a

)2

≤ C12

∑
K∈T

1

|K|

( ∑
a∈AK

|a|dK,a

)( ∑
a∈AK

|a|dK,aS
2
K,a

)
≤ C12N

∑
K∈T

∑
a∈AK

|a|dK,aS
2
K,a.

But, defining RK,a as in the proof of Theorem 3.8, the regularity of ϕ ensures that
|SK,a| ≤ |RK,a|+ C13size(D) with C13 depending only on D and ϕ. Thus,

||∇D,uϕD −∇ϕ||2L2(Ω)N ≤ 2C12N
∑
K∈T

∑
a∈AK

|a|dK,aR
2
K,a + 2C12N

2|Ω|C2
13size(D)2,

and (45) concludes the proof.
Remark 3.10. Using the same technique, it is very easy to prove the strong

convergence of other kinds of discrete gradients; the important tools are an estimate
of the kind (49) (the only reason why we introduced hypothesis (47)) and a consistency
property. For example, the strong convergence also holds for the linear discrete
gradients ∇D,0 defined by (48) with v = 0, i.e.,

∀K ∈ T , ∀x ∈ K :

∇D,0w(x) =
1

|K|D
−1
K

∑
a∈AK

|a|ε1,KF1,a(w) + ε2,KF2,a(w)

2
(XK − x̄a).

4. Implementation and numerical behavior of the scheme S.

4.1. About the choice of the various parameters. The practical construc-
tion of S, following the recipe of section 2, requires us to make several choices of the
points Mi,a and of the parameters βi,a in particular. The theoretical study made in
section 3 can give some insights on how to make proper choices for these quantities.

Choice of βi,a. As noticed in section 3.1, the continuity of the function defining
the scheme is not ensured unless (28) is satisfied. In all probability, the computation
and numerical stability of a solution to the scheme requires this continuity, and it
therefore seems natural to take β1,a = β2,a for all edges a.

Choice of the convex combination defining Mi,a. The proof of Lemma 3.5
shows that the consistency of the numerical fluxes on regular functions is, in general,
ensured only for edges across which D is continuous. This is not a surprise: the
numerical fluxes FK,a are built to be conservative across all the edges of the mesh,
but, if ϕ ∈ C2, the fluxes (−D∇ϕ) · �n on an edge corresponding to a discontinuity
of D are not conservative in general (∇ϕ has no jump across the edge and therefore
cannot compensate for a jump of D); there is thus no hope that Fi,a(ϕD) is a proper
approximation of (−D∇ϕ) · �n for such edges. As it has already been noticed (see,
e.g., [13]) and as we saw during the study of the scheme, the nonconsistency of the
fluxes on some particular edges—here the ones around the discontinuities of D—does
not prevent us from proving the convergence of the scheme (but demands a special
treatment).

Let us, however, look in more detail into this consistency issue. The technical
reason is the following: if ϕ is regular, the values ϕTi(a),a computed by imposing the
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conservativity of the fluxes are not order 2 approximations of ϕ(XTi(a),a). This con-
servativity is quite mandatory in finite volume methods, and it is moreover physical:
whatever the discontinuities of D, the fluxes (−D∇u) ·�n of the exact solution u to (1)
are themselves always conservative. The choice of the values at XTi(a),a can therefore
hardly be changed, and in general these values will not be proper approximations for
regular functions. But if we consider continuous and piecewise-regular functions ϕ,
with jumps of derivatives aligned along the discontinuities of D and such that the
fluxes (−D∇ϕ) · �n are conservative across all the edges (the exact solution to (1)
satisfies in particular these properties), then there is no longer any nonconservativity
objection to the consistency of the numerical fluxes for ϕ. However, another objec-
tion arises: for piecewise-regular functions, the interpolations (17) used to construct
the fluxes are not order 2 approximations of the function at Mi,a, and the fluxes are
therefore once again not consistent.

What we notice here is in fact an intrinsic contradiction in the general construction
made in section 2.2: the convex combinations (17) are justified for regular functions,
whereas the choice of the edge values (20) assumes that all the fluxes are conservative
(even if D is discontinuous). Both assumptions cannot hold in general. Though
this does not prevent the scheme from converging, this “contradictory” construction
probably leads to less precise results on coarse meshes.

There is, however, a way to make proper choices of parameters that eliminate this
apparent contradiction. If D is piecewise-C2, it is proved in [3] that the continuous
functions φ that are C2 on the same subdomains as D and such that the fluxes
(−D∇φ) ·�n are continuous (even across the discontinuities of D) are dense in H1

0 (Ω);
these functions therefore provide enough test functions to prove the convergence of
the scheme and do not present the nonconservativity issue preventing their numerical
fluxes from being proper approximations of their exact fluxes. Assume now that each
convex combination (16) is written using only points (Mi,a, XTi(a), (Xi,a(j))i=1,Ji,a )
that belong to the same subdomain on which D is C2; all the functions φ from [3]
being C2 on the same subdomains as D, this choice ensures that φMi,a given by (17)
is an order 2 approximation of φ(Mi,a). As in the proof of Lemma 3.5, we then
see, thanks to the conservativity of the fluxes (−D∇φ) · �n, that φTi(a),a computed
by (20) is an order 2 approximation of φ(XTi(a),a), and thus that the numerical flux
Fi,a(φD) is a consistent approximation of the continuous flux (even in the presence of
discontinuities of D). This leads to the following principle, which should be satisfied
whenever possible (i.e., when the mesh is not too coarse or D does not have too many
discontinuities):

(50)
Mi,a and all the (XTi(a), (Xi,a(j))j=1,Ji,a ) used to write the convex
combination (16) belong to the same subdomain on which D is regular.

Besides the improvement in the quality of the scheme (see the next section), such
a choice avoids the special handling, in the proof of Theorem 3.8, of the edges around
the discontinuities of D. As we noticed above, satisfying (50) can be impossible on
too coarse meshes (e.g., when the scale of heterogeneity of D is the same as the scale
of the mesh); however, even if (50) cannot be satisfied on some edges, the proof above
shows that, as the mesh size tends to 0, the method still converges2—but possibly with
a degraded order of convergence (see the numerical tests following). We do not know

2Indeed, as we explain above and as noticed in [22, 13], the nonconsistency of the fluxes on some
edges—here the ones around the discontinuities of D, and on which it might be impossible to satisfy
(50)—does not necessarily prevent the scheme from converging as the mesh size tends to 0.
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of a perfectly reliable method that ensures that the fluxes can be approximated in a
consistent way on coarse meshes and for any heterogeneity of D; nevertheless, in this
case, a possible additional improvement can be to introduce the special interpolations
of [4]. These interpolations allow us on some grids to construct edge approximations
of order 2 of the solution despite the discontinuity of the tensor across the edges; using
these approximate edge values in (17) as additional uXi,a(j), one can more easily find
order 2 approximations of the solution at Mi,a even on coarse meshes. Such a study
will be the subject of future works.

4.2. Numerical results. The nonlinear scheme S is solved by implementing
the simple iterative algorithm described in [33]: we fix to u = un the argument of
γ1,a and γ2,a in (26) and solve for u = un+1 the corresponding linear scheme (27); the
convergence criterion is achieved when the relative difference in the L2 norm between
two iterations un and un+1 is less than 10−5.

Remark 4.1. Obviously, the scheme being nonlinear (which is nearly a require-
ment for monotone methods; see the introduction), the computation of its solution is
more costly than for linear methods. We will nevertheless see that, in many tests, the
number of iterations in the algorithm stays relatively low; it should also be noticed
that the linear system solved at each iteration comes from anM -matrix that is roughly
as well conditioned as the matrices of usual linear schemes and is also well adapted to
multigrid methods. Finally, we notice that realistic models (see section 4.2.3) are non-
linear and that, in practice, the “additional” nonlinearity introduced by our nonlinear
method increases very little the cost of solving the scheme.

In [31] and [33], the scheme S has been tested on the benchmark of [25]. The
analytical tests (test 1 and 5) show second order accurate results, as for the classical
linear schemes; the algorithm described above to solve S converges in less than 10 it-
erations. On the stiffest tests (tests 8 and 9), about 200 iterations are needed to solve
S, but the solutions obtained with all the other linear schemes show large oscillations,
and are therefore much less acceptable than the one given by S.

Other numerical results on S are provided in previous references [30, 33] in the
case of regular tensors D. In the following numerical results, we therefore consider sit-
uations in which D is strongly discontinuous and anisotropic, which was not truly the
case in most of the preceding tests. We concentrate mainly on two specific questions:
(i) comparison of S (having the LMP structure) with the simpler linear version, de-
noted by L and lacking the LMP structure, obtained by choosing γ1,a(u) = γ2,a(u) =

1
2

in (26); and (ii) influence of different possible choices for the points Mi,a.
We consider six grids, described in [25] (see Mesh1) that contain from 56 triangular

cells (the first) to 57000 triangular cells (the sixth). As explained above, the coercivity
assumption (29) cannot, in general, be theoretically verified; however, some numerical
quantities can be computed in order to check whether this assumption seems to hold
or not. Rather than trying to obtain a numerical value for the ζ in (29), we prefer to
consider

νh =

∑
a∈A |a|min

[
ε1,KF1,a(u)(uL − uK); ε2,KF2,a(u)(uL − uK)

]
||u||2D

,

where u is the solution to S; νh is easy to compute and gives a good indication of the
coercivity of the method in the region of interest: if νh stays positive and far from 0
as the mesh size h tends to 0, then one can consider that the method is coercive at
least on a neighborhood of the solution.

Some notation used to present the numerical results is given in Table 1.
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Table 1

Notation.

h Size of the discretization (i.e., shortcut for size(D))

L2 error L2 error of the computed solution with respect to the analytical solution
ratiol2 Order of convergence, in L2 norm, of the method
nit Number of iterations needed to compute the approximate solution of S
nmp Number of iterations, in the solving of S, before the iterative solution

un satisfies the maximum principle (i.e., takes its values between the
minimum and maximum values of the boundary data)

νh Coercivity parameter as a function of h = size(D)

4.2.1. Stationary analytical solution. We consider the following elliptic pro-
blem:

(51)

{
div(D∇u) = div(D∇uana) in Ω =]0, 1[×]0, 1[ ,
u = uana on ∂Ω

with

(52) D(x, y) =

(
1 0
0 1

)
if x ≤ 0.5 , D(x, y) =

(
100 0
0 0.01

)
if x > 0.5,

and the analytical solution

uana(x, y) = cos(πx) sin(πy) if x ≤ 0.5 , uana(x, y) = 0.01 cos(πx) sin(πy) if x > 0.5.

This analytical solution and its fluxes are continuous at the interface x = 0.5, so that
div(D∇uana) ∈ L2(Ω).

In the first two numerical tests, we look at the linear scheme L. Table 2 presents
the results for when the principle (50) is not taken into account, and Table 3 shows
the results for when this principle is respected. Since the exact solution is not C2

in the whole domain, as expected the convergence is much better if (50) holds: the
order is in fact twice as large.

Table 2

Linear scheme L for (51), principle (50) not respected.

h 1
4

1
8

1
16

1
32

1
64

1
128

L2 error 8.4× 10−2 3.4× 10−2 1.5× 10−2 7.0× 10−3 3.3× 10−3 1.6× 10−3

ratiol2 1.27 1.16 1.11 1.09 1.03

Table 3

Linear scheme L for (51), principle (50) respected.

h 1
4

1
8

1
16

1
32

1
64

1
128

L2 error 3.3× 10−2 8.9× 10−3 2.2× 10−3 5.6× 10−4 1.4× 10−4 3.4× 10−5

ratiol2 1.89 1.98 2.00 2.02 2.04

We then present in Tables 4 and 5 the results for the nonlinear scheme S, choosing
β1,a = β2,a = min(

α1,a

δ1,a
,
α2,a

δ2,a
). The difference between the two tests still consists of

respecting, or not, respecting the principle (50). Once again, it is clear that this prin-
ciple genuinely improves the quality of the scheme, doubling its order of convergence;
moreover, it is interesting to notice that this principle also largely accelerates the
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Table 4

Nonlinear scheme S for (51), principle (50) not respected.

h 1
4

1
8

1
16

1
32

1
64

1
128

L2 error 3.4× 10−2 8.4× 10−3 2.3× 10−3 7.7× 10−4 3.4× 10−4 1.7× 10−4

ratiol2 2.00 1.88 1.57 1.17 1.01
nit 88 124 99 76 52 28
νh 1.05 0.93 0.98 1.03 1.06 1.08

Table 5

Nonlinear scheme S for (51), principle (50) respected.

h 1
4

1
8

1
16

1
32

1
64

1
128

L2 error 3.4× 10−2 8.6× 10−3 2.2× 10−3 5.5× 10−4 1.4× 10−4 3.4× 10−5

ratiol2 1.96 1.96 2.00 2.00 2.03
nit 110 43 7 4 3 2
νh 0.94 1.13 1.11 1.10 1.10 1.10

Table 6

Nonlinear scheme S for (53).

h 1
4

1
8

1
16

1
32

1
64

nit 117 124 92 73 59
nmp 2 3 2 2 1
νh 0.70 1.60 2.44 3.03 3.22

convergence of the fixed point algorithm. The choice of (50) therefore not only gives
a more precise approximate solution, but also an easier one to compute in practice.

These tables also show that, in all the tests, the quantity νh stays positive and
does not tend toward zero; this numerically suggests that assumption (29) holds quite
well in practice around the solution of the problem, and thus that we are in the
theoretical framework of convergence developed in section 3.

Remark 4.2. We also tested, for the nonlinear scheme, the choices of β1,a =
α1,a

δ1,a

and β2,a =
α2,a

δ2,a
; in general, β1,a and β2,a are then different, and we observe that the

fixed point algorithm does not converge. This confirms the requirement β1,a = β2,a

when implementing S.

4.2.2. Stationary nonanalytical solution. In order to evaluate the respect
of the discrete maximum principle, we now consider the following problem:

(53)

{
div(D∇u) = 0 in Ω =]0, 1[×]0, 1[ ,
u = x on ∂Ω,

where D is as before (see (52)).
Table 6 and Figure 4 show the results of S when applying the principle (50). We

notice that nit is much larger than with the previous analytical solution. A possible
explanation for this is the following: as we show below, the concentrations obtained
with the linear schemes for (53) are very oscillating (more than in the previous test);
these oscillations indicate that the considered problem is stiffer than the preceding
one, and it could explain why the nonlinear method requires more iterations in the
fixed point algorithm to achieve the convergence criterion.

In Table 7 and Figure 5, we show the results on the same problem (53) with the
VFSYM scheme of [29] (a symmetric cell centered finite volume scheme on simplexes,
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SCAL
> 3.45E−02
< 9.99E−01

  0.0
 5.00E−02
 0.10
 0.15
 0.20
 0.25
 0.30
 0.35
 0.40
 0.45
 0.50
 0.55
 0.60
 0.65
 0.70
 0.75
 0.80
 0.85
 0.90
 0.95
  1.00
  1.05
  1.10
  1.15

Fig. 4. Concentration given by S for (53) on a grid made of 224 cells (maximum value 0.99,
minimum value 0.03).

Table 7

VFSYM scheme for (53): percentage of overshoots and maximum values of the approximate
solutions.

h 1
4

1
8

1
16

1
32

1
64

Overshoots 32% 19% 10% 4% 1.0%
umax 1.09 1.09 1.07 1.06 1.03

SCAL
> 3.00E−02
< 1.09E+00

  0.0
 5.00E−02
 0.10
 0.15
 0.20
 0.25
 0.30
 0.35
 0.40
 0.45
 0.50
 0.55
 0.60
 0.65
 0.70
 0.75
 0.80
 0.85
 0.90
 0.95
  1.00
  1.05
  1.10
  1.15

Fig. 5. Concentration and position of the overshoots (in red) for the VFSYM scheme on (53)
on a grid made of 224 cells (maximum value 1.09, minimum value 0.03). See online version for
color.

parallelograms, and parallelepipeds); this table and figure also present the percentage
of values higher than 1 (upper bound of the boundary data for (53)) and the maximum
values of the approximate solutions.

Finally, Table 8 and Figure 6 present the behavior of the linear scheme L on (53).

It is interesting to observe that the two linear schemes (VFSYM and L) present
oscillations on all grids; these oscillations can be quite large and numerous unless the
grid is thin. On the other hand, as expected, no such oscillations appear with the non-
linear scheme S; moreover, fewer than three iterations are required in the fixed point
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Table 8

Linear scheme L for (53): percentage of overshoots and maximum values of the approximate
solutions.

h 1
4

1
8

1
16

1
32

1
64

Overshoots 35% 21% 11% 5% 0.8%
umax 1.11 1.13 1.13 1.09 1.03

SCAL
> 3.52E−02
< 1.13E+00

  0.0
 5.00E−02
 0.10
 0.15
 0.20
 0.25
 0.30
 0.35
 0.40
 0.45
 0.50
 0.55
 0.60
 0.65
 0.70
 0.75
 0.80
 0.85
 0.90
 0.95
  1.00
  1.05
  1.10
  1.15

Fig. 6. Concentration and position of the overshoots (in red) for the linear scheme L on (53)
on a grid made of 224 cells (maximum value 1.13, minimum value 0.0352). See online version for
color.

algorithm to obtain the minimum and maximum principles: hence, not only does the
exact solution to this scheme satisfy the discrete maximum and minimum principles,
but the practical approximations we manage to compute also almost immediately
exhibit no overshoots or undershoots.

4.2.3. The ANDRA COUPLEX 1 test case. We now consider S on the
ANDRA COUPLEX 1 test case [7]. More specifically, we study the transport of the
Iodine 129 that escapes from a repository cave into the water. The concentration C
satisfies the following convection-diffusion equation:

(54) ω(∂tC + λC) − div(Diff∇C + �velC) = f on Ω×]0, T [,

where Diff is the diffusion-dispersion tensor, ω is the effective porosity, and λ = log(2)
Thalf

(Thalf being the half-life of Iodine 129). The Darcy velocity �vel = K∇h satisfies the

flow equation div( �vel) = 0, where K is the permeability tensor and h is the dynamic
load. All the coefficients are given in [7].

We consider a grid of the domain Ω made of about 3600 triangular cells. We
compute the Darcy velocity by solving the flow equation using the finite volume
scheme described in [1].

We then consider two discretizations of (54). Both are based on a time-implicit
scheme and use an upwind finite volume discretization of the convection term; they
differ only in the discretization of the diffusion-dispersion tensor: the first uses the
multipoint flux approximation (MPFA) of [1], and the second applies the nonlinear
method S. In both cases, we use 200-year time steps from 1000 to 2000 years, 500-
year time steps from 2000 to 10110 years, 1250-year time steps from 10110 to 50110
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years, 5000-year time steps from 50110 to 2 × 105 years, and 10000-year time steps
from 2× 105 to 106 years (the total is about 165 time steps).

Figures 7–10 show the concentration given by the two methods: obviously, S
suppresses all the spurious oscillations present in the MPFA method; moreover, in
the zone where the MPFA scheme does not oscillate, the results obtained with the
two methods are very similar. It is also interesting to notice that the cost of solving
the nonlinear scheme S on this test case is quite low: at most four iterations for each
time step. Some very tiny oscillations (inferior to 1E-15) can be seen in the solution
given by S; they are a consequence of the limited machine precision.

These results clearly show that the nonlinear method we constructed and studied
in (1) also behaves well, and with a limited cost, on more realistic and complex models.
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Fig. 7. Contour levels of iodine concentration at 10110 years. Left: MPFA scheme (maximum
value 1.14×10−4, minimum value −3.86×10−6). Right: S (maximum value 1.08×10−4, minimum
value −5.67× 10−16).
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Fig. 8. Contour levels of iodine concentration at 50110 years. Left: MPFA scheme (maximum
value 1.69×10−4, minimum value −4.37×10−6). Right: S (maximum value 1.62×10−4, minimum
value −3.65× 10−17).
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Fig. 9. Contour levels of iodine concentration at 200000 years. Left: MPFA scheme (maximum
value 1.03×10−4, minimum value −2.23×10−6). Right: S (maximum value 1.12×10−4, minimum
value −2.06× 10−17).
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Fig. 10. Contour levels of iodine concentration at 1000000 years. Left: MPFA scheme (max-
imum value 3.81 × 10−5, minimum value −1.86 × 10−7). Right: S (maximum value 4.23 × 10−5,
minimum value 1.50 × 10−29).

5. Conclusion. We presented a numerical method for diffusion equations that
respects the minimum and maximum principles and is nonoscillating. This method is
based on a nonlinear combination of linear fluxes, and it can be constructed in two or
three dimensions on very generic grids and in the presence of strong anisotropy and
heterogeneity. We made a theoretical study of the method, proving in particular its
convergence under a coercivity assumption; to the best of our knowledge, very few
monotone schemes have been proved to be convergent on generic grids. This study
allowed us in particular to understand how to properly choose the parameters in the
presence of discontinuous tensors; the case of discontinuity in the diffusion tensor is
obviously of utmost importance in practical situations but is scarcely considered in
the literature on monotone schemes. The numerical results confirmed the theoretical
predictions and the good behavior of the method. Despite the nonlinearity of the
scheme, the computation of the approximate solution is in many cases not too difficult.
Finally, the tests on the more challenging COUPLEX 1 benchmark also showed that
our method is promising for more complex models than pure linear diffusion equations.
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