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Asymptotic preserving schemes on distorted meshes for
Friedrichs systems with stiff relaxation: application to

angular models in linear transport.

Christophe Buet∗, Bruno Després†& Emmanuel Franck‡

April 9, 2013

Abstract
In this paper we propose an asymptotic preserving scheme for a family of Friedrichs systems

on unstructured meshes based on a decomposition between the hyperbolic heat equation and a
linear hyperbolic which not involved in the diffusive regime. For the hyperbolic heat equation
we use asymptotic preserving schemes recently designed in [FHSN11]-[BDF11]. To discretize
the second part we use classical Rusanov or upwind schemes. To finish we apply this method
for the discretization of the PN and SN models which are widely used in transport codes.
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1 Introduction
We study the finite volume discretization of general linear hyperbolic systems with stiff source
terms depending of a relaxation parameter ε, which admit an asymptotic diffusion limit. This
type of system occurs in many physical applications (transport of particles, damped waves, elec-
tromagnetism, linearized gas dynamic, plasma physics) or in biology, and poses some numerical
difficulties. The classical Godunov-type discretizations (upwind, Rusanov or HLL schemes) are not
efficient because the time and spatial steps are constrained by the relaxation parameter ε [BDF11],
[JL96], [Jin99]. To treat this problem S. Jin, C. D. Levemore [JL96]-[Jin11] using the ideas of A.
Y. Leroux [GL96], introduced the notion of asymptotic preserving schemes (AP schemes) which
eliminate these constraints. To illustrate the advantage of asymptotic preserving discretizations,
we propose a simple numerical example. We solve the hyperbolic heat equation

∂tp+
1

ε
∂xu = 0,

∂tu+
1

ε
∂xp+

σ

ε
u = 0,

(1)

with two schemes: the upwind scheme and the asymptotic preserving scheme [GT01]. This model
is approached when ε is small by the following diffusion equation

∂tp− ∂x
(

1

σ
∂xp

)
= 0.

The initial data is given by p(x, t = 0) = G(x) with G(x) a Gaussian function and u(x, t = 0) = 0.
The parameters are given by σ = 1 and ε = 0.001. The time discretization is explicit and the time
step is the half of the stability limit time step. The convergence errors are computed using the
exact diffusion solution. The results proposed in table (1) and on figure (1) show that asymptotic

Figure 1: On the left: numerical solution of the Gosse-Toscani scheme for 50 and 500 cells, on the
right: numerical solution of the upwind scheme 500, 1000 and 10000 cells

preserving scheme is more precise and cheaper in CPU time than the classical upwind scheme.
These remarks may justify to use asymptotic preserving for this type of problem.
In 1D, many AP schemes have been designed: a non exhaustive list is S. Jin, C. D. Levermore [JL96]
or L. Gosse, G. Toscani [GT01] for the hyperbolic heat equation, M. Lemou, L. Mieussens, N. Crou-
seilles [LM07]-[CL11]-[CL11] for some kinetic equations, C. Hauck, R. G. McClarren [HLMc10] for
the PN equations, L. Gosse [Goss11], C. Buet and co-workers [BCLM02] or S. Jin and C. D. Lev-
ermore [JL91] for SN equations and C. Berthon, R. Turpault [BCT08]-[B010]-[BLeFT11]-[BT10]
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Schemes L1 error L2 error CPU time
AP scheme, 50 cells 0.0065 0.0110 0m0.054s
AP scheme, 500 cells 0.0001 0.00018 0m15.22s

upwind scheme, 500 cells 0.445 0.647 0m24.317s
upwind scheme, 1000 cells 0.279 0.113 2m9.530s
upwind scheme, 10000 cells 0.0366 0.059 1485m4.26s

Table 1: Table with numerical error and CPU time associated to the upwind and Gosse-Toscani
schemes.

for generic systems and a non linear radiative transfer model.

For some applications (ICF simulations [DW94]) we are interested in, the stiff hyperbolic systems
are coupled with Lagrangian hydrodynamic codes which generate very distorted meshes. Conse-
quently it is important to design cell-centered asymptotic preserving schemes for the Friedrichs
systems with a valid asymptotic diffusion limit on unstructured meshes. Currently these types of
schemes based on the nodal scheme [BDF11]-[BDFCras]-[BDFproc] or the MPFA scheme [FHSN11]-
[BM06]-[AE06] have been only designed for the hyperbolic heat equation and a non linear system
used in radiative transfer.
The purpose of this paper is to extend Godunov-type asymptotic preserving schemes for the
Friedrichs systems on unstructured meshes. Firstly we introduce the Friedrichs systems and give
a formal proof of the existence of the diffusion limit. In the second part we define a numerical
strategy based on a decomposition between a "diffusive" part similar to the hyperbolic heat equa-
tion and a "non diffusive" part which is negligible in the diffusion regime. This decomposition,
close to the micro-macro decomposition [LM07] allows to design a very simple method to discretize
stiff hyperbolic systems. Indeed, using an asymptotic preserving scheme for the "diffusive" part
(nodal asymptotic preserving for example [BDF11]) and a classical hyperbolic scheme for the "non
diffusive" part we obtain an asymptotic preserving discretization for the complete system. After
this, we show how angular discretizations such as PN and SN models fall within this framework.
This could be applied to other angular discretizations like those based on wavelet expansion for
instance. To finish we propose some considerations on temporal discretizations and numerical
results for PN and the SN systems.

2 Friedrichs systems

2.1 Definition
In this section we introduce linear Friedrichs systems with stiff source terms and their diffusion
limit. We work in dimension two, D ⊂ R2 is a polygonal domain.

Definition 2.1. The sub-class of Friedrichs systems that we consider are defined by:

∂tU +
1

ε
A1∂xU +

1

ε
A2∂yU = − σ

ε2
RU, (2)

with U : D×R+ −→ Rn, A1, A2, R are constant, symmetric and real square matrices. We assume
moreover that the matrix R is non negative, i.e. (Rx, x) ≥ 0 for all x ∈ Rn and KerR 6= ∅.

Non invertibility of the matrix R is important to obtain a non trivial asymptotic regime. The
parameter σ is, in general, a positive and a lower bounded function but for the theoretical analysis
we assume that σ is constant and positive. The relaxation parameter is ε ∈ ]0, 1]. Since the
matrices A1, A2 are symmetric, the system is hyperbolic. Indeed the matrix A1n

x + A2n
y is

symmetric for all n = (nx, ny) ∈ S1.
We define the functional spaces:

L2(D) =

{
U, ||U||L2(D) =

(∫
D

(U,U)

) 1
2

dxdy <∞
}
,
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Hp(D) =

U ∈ L2(D), ||U||Hp(D) =

a+b≤p∑
a,b

||∂xa,ybU||L2 <∞

 ,

Foremost, we recall a classical result of stability for such systems.

Proposition 2.1. If D = [0, 1]2 with periodic boundary conditions, systems (2) are stable in
Hp(D).

Proof. We begin by proving the L2 stability:

1

2

d

dt
||U||2L2(D) =

∫
D

(U, ∂tU)dxdy = −1

ε

∫
D

(A1∂xU +A2∂yU +
σ

ε
RU,U)dxdy.

Since the matrix A1 is constant and symmetric real, the first integral of the right hand side writes∫
D

(A1∂xU,U)dxdy =
1

2

∫
D

∂x(U, A1U)dxdy, (3)

and since we consider periodic boundary conditions,
∫
D

(A1∂xU,U)dxdy = 0. In the same way we
show that the second integral of the right hand side is null. Thus:

1

2

d

dt
||U||2L2(D) = −

∫
D

σ

ε2
(RU,U)dxdy ≤ 0.

since the matrix R is non negative. The L2(D) norm of the solution decreases, thus the system is
L2-stable. We can check that V = ∂xa∂ybU is also a solution of the system (2) which gives the
Hp(D) stability.

2.2 Diffusion limit of the Friedrichs systems
In this section we propose a formal existence result for the asymptotic diffusion limit. We introduce
a structure assumption.

Assumption (H1): Let (E1, ...En) be the eigenvectors of R and let (E1, ...Ep) be the basis of
the kernel of R. The vectors are orthonormal. We assume that, there are two particular linearly
independent eigenvectors Ei1 , Ei2 associated to eigenvalues λi1 > 0, λi2 > 0 with the structure
assumption {

A1Ei = γ1i Ei1 ∀i ∈ {1...p},
A2Ei = γ2i Ei2 ∀i ∈ {1...p}. (4)

In other sections we will show that the simplified models as PN or SN in linear transport theory
satisfy the previous structure assumption. For the hyperbolic heat equation extended to 2D p = 1,
A1E1 = E2 and A2E1 = E3 where E1 is the eigenvector associated to the eigenvalue 0 and E2, E3

are the eigenvectors associated at the eigenvalue 1 of the matrix R.

Proposition 2.2. If the assumption (H1) is satisfied, the system (2) admits the formal diffusion
limit

∂tV −
1

λi1σ
K1∂xxV −

1

λi2σ
K2∂yyV = 0, (5)

with V = ((U,E1), ...., (U,Ep)) ∈ Rp, K1 = γ1 ⊗ γ1 ∈ Rp × Rp, K2 = γ2 ⊗ γ2 ∈ Rp × Rp non
negatives symmetric matrices where the vectors γk = (γk1 , ..., γ

k
p ) are defined in (4).

Proof. Using a Hilbert expansion U = U0 + εU1 + ε2U2 + o(ε2) in (2), we obtain the hierarchy of
equations:

1

ε2
: RU0 = 0, (6)

1

ε1
: A1∂xU0 +A2∂yU0 = −σRU1, (7)

1

ε0
: ∂tU0 +A1∂xU1 +A2∂yU1 = −σRU2. (8)
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Equation (6) shows that U0 ∈ KerR. Therefore,

U0 =

p∑
j=1

(U,Ej)Ej . (9)

Equation (7) implies the existence of U1 up to an element of the kernel under the following
compatibility condition

A1∂xU0 +A2∂yU0 ∈ (KerR)⊥.

The assumption (H1) and the equation (9) show that U0 is such that

A1∂xU0 =

 p∑
j

∂x(U0,Ej)γ
1
j

Ei1 , A2∂yU0 =

 p∑
j

∂y(U0,Ej)γ
2
j

Ei2 .

Using the definition of the eigenvectors and the linearity, we obtain the relation

R

(
A1∂xU0

λi1
+
A2∂yU0

λi2

)
= A1∂xU0 +A2∂yU0,

which gives the expression of U1

U1 = − 1

σ

(
A1∂xU0

λi1
+
A2∂yU0

λi2

)
+ z, , z ∈ KerR (10)

Using the relation (8), we show the existence of U2 up to an element of the kernel under the
following compatibility condition

∂tU0 +A1∂xU1 +A2∂yU1 ∈ (KerR)⊥.

Since Ker(R) = Vect(E1, ....,Ep), the compatibility condition can be written as

∂t(U0,Ei) + ∂x(A1U1,Ei) + ∂y(A2U1,Ei) = 0 i ∈ {1..p} . (11)

Now we plug the relation (10) in (11) to obtain the equations
∂t(U0,Ei)−

1

λi1σ
∂xx (A1U0A1Ei)−

1

λi2σ
∂yy (A2U0, A2Ei)

− 1

λi2σ
∂xy(A1U0, A2Ei)−

1

λi1σ
∂yx(A2U0, A1Ei) +Ni = 0, for i ∈ {1..p} ,

(12)

where
Ni = ∂x(A1z,Ei) + ∂y(A2z,Ei) = ∂x(z, A1Ei) + ∂y(z, A2Ei). (13)

The assumption (H1) and the orthogonality of the eigenvectors show that the terms A1Ei, A2Ei

are orthogonal to z. Consequently the terms Ni (13) are equal to zero. Now we study the cross
terms (A1U0, A2Ei) and (A2U0, A1Ei). One has

(A1U0, A2Ei) =

A1

 p∑
j=1

(U0,Ej)Ej

 , A2Ei

 =

 p∑
j=1

γ1j (U0,Ej)

Ei1 , γ
2
i Ei2

 = 0, (14)

(A2U0, A1Ei) =

A2

 p∑
j=1

(U0,Ej)Ej

 , A1Ei

 =

 p∑
j=1

γ2j (U0,Ej)

Ei2 , γ
1
i Ei1

 = 0. (15)

The cross terms vanish. For the other terms we obtain

(AkU, AkEi) =
∑
j

(U0,Ej)(AkEj , AkEi) =
∑
j

(U0,Ej)γ
k
j γ

k
i . (16)

So the equations (12) with U0 = U are equivalent to the equations (2) with K1 = γ1 ⊗ γ1 and
K2 = γ2 ⊗ γ2. These matrices are symmetric by definition. Moreover

(X,KkX) = (γk,X)2 ≥ 0 ∀ X ∈ Rp,

therefore the matrices Kk are non negatives.
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Remark 2.3. • Since the matrices K1 and K2 are non negatives, the system (5) is dissipative.

• The size of the diffusion equation (5) is equal at the multiplicity of the eigenvalue 0 of the
matrix R.

• The hypothesis (H1) is sufficient but not necessary. The assumption AkEi ∈ (KerR)⊥ for
i ∈ {1..p} is also possible.

• If λi1 = λi2 the diffusion equation is isotropic.

• In 3D the proof uses the same principle.

3 Discretization strategy
In this section, we propose a strategy to design finite volume schemes valid for Friedrichs system
on unstructured meshes. The method is only valid for the Friedrichs systems which have a scalar
diffusion limit (dim KerR = 1). The idea is to split the Friedrichs system between a "diffusive"
part similar to the hyperbolic heat equation and a "non diffusive" part which is negligible in the
diffusive regime. This method is in the principle very close to the micro-macro decomposition used
in [LM07]-[CL11].

3.1 Principle of the "diffusive - non diffusive" decomposition
The "diffusive - non diffusive" decomposition uses the particular structure of some Friedrichs
systems described by the following assumption. Assumption (H2): Assume that

(H2)

 dim(KerR) = 1, consequently KerR = Vect(E1),
λ2 = λ3 = λ (we study isotropic diffusion limit),
A1E1 = aE2, A2E1 = aE3,

(17)

with λi the eigenvalues , by convention λ1 = 0, and Ei the eigenvectors of R.

Since R is symmetric the matrix can be written on the following form R = QDQt with D di-
agonal matrix and Q an orthogonal matrix where the column are the eigenvectors of R. Since R
is non negative, the coefficients of D are non negative. We define V = QtU,

∂tV +
1

ε

(
A

′

1∂xV +A
′

2∂yV
)

= − σ
ε2
DV, (18)

with A′1 = QtA1Q, A′2 = QtA2Q symmetric matrices.

Lemma 3.1. Under the assumption (H2), the matrices A′1, A′2 have the following block structure

A′1 =

(
0 C1

Ct1 B1

)
A′2 =

(
0 C2

Ct2 B2

)
.

where B1 and B2 are (n−1)× (n−1) symmetric matrices, and C1 and C2 are 1× (n−1) matrices
whose elements are defined by Ck, j = aδk,j for k = 1, 2 and j = 1, ..., n− 1 and δk,j stands for the
Kronecker product.

Proof. Let us consider the matrixA′1. Using the definition of the matrix Q we have

A′1,ij = (Ei, A1Ej).

For the first line we have then, remembering that E1, ..., En is an orthonormal basis,

A′1,1j = (E1, A1Ej) = (A1E1,Ej) = (E1, A1Ej) = (aE2,Ej) = aδ2j .

Since we are dealing with symmetric matrices, the results follows for the first column. By the same
way we obtain the desired result for the matrix A′2.

6



Therefore we can rewrite the system (18) as

∂tV +
1

ε
(P1,x∂xV + P1,y∂yV) +

1

ε

(
A

′′

1∂xV +A
′′

2∂yV
)

= − σ
ε2
DV, (19)

where the matrices P1,x, P1,y are defined, as block matrices, by

P1,x =

(
Q1 0
0 0

)
P1,y =

(
Q2 0
0 0

)
where Q1 and Q2 are the 3× 3 matrices

Q1 =

 0 a 0
a 0 0
0 0 0

 Q2 =

 0 0 a
0 0 0
a 0 0


and A

′′

1 = A
′

1 − P1,x, A
′′

2 = A
′

2 − P1,y are symmetric matrices where the first line and column of
the matrices A

′′

1 , A
′′

2 are equal to zero. Next we decompose the model (19) between two systems.
The first part of the system is very close to the hyperbolic heat equation

∂tV +
1

ε
(P1,x∂xV + P1,y∂yV) = − σ

ε2
D

′
V, (20)

with, for the diagonal matrix D′, D
′

11 = 0, D
′

22 = D
′

33 = λ2 and D
′

ii = 0 i ≥ 4. The second system
is given by

∂tV +
1

ε

(
A

′′

1∂xV +A
′′

2∂yV
)

= − σ
ε2
D

′′
V, (21)

with, for the diagonal matrix D′′, D
′′

11 = D
′′

22 = D
′′

33 = 0 and D
′′

ii = λi i ≥ 4. This decomposition
is a little bit different from the micro-macro decomposition. Indeed when we use the micro-macro
decomposition for the linear kinetic equation (some Friedrichs systems can be interpreted as angu-
lar discretization to the linear kinetic equation) we split the isotropic part homogeneous to O(1)
and the residual homogeneous to O(ε). When we apply an asymptotic analysis to our decomposi-
tion we remark that we split the equations associated to the unknowns homogeneous to O(1) and
O(ε) (first system) which gives the diffusion limit and the equations associated to the unknowns
homogeneous to O(ε2) (second system) which are negligible in the diffusion regime.

Principle of discretization:
The proposed numerical method consists to use an asymptotic preserving scheme for the "diffu-
sive" part (20) and a classical hyperbolic scheme for the "non diffusive" part (21). In the following
section we will introduce the different numerical schemes for the two parts of the decomposition.

3.2 Asymptotic preserving scheme for hyperbolic heat equation
The discretization of the "diffusive" part (20) is based on a specific asymptotic preserving scheme
that we recall now for the hyperbolic heat equation

∂tp+
a

ε
div u = 0,

∂tu +
a

ε
∇p = −σλ

ε2
u,

(22)

where p ∈ R and u ∈ R2. In [BDF11] we have observed that the classical extension of Godunov-type
asymptotic preserving schemes (Jin-Levermore scheme [JL96] or Gosse-Toscani [GT01] scheme) in
2D are convergent only on regular meshes which satisfy the Delaunay condition [EGH00]. Indeed
the numerical viscosity of the hyperbolic scheme gives a non consistent limit diffusion scheme
(two point flux approximation (TPFA) scheme [BDF11]-[EGH00]) on unstructured meshes. To
solve this problem two methods have been proposed. In [BDF11] the extensions of Jin-Levermore
scheme and Gosse-Toscani scheme have been designed using the nodal finite volumes formulation
(the fluxes are localized at the nodes) [KD10]-[CDDL09] because the numerical viscosity of this

7



scheme has a better structure. Another method is introduced in [FHSN11] based on the convergent
diffusion scheme MPFA (MultiPoint Flux Approximation) [AE06].
Let us consider an unstructured mesh in dimension two. The mesh is defined by a finite number
of vertices xr and cells Ωj . We denote xj a point arbitrarily chosen inside Ωj . For simplicity we
will call this point the center of the cell. By convention the vertices are listed counter-clockwise
xr−1,xr,xr+1 with coordinates xr = (xr, yr). The length ljr and the normal njr associated to the
node r et the cell j are defined by

ljr =
1

2
|xr+1 − xr−1| and njr =

1

2ljr

(
−yr−1 + yr+1

xr−1 − xr+1

)
. (23)

The convention is that the norm of a vector x ∈ R2 is denoted as |x|. The scalar product of two
vectors is (x,y). The JL-(b) nodal-AP scheme (2-D extension of the Gosse-Toscani scheme) writes,

x j

xr+1

xr−1

xr

Cell Ω j

Cell Ωk

l jrn jr

Figure 2: Notation for node formulation. The corner length ljr and the corner normal njr are
defined in equation (23). Notice that ljrnjr is equal to the orthogonal vector to the half of the
vector that starts at xr−1 and finish at xr+1. The center of the cell is an arbitrary point inside
the cell.

see [BDF11], 
| Ωj | ∂tpj +

a

ε

∑
r

(ljrMrur,njr) = 0,

| Ωj | ∂tuj +
a

ε

∑
r

α̂jrMr(uj − ur) = −1

ε

(∑
r

α̂jr(Îd −Mr)

)
uj ,

(24)

with the fluxes∑
j

α̂jr

ur =
∑
j

ljrpjnjr +
∑
j

α̂jruj , Mr =

∑
j

α̂jr +
σλ

aε

∑
j

β̂jr

−1∑
j

α̂jr

 (25)

and the tensors
β̂jr = ljrnjr ⊗ (xr − xj), α̂jr = ljrnjr ⊗ njr.

This scheme admits the following limit diffusion scheme on coarse grids
|Ωj | ∂tpj(t) +

a2

σλ

∑
r

ljr(ur,njr) = 0,∑
j

ljrnjr ⊗ (xr − xj)

ur =
∑
j

ljrpjnjr.

(26)

We recall some properties of this scheme:
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• The scheme (24) is stable for the L2 norm [BDF11].

• The matrix Ar =
∑
j ljrnjr⊗(xr−xj) is positive and coercive under non restrictive conditions

on the meshes.

• In [BDF11] we prove that the limit diffusion scheme is convergent if the matrix Ar is coercive.

• If we implicit the source term of (24), we observe numerically that the stability CFL condition
is independent of ε.

• These schemes exhibit spurious mods [BDF11]-[CDDL09] which degrade the quality of the
numerical solution. A solution, based on geometrical corrections, to treat this problem is
proposed in [BDF11].

• Numerical tests show convergence in all cases.

3.3 Numerical schemes for the hyperbolic "non-diffusive" part
We discretize the "non-diffusive" part (21) using a classical hyperbolic scheme. First of all, we
recall two different schemes, the upwind scheme and the Rusanov scheme. The upwind scheme in
dimension two has been studied in [Cou06]. Consider{

∂tU +M1∂xU +M2∂yU = 0
U(t = 0) = U0,

(27)

with two arbitrary real symmetric matrices M1 and M2.
For a cell of index j, njk denotes the outward normal associated to the interface ∂Ωjk between

the cell j and one of its neighbors of index k, Gjk = M1n
x
jk +M2n

y
jk = −Gkj and ljk = |∂Ωjk|.

Definition 3.1. The space discretization of the upwind scheme is

|Ωj | ∂tUj(t) +
∑
k

ljkUjk = 0, (28)

with the fluxes
Ujk = (Gjk)+Uj + (Gjk)−Uk, (29)

where the matrices (Gjk)+,− are the non positive and the non negative parts of the matrix defined
by G+,−

jk = P−1D+,−P with D+,− the matrices of the positive and negative eigenvalues of Gjk and
P is the orthogonal matrix such that PGjkP−1 is diagonal.

The computation cost associated to the upwind scheme can be important for large linear system.
Therefore we propose another choice: the Rusanov scheme. This scheme use only an estimation of
the maximal eigenvalue.

Definition 3.2. The Rusanov scheme is defined by

| Ωj | ∂tUj +
∑
k

ljkUjk = 0, (30)

with the numerical fluxes given by

Ujk = Gjk
Uj + Uk

2
+ Sjk

Uj −Uk

2
, (31)

and the local speed Sjk is such that Sjk ≥ maxi(λ
i
jk) and λijk are the eigenvalues of Gjk.
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3.4 Structure of the algorithm
We are now ready to recapitulate the explicit version of the proposed "diffusive-non diffusive" (19)
decomposition.

Algorithm 3.2.

• Preparation

– Step 1: We diagonalize in the basis of R the system

∂tU +
1

ε
A1∂xU +

1

ε
A2∂yU = − σ

ε2
RU. (32)

– Step 2: We decompose the diagonal system

∂tV +
1

ε
A

′

1∂xV +
1

ε
A

′

2∂yV = − σ
ε2
DV, (33)

with V = QtU, A
′

1 = QtA1Q et A
′

2 = QtA2Q. We obtain

∂tV +
1

ε
(P1,x∂xV + P1,y∂yV) +

1

ε

(
A

′′

1∂xV +A
′′

2∂yV
)

= − σ
ε2
DV. (34)

– Step 3: The system homogeneous to the hyperbolic heat equation is

∂tV +
1

ε
(P1,x∂xV + P1,y∂yV) = − σ

ε2
D

′
V. (35)

Using an asymptotic preserving discretization such as the JL-(b) (24)-(25) scheme or
the P1-MPFA scheme [FHSN11], we define a matrix Ph such that

Vn+1
h = Vn

h + ∆tPhV
n
h (36)

is an explicit discretization of (35).

– Step 4: The second system is

∂tV +
1

ε

(
A

′′

1∂xV +A
′′

2∂yV
)

= − σ
ε2
D

′′
V. (37)

Using a standard finite volume scheme such as Rusanov (30)-(31) or upwind (28)-(29),
we define a matrix Ah such that

Vn+1
h = Vn

h + ∆tAhV
n
h (38)

is an explicit discretization of (37).

• Loop in time

– Step 1: Vn
h = QtUn

h

– Step 2: We apply the explicit scheme

Vn+1
h = Vn

h + ∆t(Ph +Ah)Vn
h (39)

– Step 3: Un+1
h = QVn+1

h

Remark 3.3. In this work we diagonalize the system to obtain the primitive variables at each time
step. However it is not necessary, we can diagonalize the system only at the first time step.

Remark 3.4. Usual boundary conditions are easy to incorporate in (39) with standard technics
such as the ghost cells method.
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4 Time discretizations
Now we quote some remarks about the time discretization. The stability condition of the time
scheme associated to the "diffusive - non diffusive" decomposition is given by the stability conditions
of each part of the decomposition. Some asymptotic preserving schemes used for the "diffusive"
part and classical schemes used for the "non diffusive" part admit CFL conditions dependent of ε.
To treat this problem, we can use a fully implicit scheme or design semi-implicit scheme stable on
the CFL condition independent of ε [BDF11]. Firstly we will study the implicit discretization of
the "diffusive - non diffusive" decomposition.

4.1 Implicit discretization
We study the L2 stability of the implicit of the algorithm (39). The standard L2 norm is ||V||2L2 =∑
j |Ωj |(Vj ,Vj) and the scalar product is (U,V) =

∑
j |Ωj |(Uj ,Vj). Let us assume for simplicity

that periodic boundary conditions are used so that (X, PhX) ≤ 0 for all X ∈ Rn×nc and nc is the
number of cells: this is proved in [BDF11] for the JL-(b) scheme. Moreover one has (X, AhX) ≤ 0
for standard upwind discretizations.

Proposition 4.1. The implicit scheme

MVn+1
h = MVn

h + ∆tPhV
n+1
h + ∆tAhV

n+1
h (40)

is stable in the norm L2(D).

Proof. By multiplying (40) by Vn+1
h we obtain

(MVn+1
h ,Vn+1

h ) = (MVn
h ,V

n+1
h ) + ∆t(PhV

n+1
h ,Vn+1

h ) + ∆t(AhV
n+1
h ,Vn+1

h ).

To conclude, using the inequalities (Vn+1
h , PhV

n+1
h ) ≤ 0, (Vn+1

h , AhV
n+1
h ) ≤ 0 and the Cauchy-

Schwartz inequality we obtain
||Vn+1||L2 ≤ ||Vn||L2 .

4.2 Semi-implicit schemes
We design semi-implicit schemes modifying the "diffusive - non diffusive" decomposition to obtain
a restrictive-less CFL. We study the scheme for the "diffusive" part. In 1D the JL-(b) scheme
(24) which is equivalent to the Gosse-Toscani scheme is stable for the L∞ norm under the CFL
condition [BDF11]:

∆t

(
M

εh
+
Mσ

ε2

)
≤ 1,

with M = 2ε
2ε+σh . The previous CFL condition is equivalent to

∆t

(
1

εh

)
≤ 1. (41)

If we use a local-implicit discretization for the source term we obtain

∆t

(
1

εh+ h2

σ

)
≤ 1. (42)

A reasonable CFL condition is the sum of the classical hyperbolic CFL condition and the parabolic
CFL condition. These remarks show that we can obtain a stability condition independent of ε for
the "diffusive" part using the semi-implicit JL-(b) scheme (extension in 2D of the Gosse-Toscani
scheme). However, for the "non diffusive" part the CFL condition of semi-implicit scheme is close
to (41) in 1D. Therefore we propose to multiply the Rusanov or upwind fluxes by an adapted
factorM in the "non diffusive" part and use a local implicit discretization of the source term. This
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strategy allows to obtain CFL condition close to (42) for the complete system.
The factorM depends on hyperbolic system studied and the scheme used. For the Rusanov scheme
where the Rusanov velocity is Sjk and 1

coσ
the diffusion coefficient, the factor M is defined by

Mjk =
2Sjkε

2Sjkε+ coσjkh
,

with h a quantity homogeneous to the characteristic length of the mesh. For example we can use
h = d(xj ,xk) with xj , xk the center of the cells.
For the upwind scheme with a velocity λjk and the same diffusion coefficient Mjk is defined by

Mjk =
2λjkε

2λjkε+ coσjkh
.

5 Applications to the PN models
The transport of some type of particles is described by the following transport equation with
scattering term (for example: radiative transfer equation, neutron transport linear equation)

∂tf(x,Ω, t) +
1

ε
Ω.∇f(x,Ω, t) =

σ

ε2

∫
S2

(
f(x,Ω

′
, t)− f(x,Ω, t)

)
dΩ

′
. (43)

The PN systems are obtained expanding the equation (43) on the spherical harmonics basis. By
construction, the PN approximation is a Friedrichs system. But simplifications for 2D flows leads
to nonsymmetric systems. The 2D form of the PN equations (see [Bru02]-[BH05]-[Bru05]) is{ 1

c
∂tI

m
l +

1

2
∂x
(
−Cm−1l−1 Im−1l−1 +Dm−1

l+1 Im−1l+1 + Em+1
l−1 Im+1

l−1 − Fm+1
l+1 Im+1

l+1

)
+∂z

(
Aml−1I

m
l−1 +Bml+1I

m
l+1

)
− σIml = 0,

(44)

for m 6= 0 and { 1

c
∂tI

0
l +

1

2
∂x
(
E1
l−1I

1
l−1 + F 1

l+1I
1
l+1

)
+∂z

(
A0
l−1I

0
l−1 +B0

l+1I
0
l+1

)
+ σ

(
I00δl0 − I0l

)
= 0,

(45)

for m = 0. The coefficients are defined by

Aml =

√
(l −m+ 1)(l +m+ 1)

(2l + 3)(2l + 1)
Bml =

√
(l −m)(l +m)

(2l + 1)(2l − 1)
, (46)

Cml =

√
(l +m+ 1)(l +m+ 2)

(2l + 3)(2l + 1)
Dm
l =

√
(l −m)(l −m− 1)

(2l + 1)(2l − 1)
, (47)

Eml =

√
(l −m+ 1)(l −m+ 2)

(2l + 3)(2l + 1)
Fml =

√
(l +m)(l +m− 1)

(2l + 1)(2l − 1)
, (48)

with Aml−1 = Bml , Cml = Fm+1
l+1 and Dm

l = Em+1
l−1 . The system formed by the equations (44)-(45)

is not symmetric. However, by an elementary change of unknowns we obtain a symmetric system.
If we note Ĩml the unknowns defined by:

• Ĩml = Iml ,

• Ĩml = −
√

2Iml ,

then the PN system associated to Ĩml is symmetric.
The PN systems satisfy the following properties

• R is a diagonal matrix. 0 is an eigenvalue with the multiplicity 1 and 1 is an eigenvalue with
the multiplicity n− 1 [Bru05]-[Bru02].
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• The eigenvalues of the system are included in ]− 1, 1[ [Bru05]-[Bru02].

• The hypothesis (H2) is verified (the spherical harmonics form a orthogonal basis for the L2

scalar product).

In the numerical test, we use the P3 model for which

A1 =



0
√

1
3 0 0 0 0 0 0 0 0√

1
3 0

√
4
15 0 0 0 0 0 0 0

0
√

4
15 0

√
9
35 0 0 0 0 0 0

0 0
√

9
35 0 0 0 0 0 0 0

0 0 0 0 0
√

1
5 0 0 0 0

0 0 0 0
√

1
5 0

√
8
35 0 0 0

0 0 0 0 0
√

8
35 0 0 0 0

0 0 0 0 0 0 0 0
√

1
7 0

0 0 0 0 0 0 0
√

1
7 0 0

0 0 0 0 0 0 0 0 0 0



,

A2 =



0 0 0 0
√

1
3 0 0 0 0 0

0 0 0 0 0
√

1
5 0 0 0 0

0 0 0 0 −
√

1
15 0

√
6
35 0 0 0

0 0 0 0 0 −
√

3
35 0 0 0 0√

1
3 0 −

√
1
15 0 0 0 0 −

√
1
5 0 0

0
√

1
5 0 −

√
3
35 0 0 0 0 −

√
1
7 0

0 0
√

6
35 0 0 0 0

√
1
70 0 0

0 0 0 0 −
√

1
5 0

√
1
70 0 0 −

√
3
14

0 0 0 0 0 −
√

1
7 0 0 0 0

0 0 0 0 0 0 0 −
√

3
14 0 0



.

Remark 5.1. Since the spherical harmonics are eigenvectors of scattering operators of the form

Q(f) =

∫
S2

p(Ω,Ω
′
)
(
f(t,x,Ω

′
)− f(t,x,Ω)

)
dΩ

′
(49)

or
Q(f) = 4Ωf(t,x,Ω), (50)

where 4Ω is the Laplace-Beltrami operator defined on the sphere and p(Ω,Ω
′
) is an angular repar-

tition function, therefore the "diffusive - non diffusive" decomposition for PN models associated to
the transport equation with these operators is still valid since the assumption (H2) is verified.

6 Applications to the SN models
The SN models for the transport equation (43) are defined by

∂tfi +
1

ε
Ωi.∇fi = − σ

ε2
(fi −

∑
j

fjwj),
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with fi = f(Ωi), Ωi a discrete direction and wi and quadrature weight.∑
j

wj = 1,
∑
j

wjΩj = 0,
∑
j

wjΩj ⊗Ωj = DcÎd,

and Dc = 1
3 if the velocities are defined in S2 and Dc = 1

2 if the velocities are defined in S1. Usually
the quadrature formula is symmetric with respect the rotation of the axis. These systems admit
the following diffusion limit

∂tE − div (D∇E) = 0 (51)

with E =
∑
j wjfj and D = 1

σ

∑
j wjΩj ⊗Ωj .

Proposition 6.1. The SN models can be formulate to

∂tU +
1

ε
A1∂xU +

1

ε
A2∂yU = − σ

ε2
RU,

with Uj =
√
wjfj for each j and R = Îd −

√
w ⊗√w. The vector

√
w is given by the the square

root of wj.
This system satisfies the following properties

• dim KerR = 1,

• A1 and A2 are diagonals,

• 0 is an eigenvalue of R with the multiplicity 1 and the eigenvector E1 = (
√
w1, ....,

√
wn),

• 1 is an eigenvalue of R with the multiplicity n− 1,

• The matrix R is symmetric with real coefficients,

• A1E1 = aE2, A2E1 = aE3.

Proof. We first prove that 1 is an eigenvalue with the multiplicity n − 1. We notice that Îd −√
w ⊗ √w corresponds to the orthogonal projection on the hyperplane orthogonal to the vector√
w. Therefore 1 is the eigenvalue of the matrix R with the multiplicity n − 1. The projection

in the space generate by
√

w is equal to zero, thus 0 is an eigenvalue of R associated to the
eigenvector E1 =

√
w. In a second step, we show that the last property of the proposition 6.1 is

verified. The condition under the quadrature point
∑
i wiΩi = 0 imply that (A1

√
w,
√

w) = 0 and
(A2

√
w,
√

w) = 0. Consequently AE1 ∈ Ker(R)⊥ and AE2 ∈ Ker(R)⊥. Using

E2 =
1√∑

i

wiΩ
x,2
i

 Ωx1
...

Ωxn

 , E3 =
1√∑

i

wiΩ
y,2
i

 Ωy1
...

Ωyn

 .

we obtain A1E1 = aE2, A2E1 = aE3 with a =
√∑

i wiΩ
x,2
i =

√∑
i wiΩ

y,2
i . The equality√∑

i wiΩ
x,2
i =

√∑
i wiΩ

y,2
i comes from∑

i

wiΩi ⊗Ωi = DcÎd,

with Dc = 1
3 or Dc = 1

2 .

Remark 6.2. In dimension one, the SN models with Gauss-Legendre quadrature, are equivalent
to the PN models.

Remark 6.3. Unlike the case of the PN model, the assumptions (H2) are not satisfied for the
anisotropic scattering (49).
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The S2 model used in the numerical examples writes

∂tU +
1

ε
A1∂xU +

1

ε
A2∂yU = − σ

ε2
RU,

with

A1 =


1 0 0 0
0 0 0 0
0 0 −1 0
0 0 0 0

 , A2 =


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 −1

 , R =


3
4 − 1

4 − 1
4 − 1

4
− 1

4
3
4 − 1

4 − 1
4

− 1
4 − 1

4
3
4 − 1

4
− 1

4 − 1
4 − 1

4
3
4

 (52)

and the diffusion limit is
∂tE − div

(
1

2σ
∇E

)
= 0

with E = ( 1
4

∑
j Uj). Defining the orthogonal matrix Q and D the diagonal matrix by

Q =


1
2

1√
2

0 1
2

1
2 0 1√

2
− 1

2
1
2 − 1√

2
0 1

2
1
2 0 − 1√

2
− 1

2

 , D =


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


then in the unknowns V = QtU the system writes

∂tV +
1

ε
A

′

1∂xV +
1

ε
A

′

2∂yV+ = − σ
ε2
DV, (53)

with

A
′

1 = QtA1Q =


0 1√

2
0 0

1√
2

0 0 1√
2

0 0 0 0
0 1√

2
0 0

 , A
′

2 = QtA2Q =


0 0 1√

2
0

0 0 0 0
1√
2

0 0 − 1√
2

0 0 − 1√
2

0

 .

7 Numerical results
In this section we describe numerical results obtained for the three models, the hyperbolic heat
equation (equivalent to P1), P3 and S2 described previously. We give the results for both the diffu-
sion and the transport regimes. For each model the results are obtained for 3 types of unstructured
meshes as illustrated in figures 3 and 4. In this section, contour plots are for the first moment of
the solution that is ρ = (U,E1) and we recall that E1 is the basis of the kernel of R.

 0

 0.5

 1

 1.5

 2

 0  0.5  1  1.5  2
 0

 0.5

 1

 1.5

 2

 0  0.5  1  1.5  2

Figure 3: Unstructured quadrangular meshes
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Figure 4: Kershaw mesh

7.1 The P1 model
We illustrate the behavior of the asymptotic preserving discretization in 2D. We use (24) to solve
the P1 model and we compare with an exact diffusion solution.
The test case is based on the fundamental solution of the heat equation with a diffusion coefficient
equal to one, called SF (t) [EGH00]. The initial datas are U1(t = 0) = SF (0.01) and U2(t = 0)=0,
U3(t = 0)=0. The diffusion solution is given by U1(t) = S(0.01 + t), U2(t) = 0, U3(t) = 0. We
compare the exact diffusion solution, the solution obtained with the scheme without AP corrector,
the solution obtained with the scheme with AP corrector which admits a non consistent TPFA
diffusion scheme [BDF11] and the solution obtained with the consistent asymptotic preserving
scheme (24). The exact diffusion solution is plotted on Cartesian mesh with 150 cells for each
direction. The numerical solutions are computed on Kershaw mesh with 150 cells for each direction
and ε = 0.0001. When we solve this problem with the classic upwind scheme (fig. 5), we do

Figure 5: On the left, we plot the first moment ρ of the exact solution of the test case at the time
t = 0.01. On the right, we plot ρ obtained by the classical upwind scheme at the time t = 5×10−5

not capture correctly the dynamic of the solution. For the TPFA-asymptotic preserving scheme
(left on fig. 6), the quality of numerical solution is very dependent of the deformation of the mesh
and the symmetry of the solution is not preserved. The numerical solution given by the nodal AP
scheme is close to the exact solution. The quality of the numerical solution is not very sensitive to
the mesh deformations.
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Figure 6: We plot the first moment ρ of the solution at t = 0.01 with two different schemes. In the
left the scheme is a naive multidimensional extension of the usual 1-d AP scheme: this scheme is
validated only on Delaunay meshes [BDF11]. In the right the scheme is the nodal JL-(b) (24-25)
asymptotic preserving which is convergent on general meshes.

7.2 The S2 model
We solve the Friedrichs S2 system (2) with the matrices (52). The numerical scheme for the
"diffusive" part is (24)-(25) and we use an implicit time discretization. We define the first moment
E =

∑4
i wiUi with U = (Ui=1, ..., Ui=4).

7.2.1 Numerical results in the diffusion regime

We note SF2(t) the fundamental solution of the heat equation with a diffusion coefficient 1
2 . At

the time zero, each unknown Ui is equal at SF2(0.01). The solution at the time Tf = 0.01 is
SF2(0.01 + Tf ). The model is discretized with the JL-(b) nodal scheme for the "diffusive" part
the upwind scheme for the other part and an implicit time discretization. We obtain the following
results for the convergence.

cells /ε ε = 10−3 ε = 10−4 ε = 10−6 ε = 10−7

40-80 2.00 1.98 1.99 1.99
80-160 1.80 1.97 2. 2
160-320 1.69 1.97 2.01 2.01

Table 2: Order of convergence for the S2 scheme on Cartesian mesh

cells/ε ε = 10−3 ε = 10−4 ε = 10−6 ε = 10−7

40-80 1.92 1.99 2.00 2.00
80-160 1.88 2.02 2.03 2.03
160-320 1.76 2.01 2.04 2.03

Table 3: Order of convergence for the S2 scheme on random quadrangular mesh

The tables (2)-(3)-(5)-(6)-(7) give the order of convergence for some meshes and values of ε. In
the diffusion regime the numerical method converges with the second order.
These results deserve some remarks. The order of convergence for ε = 0.001 and ε = 0.0001 de-
creases a little when the number of cells increase. This phenomena comes from the fact that we
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cells /ε ε = 10−3 ε = 10−4 ε = 10−6 ε = 10−7

40-80 1.89 1.96 1.96 1.96
80-160 1.84 1.94 1.96 1.96
160-320 1.79 1.97 1.99 1.99

Table 4: Order of convergence for the S2 scheme on "smooth" mesh

cells/ε ε = 10−3 ε = 10−4 ε = 10−6 ε = 10−7

40-80 1.89 1.96 1.96 1.96
80-160 1.84 1.94 1.96 1.96
160-320 1.79 1.97 2.00 1.99

Table 5: Order of convergence for the S2 scheme on Kershaw mesh

cells /ε ε = 10−3 ε = 10−4 ε = 10−6 ε = 10−7

40-80 1.98 2.02 2.02 2.02
80-160 1.91 1.99 2.00 2.00
160-320 1.83 2.01 2.01 2.01

Table 6: Order of convergence for the S2 scheme on regular triangular mesh

cells /ε ε = 10−3 ε = 10−4 ε = 10−6 ε = 10−7

40-80 1.65 1.65 1.65 1.65
80-160 1.39 1.38 1.38 1.38
160-320 1.26 1.25 1.25 1.25

Table 7: Order of convergence for the S2 scheme on random triangular mesh

compare the numerical solution of the S2 with the exact solution of the diffusion equation. But the
exact diffusion is an approximation of the S2 solution with an error homogeneous to ε. Therefore
when the numerical error is close to ε, it is not justified to compare the error numerical with the
diffusion solution.

7.2.2 Transport test case

We verify here that the "diffusive - non diffusive" decomposition and the AP corrector do not
disturb the convergence in the transport regime.
Test case 1
It is a classical transport case. The quantities are initialized by U1 = χ[0.4,0.6]2 and Ui = 0 for
i > 1. We define σ = 0 and ε = 1. The solution for U1(t,x) is the initial solution advected with
the velocity (1, 0), the other variables are equal to zero. The final time is Tf = 0.1. Since the
initial data is discontinuous the theoretical order is 0.5 for the norm L1. We show the order for
the variable E =

∑
i wiUi in table 8.

Test case 2
We note G(x) a Gaussian function. The initial data are given by Ui(x, t = 0) = G(x) and the
parameters are defined by σ = 0 and ε = 1. The solution corresponds to the advection of four
Gaussian functions with advection velocities (0, 1), (0,−1), (1, 0) et (−1, 0). The final time is 0.2.
We compare the exact and numerical solutions for the quantity E = 1

4

∑4
i=1 Ui. For this test case,

the scheme converges with the first order as can seen on figure 7.
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Meshes order 40-80 80-160 160-320
Cartesian mesh 0.45 0.48 0.51

Random quad. mesh 0.47 0.48 0.50
Smooth mesh, 0.47 0.46 0.47

Regular trig. mesh 0.48 0.48 0.48
Random rig. mesh 0.49 0.47 0.47
Kershaw mesh 0.38 0.42 0.43

Table 8: Order of convergence for the S2 scheme for the test case 1

Figure 7: The red curve with square correspond to the numerical error on Cartesian mesh (left)
and on random mesh (right). The blue curve with circle correspond to the function 1

h .

Test case 3:
The initial data is Ui = δ1,1 with δ1,1 a Dirac function centered in x = 1 and y = 1. We take
ε = 1 and σ = 1. The analytical solution is constructed with 4 Dirac functions advected in each
direction. We use a random quadrangular mesh. The result is computed using the stabilized-nodal
scheme (without spurious modes, see [BDF11]) for the "diffusive" part. The result is given by the
figure (8).

Remark 7.1. The last test case allows to exhibit a default of the "diffusive-non diffusive" de-
composition. Indeed the SN model preserves the positivity of the discrete distribution function
associated to the linear kinetic equation, consequently all the unknowns are positive. This property
is not preserve at the discrete level.

7.3 The P3 model
In this subsection we validate our numerical method for the P3 system. We verify the convergence
in the diffusion limit. After we propose some test cases in the transport regime.

7.3.1 Numerical results for P3 in diffusion limit

Let SF3(t) be the fundamental solution of the heat equation with a diffusion coefficient of 1
3 . The

initial data is U1(t = 0) = SF3(0.01) and Ui(t = 0) = 0 for i different of zero. The final time is
Tf = 0.01. The solution, at the final time, is the fundamental solution at t = 0.02. We provide
convergence order for implicit scheme and semi-implicit scheme obtained using the semi-implicit
JL-(b) nodal scheme for the "diffusive" part and a modified Rusanov scheme for the other part
(see subsection 4.2). The time step is given by ∆t = 1

2h
2 with h the step mesh.
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Figure 8: First moment ρ of the fundamental solution of S2 model

Semi-implicit time discretization
cells /ε ε = 10−3 ε = 10−4 ε = 10−6 ε = 10−7

40-80 1.91 2.01 2.02 2.02
80-160 1.81 1.98 2.00 2.00
160-320 1.66 1.96 2.00 2.00

Implicit time discretization
cells/ε ε = 10−3 ε = 10−4 ε = 10−6 ε = 10−7

40-80 1.89 1.95 1.95 1.95
80-160 1.87 1.99 2.00 2.00
160-320 1.77 2.01 2.03 2.03

Table 9: Order of convergence for the P3 scheme on Cartesian mesh

Semi-implicit time discretization
cells/ε ε = 10−3 ε = 10−4 ε = 10−6 ε = 10−7

40-80 1.93 1.99 2.00 2.00
80-160 1.89 2.01 2.02 2.03
160-320 1.79 2.02 2.05 2.05

Implicit time discretization
cells/ε ε = 10−3 ε = 10−4 ε = 10−6 ε = 10−7

40-80 1.89 1.95 1.95 1.95
80-160 1.86 1.99 2.00 2.00
160-320 1.77 2.01 2.03 2.03

Table 10: Order of convergence for the P3 scheme on random quadrangular mesh

The tables (9)-(10)-(12)-(13)-(14) give the order of convergence for some meshes and some
values of ε. The remarks introduced on the convergence results of the asymptotic preserving
scheme for the S2 model are valid for this test case.
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Semi-Implicit time discretization
cells /ε ε = 10−3 ε = 10−4 ε = 10−6 ε = 10−7

40-80 2.03 2.1 2.11 2.11
80-160 1.89 2.02 2.03 2.03
160-320 1.76 1.98 2.01 2.01

Implicit time discretization
cells/ε ε = 10−3 ε = 10−4 ε = 10−6 ε = 10−7

40-80 1.89 1.95 1.97 1.97
80-160 1.85 1.99 2.00 2.00
160-320 1.77 2.01 2.02 2.02

Table 11: Order of convergence for the P3 scheme on "smooth" mesh

Semi-implicit time discretization
cells/ε ε = 10−3 ε = 10−4 ε = 10−6 ε = 10−7

40-80 1.89 1.93 1.93 1.93
80-160 1.87 1.96 1.95 1.95
160-320 1.83 1.97 1.99 1.99

Implicit time discretization
cells/ε ε = 10−3 ε = 10−4 ε = 10−6 ε = 10−7

40-80 1.89 1.95 1.95 1.95
80-160 1.84 1.98 2.00 2.00
160-320 1.75 2.00 2.01 2.01

Table 12: Order of convergence for the P3 scheme on Kershaw mesh

Semi-implicit time discretization
cells /ε ε = 10−3 ε = 10−4 ε = 10−6 ε = 10−7

40-80 2.03 2.1 2.06 2.06
80-160 1.95 2.03 2.04 2.04
160-320 1.85 2.01 2.01 2.01

Implicit time discretization
cells/ε ε = 10−3 ε = 10−4 ε = 10−6 ε = 10−7

40-80 1.93 1.96 1.95 1.95
80-160 1.87 1.99 2.00 2.00
160-320 1.80 2.01 2.03 2.03

Table 13: Order of convergence for the P3 scheme on regular triangular mesh

7.3.2 Fundamental solution for P3 and P1 models

Now we solve the P3 and P1 systems with U1(t = 0) = δ(1,1) and Ui(t = 0) = 0 for i 6= 1 [FHSN11].
The "diffusive" part is approximated with the JL-(b) nodal scheme. The time discretization is
implicit. This test case is described in [HMc11]. The final time is T = 1. The exact solution is
composed of Dirac functions with the velocities λi (λi are the eigenvalues of A1n

x + A2n
y) and

smooth functions between the Dirac functions. At the beginning the smooth functions are non
negatives and becomes negatives for large time. For the P1 system, the speed wave is 1√

3
and for

the P3 system the maximal velocity is approximately 0.86. The numerical results reproduce this
behavior, see figure 9.
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Semi-implicit time discretization
cells /ε ε = 10−3 ε = 10−4 ε = 10−6 ε = 10−7

40-80 1.95 1.97 1.98 1.98
80-160 1.89 1.99 2.01 2.01
160-320 1.81 2.00 2.02 2.02

Implicit time discretization
cells/ε ε = 10−3 ε = 10−4 ε = 10−6 ε = 10−7

40-80 1.91 1.95 1.95 1.95
80-160 1.84 1.99 2.00 2.00
160-320 1.78 2.01 2.03 2.03

Table 14: Order of convergence for the P3 scheme on random triangular mesh

Figure 9: Left the first moment ρ of the solution fundamental for the P1 model at the time Tf = 1,
right ρ for the fundamental solution for the P3 model at the time Tf = 1

7.3.3 Lattice problem for P3 and P1 models

This test case is an example of a complicated geometry. We consider a checker-board with different
scattering and absorbing opacities on a lattice core (see [SFL11]). It is interesting for neutron
transport simulations since is a simplification to a reactor core. The geometry is given in the figure
10. We define σ the scattering opacity and σa the absorption opacity. In the black square and
the striped squares σa = 10 and σ = 0. In the white squares σ = 1 and σa = 0. The relaxation
parameter is defined ε = 1 in the whole domain. All the unknowns are equal to zero at the time
0. We solve the P1 and P3 systems with the additional source term

∂tU +
1

ε
A∂xU +

1

ε
B∂xU = − σ

ε2
RU + S

where A1, A2 and R are the matrices associated to the P1 or P3 system and Si = −(σaUi +Q)δi1
with δi1 a Kronecker product. The source Q = 1 in the black square and Q = 0 in the rest of the
domain.
The P3 systems is solved using the JL-(b) scheme for the "diffusive" part. We plot the first moment
with a logarithmic scale log10 at the final time Tf = 3.2. The results for P1 and P3 are given for
the first moment in figures 11. They are the same as those in [SFL11]-[Bru02].
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Figure 10: Geometry for the test case. the domain is [0, 7]× [0, 7]

Figure 11: In the left, we solve the P1 model and plot the log10 of the first moment ρ. In the right,
we solve the P3 model and plot the log10 of ρ.

8 Conclusion
We have studied the discretization on distorted meshes of linear hyperbolic systems with stiff source.
We have proposed a method called "diffusive - non diffusive" decomposition which consists to split
the hyperbolic system between the hyperbolic heat equation and a other system which is negligible
in the diffusion regime. Using an asymptotic preserving scheme for the hyperbolic heat equation
to discretize the "diffusive " part and a classical scheme to discretize the other part, we obtain
an asymptotic preserving method for the complete system. For the approximation of transport
equation, we use this decomposition for the simplified models as PN or SN approximations. For
the PN systems the decomposition is natural. Since the first and second moments gives the limit
regime. The others moments are close to ε. The high order moments are added only to obtain
a better approximation in the pure transport regime (σ = 0). For the SN models, we remark
that the diagonalized model admits a structure very close to the structure of the PN models.
The "diffusive - non diffusive" decomposition gives consistent schemes for all the regimes. If the
numerical methods used to discretize the different parts of the decomposition are stable in norm
L2, the method is stable in norm L2. Modifying the schemes for the "non diffusive" part we can
obtain a semi-implicit scheme with a CFL condition independent of ε. However this method is
not optimal for the discretization of SN models, since our numerical method does not preserve
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the positivity. In the future, it would be interesting to design positive and asymptotic preserving
method.
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