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An ultrasonic inspection system involves the generation, propagation and reception of short transient signals.

Piezoelectric transducers and particularly phased arrays are increasingly used in ultrasonic Non Destructive Testing

(NDT) because of their ability to focus or deflect an ultrasonic beam in parts of complex geometries. To accurately

model the sensitivity in transmission and reception of such sensors, a transient Finite Element (FE) model has been

developed including not only piezoelectric effects but also complex electrical impedance conditions modeling the

effect of elements of a pulser/receiver system. A particular attention is devoted to these electrical and mechan-

ical boundary conditions used to model the emission and reception regimes of the sensor. The definition of the

inspection domain is made easier by a decomposition domain technique allowing, in the same time, local time

stepping and efficient absorbing layers to optimize calculation cost. In order to illustrate all the capabilities of this

simulation tool, several cases of NDT inspections are then presented through the analysis of the ultrasonic beam

snapshots and the electrical signal read on the receiver.

1 Introduction
Because of their ability to focus or deflect an ultrasound

beam in complex shaped components, phased arrays are in-

creasingly used in ultrasonic nondestructive testing. These

probes are usually made of piezo-composite materials reduc-

ing the cross-coupling between adjoining elements. In order

to model accurately the sensitivity in transmission and re-

ception of such sensors, a transient Finite Element model has

been developed. The objective of this work initiated between

the CEA LIST and the POEMS project aims to accurately

model the response of electro-acoustic piezoelectric sensors

by a finite element (FE) method. Numerous studies by FE

methods deal with this vast subject [1, 2, 3, 4]. The pro-

posed FE code has taken benefits from the techniques devel-

oped by the project teams POEMS. It is particularly based

on a transient FE method dealing with mixed spectral FE and

taking into account piezoelectric effects. Decomposition do-

main techniques are also used to facilitate the meshing of

individual objects which are included in an ultrasonic testing

scene (piece, piezoelectric element, matching layer, backing,

coupling media ...). This decomposition technique allows to

optimize the numerical schemes in each domain (local time

step technique, differentiated management fluid domain or

solid domain). Initially, a description of the problem is made

detailing all the modelling domains taken into account: sen-

sor, wedge, sample. In a second part, we describe the math-

ematical formulation of the problem and its discretization.

Then the different optimization techniques used are detailed.

Finally, some simulations are proceeded to illustrate all the

capabilities of this code.

2 Mathematical model

2.1 General description of the problem
For the modelling of an inspection configuration, the main

object of interest is the transducer (cf. Figure 1). The ultra-

sonic sensor is considered to be composed by a piezoelectric

block. On its upper side, a backing layer is usually used to

dissipate the acoustic energy going out the back of the trans-

ducer. On the other side, a matching layer can be used to ef-

ficiently propagate the wave into the coupling medium. This

layer is often a quarter wavelength thick and made of a mate-

rial which has an acoustic impedance midway between that

of the piezoelectric material and the coupling medium. Ac-

cording to the case of application considered, the coupling

medium may be a fluid (water), a wedge of polymer (Plexi-

glass) or the sensor may be directly in contact with the part.

Figure 1: Description of the various components considered

for the simulation of an ultrasonic testing.

In the most general case, the piezoelectric block, repre-

sented by the domain ΩP, may be a heterogeneous medium

such as piezo-composite materials composed of distributed

piezoceramic bars embedded in a polymer matrix. This block

is connected to several electrodes localized on the top and a

unique mass electrode on the bottom (cf. Figure 2).

Figure 2: Schematic illustration of the considering

piezo-composite block with the positioning of electrodes.

For simplicity, these electrodes, which are in practice very

thin, will be considered as connected surfaces.

2.2 Mathematical formulation and discretiza-
tion

2.2.1 Piezoelectric equation and boundary conditions

The equation of piezoelectricity results from the coupling

of the Maxwell’s and elastodynamic equations. Using the

classical quasi-static approximation we reduce the electric

unknowns to a scalar electric potential. Considering the large

contrast of permittivity in the piezocomposite between rods

and the embedding polymer, we have justified the reduction

of the computation to the piezoelectric domains only [1].
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Then, in a piezoelectric domain ΩP, the full system to be

solved couples the classical elastodynamic equation for dis-

placement u with a Laplace equation for the electrical poten-

tial ϕ, such as:⎧⎪⎪⎨⎪⎪⎩ ρ∂ttu − div
(
Cε(u) − d∇ϕ

)
= 0

div
(
ε∇ϕ − dTε(u)

)
= 0

(1)

with ε(u) = 1
2
(∂iu j + ∂ jui). ρ is the density, C the elastic ten-

sor and d is the piezoelectric tensor coupling both electrical

and mechanical components.

The electrical potential is assumed to be constant in space

along each electrode which means electrodes are considered

as perfect conductors. The emission and reception processes

are defined through well-chosen boundary conditions. The ith

anode, denoted with Γa
i boundary, is connected to a common

mass, which imposes a reference potential such as ϕ|Γa
i
= 0

for instance. For the cathode, we use a simplified model (see

[5] for more sophisticated ones or [6] for similar approaches).

The electric charge on the ith cathode is defined by

Qi(t) =
∫
Γc

i

(
ε∇ϕ − dTε(u)

)
· n dσ. (2)

Each cathode is considered independently of the others. Dur-

ing the emission process, a short transient excitation is ap-

plied from a generator on the ith cathode imposing an elec-

trical potential denoted Vi. This source term is coupled with

a relationship on the electrode based on Ohm’s law in the

case of a quasi-static approximation. Finally, assuming that

each piezoceramic bar is decoupled with the other with Ii =

dQi/dt, then we obtain the mixed boundary condition:

ϕ|Γc
i
= Vi + Ri

d
dt

∫
Γc

i

(
ε∇ϕ − dTε(u)

)
· n dσ, (3)

on the part Γc
i of the bar in contact with the cathode of the ith

element where Ri is the electrical impedance of the generator.

More details about all the boundary conditions to close the

problem are given in a paper recently published [7].

Finally, in order to bound the computational domain, we

have developed an efficient technique based on the approach

to design perfectly matched layers (PML) for transient wave

equations. Our approach is based, first, on the introduction

of a modified wave equation and, second, on the formulation

of general ”perfectly matched” transmission conditions for

this equation. The validity of our approach in terms of sta-

bility and accuracy is discussed in [8]. This technique using

constant damping coefficients and combined with high order

elements is very efficient and allows one to reduce the size of

PML when we want to impose absorbing condition.

2.2.2 Discretization

The implemented numerical method handles the prob-

lem by combining high order Galerkin finite elements and

explicit time discretization [9]. High order spectral finite ele-

ment methods were chosen because of their excellent perfor-

mance while having a low memory and computational cost.

The discretization is performed using an intern approxima-

tion of the space H1(ΩP). The approximation space is de-

fined from K̂ = [0, 1]d the reference square or cube, where

d denotes the dimension of the problem. We use a meshMh

of ΩP, composed of quadrangles in 2D and hexahedrons in

3D denoted Kj. Set F j = (F j,1 . . . F j,d) the mapping such that

F j(K̂) = Kj. On this mesh, we can define the subspace of

H1(ΩP)

Ur
h(ΩP) =

{
vh ∈ H1(ΩP) such that vh |K j

◦ �F j ∈ Qr,
}
, (4)

where Qr is the polynomial space spanned by the polynomi-

als of order less than d× r. The use of elements defined on K̂
enables to define the basis function ϕ̂ as a tensor product of

1D functions, in the following way

ϕ̂j(x) =

d∏
k=1

ϕ̂ jk (xk). (5)

Letting
{
ξ̂p

}
, p = 1..r + 1, denotes the set of Gauss-Lobatto

quadrature points (see [9]). We define the polynomials ϕ̂ jk of

order r from the following relation

ϕ̂ jk (ξ̂p) = δ jk p ∀ p = 1..r + 1, (6)

where δ jk p is the Kronecker delta.

We look for uh ∈ [Ur
h(ΩP)]d and ϕh ∈ Ur

h(ΩP). We decom-

pose these two unknowns on the lagrangian basis functions,

write down the variational formulation arising from (1) and

test the equality against all the basis functions. We compute

the integrals at stake using Gauss-Lobatto quadrature rule,

which is exact for polynomials of order less than 2r − 1 and

consistent at order r. We obtain the following system (see [7]

for more details and the treatment of the boundary conditions

at a discrete level)

M d2

dt2
uh +Kuh + BTϕh = −BT Vh,

Cϕh = Buh.

(7)

We can eliminate the unknown ϕh to obtain

M d2

dt2
uh + (K + BTC−1B)uh = −BT Vh. (8)

The choice of basis functions and quadrature points ensures

essential properties to the matrices at stake in (8). The matrix

M is diagonal and positive-definite. The matrices B, C and

K are symmetrical, positive-semidefinite and can be factor-

ized to perform a reduction of the computational and memory

cost of the algorithm (as explaine in [9]).

It only remains to complete a time discretization of (8).

As explained in [7], second orders finite difference scheme

are used. The stability of the fully discrete numerical schemes

in then guaranteed over an explicit time step restriction.

2.2.3 Domain decomposition and local time step

To handle the discretization of complex shaped objects or

high heterogeneous media, a domain decomposition methods

using Mortar elements has been implemented (see [10] for

instance). It enables to mesh these domains independently

(see side-drilled hole in figure 3) of the mesh used for the

surrounding medium or for the piezoelectric sensors. It is

also useful when one wants to deal with a configuration in

which different physical phenomenons are implied (for in-

stance fluid-structure interaction).
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Figure 3: Circular hole meshing in a homogenous medium.

Every intersection corresponds to the localization of a high

order nodal FE basis function. The domain decomposition

method enables to deal with non-conforming interfaces

For the sake of simplicity, we briefly present the domain

decomposition method for acoustic waves. Consider two do-

mainsΩ1 andΩ2 with a common frontier Γ = ∂Ω1∩∂Ω2 � ∅,
and set Ω = Ω1 ∪Ω2. We wish to compute u the solution of

∂ttu − Δu = f , x ∈ Ω, t > 0,

where f is a source term with support contained into Ω1.

It is well-known that this is equivalent to looking for the

solutions u1, u2 of{
∂ttu1 − Δu1 = f , x ∈ Ω1, t > 0,
∂ttu2 − Δu2 = 0, x ∈ Ω2, t > 0,

with the matching conditions on the interface

u1 = u2, ∇u1 · n = ∇u2 · n, x ∈ Γ, t > 0.

Then, the mortar element method consists in introducing the

Lagrange multiplier λ such that

∂tλ = ∇u1 · n = ∇u2 · n,
and to look for the traces continuity under a weak form:

〈u1, μ〉 1
2
,− 1

2
= 〈u2, μ〉 1

2
,− 1

2
, ∀μ ∈ H−1/2(Γ), t > 0.

One can now derive an adapted formulation for the imple-

mentation of the finite element method on the different sub-

domains Ω1 and Ω2, while computing a finite element space

on the interface Γ to compute the Lagrange multiplier λ.
This method enables us to compute the solution in each

subdomain ”independently”, modulo the computation of the

Lagrange multiplier λ on the interface. However the time

step of the global simulation is still affected by any small el-

ement used around the defects. Another example is a strong

speed contrast between two mediums, which is typically the

case when one wants to deal with fluide-structure problems.

To circumvent this difficulty the energy preserving local time

step procedure developed in ([11],[12]) is used. This local

time step technique enables to choose different time step in

each domain of the global simulation domain. Through en-

ergy preservation, the stability of the schemes is guaranteed

over explicit time step restrictions.

3 Numerical results

Angular beam deflection with linear array probe
As a first example, we have performed two 2D simula-

tions in order to calculate the radiated beam from a phased

array wedge probe: one with a uniform delay law, the other

with a linear delay law. The figure 4 presents a comparison

of the radiated beam for several time steps of the calculation

process. As expected, the linear delay law imposed on each

Figure 4: Description of the various components considered

for the simulation of an ultrasonic testing.

element induces a deflection of the radiated beam. The mul-

tiple reflections in the wedge can be fully simulated as well

as the transmitted beam in the sample. These informations

appear to be of great interest in the design of ultrasonic sen-

sors.

Beam focusing with linear array probe on a side-
drilled hole

This time, we present another 2D configuration to illus-

trate the effect of an electronic focusing on the response of

a typical defect such as a side-drilled hole. We consider a

phased array probe directly in contact with an isotropic ho-

mogeneous half-space in which a side-drilled hole is embed-

ded (see figure 5). We use stress free condition on all the elas-

tic boundaries and perfectly matched layer are used to bound

the computational domain. As a reference, we first consider

the case of a uniform delay law. In the second simulation,

the delay law applied on each cathode is defined to focus the

radiated beam energy at the depth of the considering defect.

In the figure 6, we present the comparison of the radiated

beam for the two different cases at several time steps. As ex-

pected, in the case of the focused beam, the energy of the re-

flected wave is higher than the one performs with a uniform
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Perfectly matched layer

Defect

Sensor Piezoelectric elementCathode

Anode

Figure 5: Schematic view of the testing configuration.

law. As a consequence, if we observe the electronic signal

Figure 6: Snapshots of the absolute value of the

displacement at t = 0.52, 1.04, 1.57, 4.71, 5.24, 5.76, 6.81,

8.39, 9.96. The electrodes are excited without delay (left

figures) and with delay (right figures).

read on one electrode placed at the middle of the sensor, the

maximum amplitude is twice as large in the ”focusing” case

in comparison with the ”uniform” case.

4 Conclusion
We have developed a finite element code to simulate an

ultrasonic inspection as a whole involving the generation,

propagation and reception of short transient signals. Phased

array transducers can be model in transmission and recep-

tion including not only piezoelectric effects but also complex

0 1 2 3 4 5

0

0.2

0.4

� � �� �� ��
�

�

�

�

�

�����
�

without delay
with delay

without defect

Figure 7: Value of the potential versus time recovered on the

electrode placed at the middle of the sensor.

electrical impedance conditions to model the pulser/receiver

system. Different techniques are used to optimize calcula-

tion cost and limit the cost of memory storage: high order

element, decomposition domain, local time stepping and ef-

ficient absorbing layers. The capabilities of this simulation

tool has been shown in several cases of NDT inspections.

However this code has not yet been validated against analyti-

cal models (1D) and experimental measurements. These will

be the subject of our future studies.
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