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Abstract—A key establishment solution for heterogeneous 

Machine to Machine (M2M) communications is proposed. 

Decentralization in M2M environment leads to situations where 

highly resource-constrained nodes have to establish end-to-end 

secured contexts with powerful remote servers, which would 

normally be impossible because of the technological gap between 

these classes of devices. This paper proposes a novel collaborative 

session key exchange method, wherein a highly resource-

constrained node obtains assistance from its more powerful 

neighbors when handling costly cryptographic operations. 

Formal security analysis and performance evaluation of this 

method are provided; they confirm the safety and efficiency of 

the proposed solution. 

M2M; key establishment; resource constraints; energy 

efficiency; formal security analysis; AVISPA 

I.  INTRODUCTION 

The Machine to Machine (M2M) paradigm can be 
characterized by three main features. First, it involves a highly 
diversified pool of components, ranging from low-resource 
sensors to powerful servers and distributed over a large 
geographical environment. Second, it emphasizes increased 
autonomy, as compared with legacy Internet. While all of the 
M2M systems are designed to provide decentralization and 
minimize the requirement of human activity, most advanced 
ones may even implement functions of situation awareness, 
self-organization or cognition. Finally, M2M systems adopt a 
distributed communication model wherein any two nodes may 
establish relationship with one another, provided that one is 
offering the service, or resource, which is needed at the other 
end. 

To that respect, M2M systems differ from legacy Wireless 
Sensor Networks (WSN), which preceded them. Contrary to 
what happens in WSNs, the communication path between two 
nodes does not have to follow a hierarchical path, e.g. from 
sensor to sink, and from sink to server. A sensor in an M2M 
environment will have relationships with other peers 
irrespective of their distance, role and capabilities, provided 
that these relationships are desirable from the viewpoint of the 
M2M topology. 

This novel paradigm, wherein nodes communicate with a 
large set of peers through a decentralized pattern, leads to 
situations where a highly resource-constrained node has to 
exchange data with a much more powerful server. When these 

data have to be secured, a key establishment mechanism must 
be run between both peers in order to agree on a session key. 
Nodes heterogeneity may make this key set-up phase very 
difficult, if not impossible. We proposed in [1] a solution based 
on the collaborative use of a system inspired by TLS simple 
handshake in one-pass key transport mode. Relying on a 
similar collaboration scheme, we now present a new approach 
in which the session key derivation has been enforced and for 
which we provide the result of a formal security analysis, as 
well as an initial performance analysis. 

Section 2 of this paper presents the key establishment 
problem and points out the inadequacies of the related work. 
Section 3 describes the proposed cooperative key establishment 
solution for M2M networks. This solution enables a highly 
resource limited device to benefit from the assistance of 
neighboring peers for taking charge of the key exchange 
computational load, on a distributed and cooperative basis. 
Section 4 provides the results of the security analysis that we 
carried out on our solution, as well as those of the performance 
analysis. Section 5 concludes this paper.  

II. PROBLEM STATEMENT 

In this paper we consider a highly constrained node that 
needs to establish a secure end-to-end communication with a 
remote server within a heterogeneous M2M architecture. The 
resource-constrained client has to transmit sensitive data to the 
server in an end-to-end manner without conveying them to an 
intermediary entity such as the sink node in legacy sensor 
networks, whereas the two peers do not share any prior 
authentication information to protect the data exchange. 

In order to secure their communication, the two peers need 
to establish a shared secret key as an initial phase. The set up of 
this shared key is considered as a crucial challenge due to the 
unbalanced resources capabilities of the communicating 
entities. The remote server requires asymmetric cryptography 
primitives to authenticate the client and exchange data, while 
we assume that this latter cannot perform heavy cryptographic 
operations due to its limited resources in storage, energy, and 
computation. 

Even though there exist in the literature some studies that 
propose efficient key establishment schemes in sensor 
networks, the design of an efficient key establishment scheme 
that addresses these heterogeneous M2M communications has, 
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to the best of our knowledge, not been undertaken yet. Most 
existing key establishment approaches rely on symmetric 
cryptography primitives due to their reasonable resources 
consumption. Such solutions [2] are considered more efficient 
for sensor nodes. However, in view of our envisioned M2M 
scenario, symmetric key based schemes are not applicable 
when a sensor node wishes to communicate with external 
entities since they are based on pre-distributed shared keys. 

Public Key Cryptography (PKC) solutions were first 
considered impractical on sensors devices with limited 
resources. Things changed with the proposal of lightweight 
PKC algorithms for the sensors networks. Elliptic curve 
cryptography (ECC) is generally favored due to its lower 
energy consumption as compared with other PKC algorithms 
[3] [4]. Other solutions focus on making the well-established 
asymmetric cryptosystem RSA more adapted to resource-
restrained devices using a small RSA public exponent (e) and a 
short key size [5]. This advantage comes, however, at the price 
of a lower security level [6]. Hardware solutions are also 
proposed aiming to extend computational capabilities of a 
standard node through low power hardware modules in order to 
make the use public key cryptography practical on sensor 
nodes. Nevertheless, in practice, required energy consumption 
and memory costs of these lightweight asymmetric key based 
solutions are still non negligible [7] [8] and would be hindering 
for highly resource-constrained nodes. 

Other hybrid schemes combining both symmetric and 
asymmetric cryptography have been proposed. This hybrid 
proposal aims to reduce the heavy cost of public key operations 
by replacing some operations with symmetric-key based ones 
and hence merging the advantages of both approaches. Two 
families of hybrid solutions can be distinguished; the first one 
is based on a translating entity at border between “symmetric” 
and “asymmetric” domains [9]. The second one replaces 
expensive cryptography operations in an asymmetric algorithm 
with symmetric ones [10]. In the first case, security is provided 
on a hop-by-hop basis. Confidentiality and availability are thus 
compromised since the intermediary translator introduces 
potentially both a security flaw and a single point of failure. In 
the second case, communications with an external party as 
considered in our M2M scenario are not possible, since it 
requires that both peers share a symmetric key. 

III. PROPOSED SOLUTION 

The shortcomings of the above key establishment solutions 
led us to propose an efficient collaborative key establishment 
scheme for heterogeneous M2M communications that permits 
the creation of end-to-end secure associations between two 
nodes with unequal resource capabilities and that is based on 
asymmetric primitives. 

The heavy cost of cryptographic operations inhibits the key 
establishment on resource-constrained nodes and makes them 
unable to establish associations with peers. We propose that the 
resource-constrained client assigns its computational charge of 
asymmetric cryptography to less constrained nodes at 
neighborhood. These nodes called proxies will take charge of 
the key exchange process in a distributed and collaborative 
manner. 

The solution is a two-pass key transport protocol, based on 
an exchange of secret values between the highly resource 
constrained (client) node and the resource-unconstrained 
server. In order to push its secret value, the client splits it into 
multiple parts. Each proxy encrypts a part and delivers it to the 
server. Upon reception of the client’s secret value, the server 
securely transmits its own secret value to the proxies, which 
ensure its delivery to the client. 

Several constraints have been considered in the design of 
the protocol.  The collaborative approach must not come at the 
expense of the risk of a key disclosure or a collusion attack. In 
addition, each proxy is required to prove its legitimacy to the 
server by proving that it is authorized to act on behalf of the 
client. 

Considering a highly resource-constrained node A that 
needs to communicate directly with a powerful server B, the 
process of our proposed protocol is composed of the following 
parts: 

 Selection of the supporting nodes (proxies) Pi at A to 
set up the session key with B. 

 Retrieval of the required key materials by the 
supporting nodes. These key materials are needed to 
make them able to compute a signature on behalf of A. 

 Preparation and split phases of the secret value x 
generated by A, and delivery to the proxies, followed 
by the secure transport of different segments of the 
secret key from each proxy to B. 

 Validation of the different messages received from 
proxies at B and reassembling to retrieve the secret key 
x. 

 Secure delivery of the x-encrypted secret value y 
generated by B to A through proxies Pi. 

 Computation of the session key at A and B. 

A. Assumptions 

The assumptions made in the design of our protocol are 
listed in what follows:  

 The considered network model is an M2M 
environment that interconnects heterogeneous nodes 
with different capabilities in terms of energy, memory 
and computational power. We especially distinguish in 
this paper three different platforms among them: (1) 
highly resource-constrained sensor nodes; (2) other 
sensor nodes, less constrained, able to perform with 
restricted asymmetric cryptographic operations; and (3) 
M2M nodes with high energy, computational power 
and storage capabilities (e.g. line-powered remote 
servers). 

 After the initialization phase, every sensor node shares 
pairwise keys with a subset of its one-hop neighbors 
(within the same radio range). These keys may have 
been generated during a specific bootstrapping phase 
using a trusted key management server or through 



more subtle mechanisms such as transitive imprinting 
[11]. 

 The highly resource-constrained node is able to 
identify a set of less resource-constrained nodes that 
are available for supporting expensive cryptographic 
functions on its behalf. 

 There exists a trusted entity within the sensor network 
that owns a shared secret with all nodes in the sensor 
network and a public/private key pair. This entity may 
be logical/distributed. 

 Powerful M2M nodes do not communicate with the 
sensor network trusted entity but are statically 
configured with or able to validate its public key. 

 Powerful M2M nodes trust the sensor network trusted 
entity to faithfully guarantee that a node within the 
sensor network has the right to compute cryptographic 
operations on behalf of another. 

B. Protocol Description 

The protocol is initiated with a first exchange between A 
and B to negotiate security capabilities and the proposed 
collaborative key exchange. Once the server B agrees on the 
client A’s request, the following protocol phases can be started. 
The exchange includes also random values (Na, Nb) used as 
nonces to compute the session key. 

1) Preparation of the Involved Entities 
As an initial phase, the client carefully selects the P1… Pn 

proxies it will require assistance from to support its key 
exchange based on a trust model that monitors the reputation of 
the nodes in the network and their actual resource capabilities. 
These nodes will then contact the server and send it messages 
on behalf of the client. Hence authorization and authentication 
questions arise at the proxy side, since the proxies must prove 
on one hand the integrity of the sent messages and on the other 
hand their representativeness of the client. For this purpose, we 
propose to assign each proxy an ephemeral pair of private and 
public keys, using the lightweight one-time signature scheme 
of Lamport [12] in order for the proxy to sign messages on 
behalf of the client.  

The computational load corresponding to the generation of 
those key pairs is moved from the proxies to the sensor 
network trusted entity T, which is also the only entity able to 
assert that a proxy node is authorized to use its ephemeral 
private key to sign on behalf of the client. Therefore, the 
delivery of ephemeral key pairs to all proxies begins with the 
client informing the trusted entity T of their respective 
identities, along with the size of the secret key that will be 
transmitted to the server. T requires this latter since in the one-
time signature scheme, the lengths of the public and private 
keys depend on the size of the message to sign. 

 Upon receiving the identities of the selected proxies, T 
generates a pair of private/public key (LKi

-1
, LKi) and an 

identifier IDi for each proxy Pi. The identifier IDi is built as 
follows: IDi=H(LKi) with H() being a one-way hash function, 
in order for the identifier to have a reduced size when 
exchanged between nodes. Then, T sends the list of the 

proxies’ identifiers to A. At the end of the key establishment 
procedure, this list information contained in these triplets will 
be used by A to identify the well behaving proxies in the list of 
participating nodes’ identifiers sent by B. 

T provides then securely each proxy with the key material 
required to sign on behalf of the client. This consists of a one-
time private key and the associated public key, this latter being 
signed by T along with a mention of A’s identity. Actually, the 
public keys sent by T to all proxies are not individually signed 
since the signature and verification of each signature would be 
heavy for respectively T and B. Instead, the public keys are 
grouped within a Merkle tree [13] so that B has only to verify 
the signature of the Merkle tree’s root MTRoot to authenticate all 
the proxies’ public keys. Upon receiving their key material, 
proxies are prepared to participate to the collaborative 
establishment of the session key and each proxy Pi contacts B 
to request for B's certificate and to provide it with its own one-
time Lamport public key LKi. 

At this stage, it is worth noting that the key generation at 
the trusted entity T only consists of a facility for our proposed 
system, aiming at making our solution more efficient. It is not 
considered as a solution enabler since proxies could reasonably 
perform a asymmetric cryptography operation with –
authorized– classical key material, as they are less resource-
constrained than the client when they are selected for the key 
establishment assistance. 

This phase of the proposed solution, corresponding to the 
preparation of the involved entities, is depicted in Figure 1.  

Proxy Pi
Proxy Pi

Client (A)
Trusted Third 

Party (T)
Proxy (Pi )

Hello (NA)

Hello (NT)

{ B, s, P1…Pn, NT }_kAT

Hello (NPi)

{ (KPi, KPi
-1), MTPath_i, NPi,

[ RP, A, B, MTRoot ]_KT
-1 }_kPiT

{ (P1, ID1,NP1), … ,
(Pn, IDn,NPn), NA }_kAT

• { content}_k: content encrypted with k
• [content]_k: content signed/MACed (depending on k nature) with k
• RP: reconstruction parameters for the redundancy algorithm
• (other parameters are reviewed in the description)  

Figure 1.  Preparation of the involved entities. 

2) Secret Key Exchange 
A random secret key x generated by the client and a second 

random secret value y generated by the server are used to 
compute the session key. 

The client first applies an error redundancy scheme to the 
original message x, splitting it into n parts x1, … , xn and then 
sends each message xi to the corresponding proxy Pi. The error 
correction scheme is used to make the recovery of the secret x 
possible at the server if a sufficient number of packets from 
supporting nodes is received, without requiring the reception of 
all of them. This system protects our solution from 



misbehaving supporting nodes, which may refuse to send their 
parts of the secret x. In addition, it does not impose reliable 
delivery in each proxyserver connection. In the proposed 
solution, we choose to rely on a Reed-Solomon code [14], 
which is a widely-used non-binary cyclic error-correcting code 

Upon reception of the part of the secret key xi, the proxy Pi 
encrypts it using server’s public key and signs the result using 
its one-time Lamport private key. The proxy then sends the 
encrypted xi along with its authenticated Lamport public key to 
the server.  

In turn, the server checks the authenticity of the proxy’s 
one-time Lamport public key, verifies the integrity of the 
received message and eventually decrypts xi.  

After having received a sufficient number of xi fragments, 
the server becomes able to reconstitute the original message 
and obtain the secret value x. It then generates a secret key y to 
be provided to the client.  

The secret value y must be encrypted and authenticated by 
the client. However this latter cannot decrypt and verify the 
authentication and the integrity of the message because of its 
resource constraints. For this purpose, we propose that the 
proxies support also the reception of the secret key y on behalf 
of the client in a cooperative manner. These nodes take charge 
of the computational load required to verify the received 
message from the server and then transmit it securely to the 
client. However the divulgation of the secret key y to the 
proxies would affect the security of our system. In order to 
preserve the secrecy of y, we propose to have it encrypted with 
the secret key x reassembled at the server.  The x-encrypted 
secret key y is MACed with the secret x and signed with the 
server’s private key. It is finally sent to each proxy Pi, which 
has to verify the integrity of the received packet from the server 
before decrypting it. Then the packet’s content (that is, y 
encrypted and MACed with x) is securely transmitted to the 
client. As long as an appropriate number of the same packet is 
received from different proxies, the client ensures the validity 
of the transmitted message from the server. Consecutively, it 
checks the MAC in order to ensure that the server has obtained 
the same secret x and verify the message integrity. Once the 
client receives a valid message, it can obtain the transmitted 
secret value y in order to complete the set up of the session key. 

3) Session Key Derivation 
The output master key MK is calculated as follows: 

 MK: = H (A | B | NA | NB | x | y) (1) 

with H() being a one-way hash function and NA, NB being 
nonces exchanged between A and B during the initial protocol 
phase of security capabilities negotiation. 

A final message authenticated with the computed session 
key completes the set up of the key establishment procedure. 
The message sent by the server B provides A with the list of 
the proxies’ identifiers that participated to the exchange. 
Thanks to this list and the identifiers/identities bindings 
received previously from T, A deduces which proxies did not 
participate to the collaborative process. This information can be 

used to refine the trust model for a better selection of 
supporting nodes in the future. 

The phases of the proposed solution that correspond to 
secret key exchange and session key derivation are depicted in 
Figure 2.  

Proxy Pi
Proxy Pi

Client (A) Proxy (Pi) Server (B)

kAB key derivation

kAB –secured data

Cert_Req, NPiB, KPi, MTPath_i, 
[ RP, A, B, MTRoot ]_KT

-1

CertB, NBPi

{Npi, xi }_kAPi

[ xi ]_KB,
[ [ xi ]_KB, NBPi ]_KPi

-1

{ [ { y }_x ]_x }_KPi,
[ { [ { y }_x ]_x }_KPi, NPiB ]_KB

-1

[ { y }_x ]_x }_kAPi

kAB key derivation

{ID1, …, IDn }_kAB

 

Figure 2.  Secret key exchange and session key derivation. 

IV. VALIDATION: SECURITY AND PERFORMANCE ANALYSIS 

A. Security Analysis 

Our protocol is based on a distributed exchange of random 
generated secrets. Cryptographically secure pseudorandom 
number generators [14] are therefore required at both the client 
and the server in order to ensure an adequate level of security. 
The corresponding constraint in computing power can be 
assumed at the client-side, since the generation of a 
pseudorandom number amounts to a symmetric encryption 
operation. 

Only the client and the server are involved in the final 
secret key derivation, while assisting nodes support the secure 
delivery of generated secrets between the two peers. The 
protocol is designed so as to ensure the required security 
services of authentication, confidentiality and data integrity and 
to counter various denial-of-service and man-in-the-middle 
(MitM) attacks during the packets exchange. 

In order to validate our proposed key establishment scheme, 
the first point of focus was to prove the security of each 
independent simple exchange APiB / BPiA. This was 
formally achieved as detailed in next subsection. The second 
point of focus consisted in an analysis of the proxy-based 
scheme itself; this analysis is provided in the second 
subsection. 

1) Formal Validation with AVISPA 
A formal security analysis using the AVISPA [16] tool was 

carried out for proving the fulfillment of the desired security 
goals of the protocol. AVISPA (Automated Validation of 
Internet Security Protocol and Applications) is a push button 
security protocol analyzer based on formal methods, 



performing analytical rules to illustrate whether the candidate 
protocol is safe or not. If vulnerability is detected, verification 
results revolve the attack trace, showing at which step and 
under which conditions an attack was made possible. The tool 
implements the Dolev-Yao intruder [17] able to eavesdrop, 
intercept messages, insert bogus data, or modify traffic passing 
through. AVISPA incorporates four different automatic 
protocol analysis techniques for protocol falsification on-the-
fly model-checker (OFMC), constraint-logic based attack 
searcher (CL-AtSe), SAT-based model checker (SATMC), and 
tree automata based on automatic approximations for the 
analysis of security protocols (TA4SP) and furnishes a large 
library of well known Internet security protocols. 

The first step of the protocol verification consists of 
modeling it using HLPSL formal language of AVISPA. The 
specification language HLPSL is used to describe the security 
protocol as sequences of exchanged messages between 
different parties and to express desired properties and security 
goals. The HLPSL specification is later translated into an IF 
specification providing a low-level description of the protocol 
and given as an input to the four automatic analysis back-ends 
of the AVISPA tool. Then the verification of the protocol’s 
security properties, namely authentication, integrity, anti-replay 
and secrecy, starts. If a specified security property is violated, 
the back-ends return a trace explaining the sequence of actions 
that gave rise to the attack and exhibits which goal is violated. 

First we have specified the actions of each participant in a 
module, which is called a basic role; the role of the constrained 
client in the protocol is modeled as follows: 

role peer(A, B, Pi, T : agent,   
 Kat, Kapi, Kpit: symmetric_key, 
 SND_BA, RCV_BA, SND_PiA, RCV_PiA, 

 SND_TA, RCV_TA: channel (dy)) 
played_by A 
def= 

The RCV and SND parameters indicate the channels upon 
which the participant playing role peer will communicate with 
other roles. Here A communicates with B and Pi both sending 
and receiving packets. 

After defining basic roles, we have defined composed roles 
which describe the whole session of our protocol by the 
execution of all basic roles simultaneously. 

role session(  
 ) 
Def= 
local 
composition 
  peer() 
 /\ trustparty() 
 /\ proxy()  
 /\ server() 
 

 Finally, a top-level role was defined including the intruder 
activity trying to play some roles as a legitimate user. 

role environment() 

def= 

 
 const  
 () 
 intruder_knowledge = { a, b, pi, t, kt, kb, ks,   

   ki,kipi,kai,kti,inv(ki), 
                          {i.ki}_(inv(ks)) }   
 
 composition 
  session(a,b,pi,t,h,keygen,kat,kapi,kpit,kt,kb,ks) 
 /\ session(a,b,i,t,h,keygen,kat,kai,kti,kt,kb,ks) 
 /\ session(a,i,pi,t,h,keygen,kat,kapi,kpit,kt,ki,ks) 
 /\ session(i,b,pi,t,h,keygen,kti,kipi,kpit,kt,kb,ks) 

In the above extract, one can notice that the intruder may 
have had its public key (i.ki) signed by the same certificate 
authority that authenticates B, as represented by its knowledge 
of an {i.ki}_(inv(ks)) statement. Another noticeable point is the 
variation of the roles that the intruder i may assume in the 
protocol test, as shown in the last three lines: i is successively 
described as being able to act as Pi, A and B. 

The security goals were finally specified in a goal section 
asserting that the secrecy should be achieved for the final 
master key (MS) between the client A and the server B, and for 
the Lamport private key between the sensor network trusted 
party T and each proxy.  

The secrecy of a parameter was also declared before in the 
role section of the agent who has generated it. For example, 
after the generation of the Lamport key material in the role of 
the trusted party, we have further described the transition 
(exchanges) with the following secret facts 

       /\ Kpi' := new() %material key generation 

       /\ secret (inv(Kpi'),k,{T,Pi}) 

This means that the trusted party T declares that the 
generated Lamport private key Kpi is kept secret between T 
and Pi only and that this security objective is to be referred to 
as ‘k’. 

In a second part of the goal section, we asserted that 
authentication should be verified between each proxy and the 
server in order to prove that the node is legitimate and 
authorized to act on behalf of the constrained node and that the 
proxy communicates with the desired entity. 

Eventually, these three goals (goal k and mutual 
authentication between proxy and server) translate to: 

goal 
  secrecy_of k,ms   
  authentication_on server_proxy 
  authentication_on proxy_server 

Goal facts related to the mutual authentication between the 
proxy and the server are used at the role proxy and role server 
sections. The goal fact witness is used by the role to be 
authenticated in order to express that he wants to be the peer of 
the other role and will prove later its legitimacy. The goal fact 
request preceded by an accompanying witness is used by the 
authenticating role releasing in the transition after which the 
authentication is verified and is considered successful. 



In our protocol we have used witness and request for the 
mutual authentication between the proxy and the server: 

• proxy authenticates server on the value of Npb (because 
server sends back  the received fresh nonce Npb signed with its 
private key). This translates as:    

/\ witness(B,Pi,proxy_server,Npb')  (at the role server) 
/\ request(Pi,B,proxy_server,Npb)   (at the role proxy) 

     • server authenticates proxy on the value of Nbp 
(because proxy sends back  the received fresh nonce Nbp 
signed with its Lamport private key). This translates as:    

/\ witness(Pi,B,server_proxy,Nbp')  (at the role proxy) 
/\ request(B,Pi,server_proxy,Nbp)   (at the role server) 

Subsequently, we checked the correctness of the 
implemented HLPSL code and of the protocol state machine by 
the use of the protocol animation tool called SPAN [18]. 

Finally, the security of the protocol was evaluated by 
executing the four AVISPA back ends (OFMC, SATMC, CL-
AtSe and TA4SP) against our defined intended security goals. 
Peer authentication, secrecy, message integrity, delivery proof, 
identity proof and replay protection were evaluated. AVISPA 
tool produced a formal report as an output indicating that the 
protocol is “SAFE” against OFMC, CL-AtSe, and SATMC and 
“INCONCLUSIVE” against TA4SP database. No 
vulnerabilities were detected: according to the tool, it is not 
possible for an intruder to obtain a legitimate access to violate a 
security requirement and alter the successful protocol run, 
based on the specified security goals and the described 
assumptions. 

2) Analysis of the Proxy-based Scheme 
The formal security analysis described above and 

performed using the AVISPA tool consisted in validating the 
security of the simplex delivery of a secret fragment between 
the two peers A and B through a proxy Pi. However, other 
threats may menace the proper operation of the system due to 
its distributed nature. At each proxy, a cleartext part of the 
secret is processed.  We assume that proxies can collude by 
sharing different secret parts delivered by the client, in order to 
reassemble them and reconstitute the secret key. AVISPA tool 
is unable to reason about this collusion attack. Hence, further 
security considerations were needed for the design of our 
protocol. 

The proposed technique to counter this collusion attack is to 
base the selection of supporting proxies on a trust model. This 
model relies on a system that tracks nodes behavior in the 
network and takes into account previous experience, reputation 
and actual resources capabilities to eventually select 
appropriate nodes and revoke malicious ones from the 
cooperative delivery of the secrets x and y. The trust model 
should be also applied at the proxies’ side in order to select 
honest participants with which they will accept to interact, in 
order to protect the proxies against exhaustion attacks – which 
AVISPA is not designed to detect either. 

Another important point of focus in this security analysis is 
the unfair playing. Without need to collude with other nodes to 
disturb the smooth running of the collaborative process, a 

single proxy can refuse to process its part of the secret key or 
send instead bogus traffic to the server. Without an adapted 
protection scheme, a selfish proxy could paralyze the whole 
system and make the key exchange between the client and the 
server fail. This kind of “unfair” play has been carefully 
considered in the design of our solution. We have elaborated 
both prevention and reaction techniques to overcome this 
attack.  

Recovery is ensured through the use of error correction 
scheme. Adding redundancy to each fragment sent by a proxy 
makes the rebuild of the secret key possible even if some 
malicious proxies refuse to cooperate during the secret key 
delivery process. Thus, it ensures resiliency of our solution to 
this type of attack. Prevention technique is handled by the 
server, which identifies the cooperative proxies when 
reassembling the secret key and reports a feedback to the client 
containing the list of participating proxies’ identifiers. Thereby, 
the client deduces the identities of misbehaving proxies and 
will prevent their selection in the future. 

B. Performance Analysis 

In this section, we analyze our collaborative key 
establishment scheme in terms of computation and 
communication energy overhead. We compare it with a non-
collaborative simple scheme, based on a two-pass key transport 
wherein secret values x and y are public key –encrypted and 
then signed [19]. 

Let consider the notations used as follows (1) Cs, the cost of 
performing a symmetric operation (encryption or decryption 
with a symmetric key);(2) Csig, the cost for performing an 
asymmetric private operation (plaintext decryption or signature 
using a private key); (3) Cver the cost for performing an 
asymmetric public operation (plaintext encryption or signature 
verification using a public key); (4) Ch the cost of keyed hash 
function (MAC); (5) Cij, the cost of a transmitted message from 
the entity i to the entity j; (6) Cji, the cost of a received message 
from the entity j to the entity i;(7) Cr the cost for performing the 
error redundancy scheme. 

TABLE I.  TABLE TYPE STYLES 

Table Head 

Solution based on 

Asymmetric 

Cryptography 

Distributed Approach 

A B A Pi B 

Cryptographic 

operation 

2*Csig+ 

2*Cver 

2*Csig+ 

2*Cver 

(3+na+mb

)*Cs+m* 
Ch +Cr 

2*Cs+ 

2*Csig+ 
2*Cver 

Cs+Ch+ 

2n*Csig+ 
2n*Cver 

Message 

Transmission 
2*CAB 2*CBA 

CAB+ 
2*CAT+ 

n* 

CAPi 

CPiT+ 

2*CPiB+C

PiA 

2n*CBPi+ 

CBA 

Message Reception 2*CBA 2*CAB 
CBA+2* 
CTA+m* 

CPiA 

CTPi+ 
2*CBPi+C

APi 

2n*CPiB+

CAB 

a. n proxies are selected to assist the key exchange between two peers 

b. m is a sufficient number of messages needed by A to learn y 



As shown in the table, in the simple scheme the constrained 
node A has to perform two public key operations (encrypt and 
sign) to push its secret x and two other public key operations 
(verify and decrypt) to receive the secret y. The total 
computation and communication cost at the client side is: 

 CSimple = 2*(Csig+Cver)+2*(CAB+CBA) (2)

Considering our proposed solution, the computational load 
of these public key operations is delegated to proxies at 
neighborhood while the constrained node only needs to 
perform few symmetric operations and to exchange more 
messages during the protocol exchange. The total computation 
and communication cost at the client side is: 

 CDistr. = (3+n+m)*Cs+m*Ch+Cr+CAB+2*CAT+ 
  n*.CAPi+CBA+2*CTA+m*CPiA (3)

It has to be noted that the messages sent to the proxies Pi 
can be grouped within one single packet (when compatible 
with the number of proxies, their location and the size of the 
messages to be sent) so as to decrease the cost of the 
transmission required to deliver these messages to all n proxies. 

Yet the energy cost of a symmetric operation or a message 
reception/ transmission is 1000 times faster than an asymmetric 
operation [20]. Hence, according to the above evaluation, we 
prove that our proposed scheme is efficient and fit for the 
envisioned heterogeneous M2M communication model. 

V. CONCLUSION 

In this paper, a novel cooperative key establishment scheme 
has been proposed for heterogeneous M2M communications. 
The proposed scheme allows a highly resource-constrained 
node to set up a shared secret key with a remote server using 
asymmetric cryptography primitives.  The approach does not 
require the constrained node to perform heavy asymmetric 
operations. Instead, assisting nodes at neighborhood take 
charge of this computational load on a distributed and 
cooperative basis. A formal security analysis using AVISPA 
has demonstrated that our proposed protocol is safe and fulfills 
required security goals.  Further, cost overhead evaluation has 
proved that the protocol is efficient and reduces significantly 
resources consumption at the constrained client. 
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