
A distributed approach for secure M2M communications

Yosra Ben Saied, Alexis Olivereau, Maryline Laurent

To cite this version:

Yosra Ben Saied, Alexis Olivereau, Maryline Laurent. A distributed approach for se-
cure M2M communications. NTMS ’12 : 5th IFIP International Conference on New
Technologies, Mobility and Security, May 2012, Istambul, Turkey. IEEE, pp.1-7, 2012,
<10.1109/NTMS.2012.6208702>. <hal-00811949>

HAL Id: hal-00811949

https://hal.archives-ouvertes.fr/hal-00811949

Submitted on 11 Apr 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00811949

A Distributed Approach for

Secure M2M Communications

Yosra Ben Saied and Alexis Olivereau

CEA, LIST, Communicating Systems Laboratory,

91191 Gif-sur-Yvette CEDEX, FRANCE

{yosra.ben-saied, alexis.olivereau}@cea.fr

Maryline Laurent

Telecom SudParis,

91011 Evry, FRANCE

maryline.laurent@it-sudparis.eu

Abstract—A key establishment solution for heterogeneous

Machine to Machine (M2M) communications is proposed.

Decentralization in M2M environment leads to situations where

highly resource-constrained nodes have to establish end-to-end

secured contexts with powerful remote servers, which would

normally be impossible because of the technological gap between

these classes of devices. This paper proposes a novel collaborative

session key exchange method, wherein a highly resource-

constrained node obtains assistance from its more powerful

neighbors when handling costly cryptographic operations.

Formal security analysis and performance evaluation of this

method are provided; they confirm the safety and efficiency of

the proposed solution.

M2M; key establishment; resource constraints; energy

efficiency; formal security analysis; AVISPA

I. INTRODUCTION

The Machine to Machine (M2M) paradigm can be
characterized by three main features. First, it involves a highly
diversified pool of components, ranging from low-resource
sensors to powerful servers and distributed over a large
geographical environment. Second, it emphasizes increased
autonomy, as compared with legacy Internet. While all of the
M2M systems are designed to provide decentralization and
minimize the requirement of human activity, most advanced
ones may even implement functions of situation awareness,
self-organization or cognition. Finally, M2M systems adopt a
distributed communication model wherein any two nodes may
establish relationship with one another, provided that one is
offering the service, or resource, which is needed at the other
end.

To that respect, M2M systems differ from legacy Wireless
Sensor Networks (WSN), which preceded them. Contrary to
what happens in WSNs, the communication path between two
nodes does not have to follow a hierarchical path, e.g. from
sensor to sink, and from sink to server. A sensor in an M2M
environment will have relationships with other peers
irrespective of their distance, role and capabilities, provided
that these relationships are desirable from the viewpoint of the
M2M topology.

This novel paradigm, wherein nodes communicate with a
large set of peers through a decentralized pattern, leads to
situations where a highly resource-constrained node has to
exchange data with a much more powerful server. When these

data have to be secured, a key establishment mechanism must
be run between both peers in order to agree on a session key.
Nodes heterogeneity may make this key set-up phase very
difficult, if not impossible. We proposed in [1] a solution based
on the collaborative use of a system inspired by TLS simple
handshake in one-pass key transport mode. Relying on a
similar collaboration scheme, we now present a new approach
in which the session key derivation has been enforced and for
which we provide the result of a formal security analysis, as
well as an initial performance analysis.

Section 2 of this paper presents the key establishment
problem and points out the inadequacies of the related work.
Section 3 describes the proposed cooperative key establishment
solution for M2M networks. This solution enables a highly
resource limited device to benefit from the assistance of
neighboring peers for taking charge of the key exchange
computational load, on a distributed and cooperative basis.
Section 4 provides the results of the security analysis that we
carried out on our solution, as well as those of the performance
analysis. Section 5 concludes this paper.

II. PROBLEM STATEMENT

In this paper we consider a highly constrained node that
needs to establish a secure end-to-end communication with a
remote server within a heterogeneous M2M architecture. The
resource-constrained client has to transmit sensitive data to the
server in an end-to-end manner without conveying them to an
intermediary entity such as the sink node in legacy sensor
networks, whereas the two peers do not share any prior
authentication information to protect the data exchange.

In order to secure their communication, the two peers need
to establish a shared secret key as an initial phase. The set up of
this shared key is considered as a crucial challenge due to the
unbalanced resources capabilities of the communicating
entities. The remote server requires asymmetric cryptography
primitives to authenticate the client and exchange data, while
we assume that this latter cannot perform heavy cryptographic
operations due to its limited resources in storage, energy, and
computation.

Even though there exist in the literature some studies that
propose efficient key establishment schemes in sensor
networks, the design of an efficient key establishment scheme
that addresses these heterogeneous M2M communications has,

This work was financially supported by the EC under grant agreement FP7-ICT- 257521 IoT-A project.

to the best of our knowledge, not been undertaken yet. Most
existing key establishment approaches rely on symmetric
cryptography primitives due to their reasonable resources
consumption. Such solutions [2] are considered more efficient
for sensor nodes. However, in view of our envisioned M2M
scenario, symmetric key based schemes are not applicable
when a sensor node wishes to communicate with external
entities since they are based on pre-distributed shared keys.

Public Key Cryptography (PKC) solutions were first
considered impractical on sensors devices with limited
resources. Things changed with the proposal of lightweight
PKC algorithms for the sensors networks. Elliptic curve
cryptography (ECC) is generally favored due to its lower
energy consumption as compared with other PKC algorithms
[3] [4]. Other solutions focus on making the well-established
asymmetric cryptosystem RSA more adapted to resource-
restrained devices using a small RSA public exponent (e) and a
short key size [5]. This advantage comes, however, at the price
of a lower security level [6]. Hardware solutions are also
proposed aiming to extend computational capabilities of a
standard node through low power hardware modules in order to
make the use public key cryptography practical on sensor
nodes. Nevertheless, in practice, required energy consumption
and memory costs of these lightweight asymmetric key based
solutions are still non negligible [7] [8] and would be hindering
for highly resource-constrained nodes.

Other hybrid schemes combining both symmetric and
asymmetric cryptography have been proposed. This hybrid
proposal aims to reduce the heavy cost of public key operations
by replacing some operations with symmetric-key based ones
and hence merging the advantages of both approaches. Two
families of hybrid solutions can be distinguished; the first one
is based on a translating entity at border between “symmetric”
and “asymmetric” domains [9]. The second one replaces
expensive cryptography operations in an asymmetric algorithm
with symmetric ones [10]. In the first case, security is provided
on a hop-by-hop basis. Confidentiality and availability are thus
compromised since the intermediary translator introduces
potentially both a security flaw and a single point of failure. In
the second case, communications with an external party as
considered in our M2M scenario are not possible, since it
requires that both peers share a symmetric key.

III. PROPOSED SOLUTION

The shortcomings of the above key establishment solutions
led us to propose an efficient collaborative key establishment
scheme for heterogeneous M2M communications that permits
the creation of end-to-end secure associations between two
nodes with unequal resource capabilities and that is based on
asymmetric primitives.

The heavy cost of cryptographic operations inhibits the key
establishment on resource-constrained nodes and makes them
unable to establish associations with peers. We propose that the
resource-constrained client assigns its computational charge of
asymmetric cryptography to less constrained nodes at
neighborhood. These nodes called proxies will take charge of
the key exchange process in a distributed and collaborative
manner.

The solution is a two-pass key transport protocol, based on
an exchange of secret values between the highly resource
constrained (client) node and the resource-unconstrained
server. In order to push its secret value, the client splits it into
multiple parts. Each proxy encrypts a part and delivers it to the
server. Upon reception of the client’s secret value, the server
securely transmits its own secret value to the proxies, which
ensure its delivery to the client.

Several constraints have been considered in the design of
the protocol. The collaborative approach must not come at the
expense of the risk of a key disclosure or a collusion attack. In
addition, each proxy is required to prove its legitimacy to the
server by proving that it is authorized to act on behalf of the
client.

Considering a highly resource-constrained node A that
needs to communicate directly with a powerful server B, the
process of our proposed protocol is composed of the following
parts:

 Selection of the supporting nodes (proxies) Pi at A to
set up the session key with B.

 Retrieval of the required key materials by the
supporting nodes. These key materials are needed to
make them able to compute a signature on behalf of A.

 Preparation and split phases of the secret value x
generated by A, and delivery to the proxies, followed
by the secure transport of different segments of the
secret key from each proxy to B.

 Validation of the different messages received from
proxies at B and reassembling to retrieve the secret key
x.

 Secure delivery of the x-encrypted secret value y
generated by B to A through proxies Pi.

 Computation of the session key at A and B.

A. Assumptions

The assumptions made in the design of our protocol are
listed in what follows:

 The considered network model is an M2M
environment that interconnects heterogeneous nodes
with different capabilities in terms of energy, memory
and computational power. We especially distinguish in
this paper three different platforms among them: (1)
highly resource-constrained sensor nodes; (2) other
sensor nodes, less constrained, able to perform with
restricted asymmetric cryptographic operations; and (3)
M2M nodes with high energy, computational power
and storage capabilities (e.g. line-powered remote
servers).

 After the initialization phase, every sensor node shares
pairwise keys with a subset of its one-hop neighbors
(within the same radio range). These keys may have
been generated during a specific bootstrapping phase
using a trusted key management server or through

more subtle mechanisms such as transitive imprinting
[11].

 The highly resource-constrained node is able to
identify a set of less resource-constrained nodes that
are available for supporting expensive cryptographic
functions on its behalf.

 There exists a trusted entity within the sensor network
that owns a shared secret with all nodes in the sensor
network and a public/private key pair. This entity may
be logical/distributed.

 Powerful M2M nodes do not communicate with the
sensor network trusted entity but are statically
configured with or able to validate its public key.

 Powerful M2M nodes trust the sensor network trusted
entity to faithfully guarantee that a node within the
sensor network has the right to compute cryptographic
operations on behalf of another.

B. Protocol Description

The protocol is initiated with a first exchange between A
and B to negotiate security capabilities and the proposed
collaborative key exchange. Once the server B agrees on the
client A’s request, the following protocol phases can be started.
The exchange includes also random values (Na, Nb) used as
nonces to compute the session key.

1) Preparation of the Involved Entities
As an initial phase, the client carefully selects the P1… Pn

proxies it will require assistance from to support its key
exchange based on a trust model that monitors the reputation of
the nodes in the network and their actual resource capabilities.
These nodes will then contact the server and send it messages
on behalf of the client. Hence authorization and authentication
questions arise at the proxy side, since the proxies must prove
on one hand the integrity of the sent messages and on the other
hand their representativeness of the client. For this purpose, we
propose to assign each proxy an ephemeral pair of private and
public keys, using the lightweight one-time signature scheme
of Lamport [12] in order for the proxy to sign messages on
behalf of the client.

The computational load corresponding to the generation of
those key pairs is moved from the proxies to the sensor
network trusted entity T, which is also the only entity able to
assert that a proxy node is authorized to use its ephemeral
private key to sign on behalf of the client. Therefore, the
delivery of ephemeral key pairs to all proxies begins with the
client informing the trusted entity T of their respective
identities, along with the size of the secret key that will be
transmitted to the server. T requires this latter since in the one-
time signature scheme, the lengths of the public and private
keys depend on the size of the message to sign.

 Upon receiving the identities of the selected proxies, T
generates a pair of private/public key (LKi

-1
, LKi) and an

identifier IDi for each proxy Pi. The identifier IDi is built as
follows: IDi=H(LKi) with H() being a one-way hash function,
in order for the identifier to have a reduced size when
exchanged between nodes. Then, T sends the list of the

proxies’ identifiers to A. At the end of the key establishment
procedure, this list information contained in these triplets will
be used by A to identify the well behaving proxies in the list of
participating nodes’ identifiers sent by B.

T provides then securely each proxy with the key material
required to sign on behalf of the client. This consists of a one-
time private key and the associated public key, this latter being
signed by T along with a mention of A’s identity. Actually, the
public keys sent by T to all proxies are not individually signed
since the signature and verification of each signature would be
heavy for respectively T and B. Instead, the public keys are
grouped within a Merkle tree [13] so that B has only to verify
the signature of the Merkle tree’s root MTRoot to authenticate all
the proxies’ public keys. Upon receiving their key material,
proxies are prepared to participate to the collaborative
establishment of the session key and each proxy Pi contacts B
to request for B's certificate and to provide it with its own one-
time Lamport public key LKi.

At this stage, it is worth noting that the key generation at
the trusted entity T only consists of a facility for our proposed
system, aiming at making our solution more efficient. It is not
considered as a solution enabler since proxies could reasonably
perform a asymmetric cryptography operation with –
authorized– classical key material, as they are less resource-
constrained than the client when they are selected for the key
establishment assistance.

This phase of the proposed solution, corresponding to the
preparation of the involved entities, is depicted in Figure 1.

Proxy Pi
Proxy Pi

Client (A)
Trusted Third

Party (T)
Proxy (Pi)

Hello (NA)

Hello (NT)

{ B, s, P1…Pn, NT }_kAT

Hello (NPi)

{ (KPi, KPi
-1), MTPath_i, NPi,

[RP, A, B, MTRoot]_KT
-1 }_kPiT

{ (P1, ID1,NP1), … ,
(Pn, IDn,NPn), NA }_kAT

• { content}_k: content encrypted with k
• [content]_k: content signed/MACed (depending on k nature) with k
• RP: reconstruction parameters for the redundancy algorithm
• (other parameters are reviewed in the description)

Figure 1. Preparation of the involved entities.

2) Secret Key Exchange
A random secret key x generated by the client and a second

random secret value y generated by the server are used to
compute the session key.

The client first applies an error redundancy scheme to the
original message x, splitting it into n parts x1, … , xn and then
sends each message xi to the corresponding proxy Pi. The error
correction scheme is used to make the recovery of the secret x
possible at the server if a sufficient number of packets from
supporting nodes is received, without requiring the reception of
all of them. This system protects our solution from

misbehaving supporting nodes, which may refuse to send their
parts of the secret x. In addition, it does not impose reliable
delivery in each proxyserver connection. In the proposed
solution, we choose to rely on a Reed-Solomon code [14],
which is a widely-used non-binary cyclic error-correcting code

Upon reception of the part of the secret key xi, the proxy Pi
encrypts it using server’s public key and signs the result using
its one-time Lamport private key. The proxy then sends the
encrypted xi along with its authenticated Lamport public key to
the server.

In turn, the server checks the authenticity of the proxy’s
one-time Lamport public key, verifies the integrity of the
received message and eventually decrypts xi.

After having received a sufficient number of xi fragments,
the server becomes able to reconstitute the original message
and obtain the secret value x. It then generates a secret key y to
be provided to the client.

The secret value y must be encrypted and authenticated by
the client. However this latter cannot decrypt and verify the
authentication and the integrity of the message because of its
resource constraints. For this purpose, we propose that the
proxies support also the reception of the secret key y on behalf
of the client in a cooperative manner. These nodes take charge
of the computational load required to verify the received
message from the server and then transmit it securely to the
client. However the divulgation of the secret key y to the
proxies would affect the security of our system. In order to
preserve the secrecy of y, we propose to have it encrypted with
the secret key x reassembled at the server. The x-encrypted
secret key y is MACed with the secret x and signed with the
server’s private key. It is finally sent to each proxy Pi, which
has to verify the integrity of the received packet from the server
before decrypting it. Then the packet’s content (that is, y
encrypted and MACed with x) is securely transmitted to the
client. As long as an appropriate number of the same packet is
received from different proxies, the client ensures the validity
of the transmitted message from the server. Consecutively, it
checks the MAC in order to ensure that the server has obtained
the same secret x and verify the message integrity. Once the
client receives a valid message, it can obtain the transmitted
secret value y in order to complete the set up of the session key.

3) Session Key Derivation
The output master key MK is calculated as follows:

 MK: = H (A | B | NA | NB | x | y) (1)

with H() being a one-way hash function and NA, NB being
nonces exchanged between A and B during the initial protocol
phase of security capabilities negotiation.

A final message authenticated with the computed session
key completes the set up of the key establishment procedure.
The message sent by the server B provides A with the list of
the proxies’ identifiers that participated to the exchange.
Thanks to this list and the identifiers/identities bindings
received previously from T, A deduces which proxies did not
participate to the collaborative process. This information can be

used to refine the trust model for a better selection of
supporting nodes in the future.

The phases of the proposed solution that correspond to
secret key exchange and session key derivation are depicted in
Figure 2.

Proxy Pi
Proxy Pi

Client (A) Proxy (Pi) Server (B)

kAB key derivation

kAB –secured data

Cert_Req, NPiB, KPi, MTPath_i,
[RP, A, B, MTRoot]_KT

-1

CertB, NBPi

{Npi, xi }_kAPi

[xi]_KB,
[[xi]_KB, NBPi]_KPi

-1

{ [{ y }_x]_x }_KPi,
[{ [{ y }_x]_x }_KPi, NPiB]_KB

-1

[{ y }_x]_x }_kAPi

kAB key derivation

{ID1, …, IDn }_kAB

Figure 2. Secret key exchange and session key derivation.

IV. VALIDATION: SECURITY AND PERFORMANCE ANALYSIS

A. Security Analysis

Our protocol is based on a distributed exchange of random
generated secrets. Cryptographically secure pseudorandom
number generators [14] are therefore required at both the client
and the server in order to ensure an adequate level of security.
The corresponding constraint in computing power can be
assumed at the client-side, since the generation of a
pseudorandom number amounts to a symmetric encryption
operation.

Only the client and the server are involved in the final
secret key derivation, while assisting nodes support the secure
delivery of generated secrets between the two peers. The
protocol is designed so as to ensure the required security
services of authentication, confidentiality and data integrity and
to counter various denial-of-service and man-in-the-middle
(MitM) attacks during the packets exchange.

In order to validate our proposed key establishment scheme,
the first point of focus was to prove the security of each
independent simple exchange APiB / BPiA. This was
formally achieved as detailed in next subsection. The second
point of focus consisted in an analysis of the proxy-based
scheme itself; this analysis is provided in the second
subsection.

1) Formal Validation with AVISPA
A formal security analysis using the AVISPA [16] tool was

carried out for proving the fulfillment of the desired security
goals of the protocol. AVISPA (Automated Validation of
Internet Security Protocol and Applications) is a push button
security protocol analyzer based on formal methods,

performing analytical rules to illustrate whether the candidate
protocol is safe or not. If vulnerability is detected, verification
results revolve the attack trace, showing at which step and
under which conditions an attack was made possible. The tool
implements the Dolev-Yao intruder [17] able to eavesdrop,
intercept messages, insert bogus data, or modify traffic passing
through. AVISPA incorporates four different automatic
protocol analysis techniques for protocol falsification on-the-
fly model-checker (OFMC), constraint-logic based attack
searcher (CL-AtSe), SAT-based model checker (SATMC), and
tree automata based on automatic approximations for the
analysis of security protocols (TA4SP) and furnishes a large
library of well known Internet security protocols.

The first step of the protocol verification consists of
modeling it using HLPSL formal language of AVISPA. The
specification language HLPSL is used to describe the security
protocol as sequences of exchanged messages between
different parties and to express desired properties and security
goals. The HLPSL specification is later translated into an IF
specification providing a low-level description of the protocol
and given as an input to the four automatic analysis back-ends
of the AVISPA tool. Then the verification of the protocol’s
security properties, namely authentication, integrity, anti-replay
and secrecy, starts. If a specified security property is violated,
the back-ends return a trace explaining the sequence of actions
that gave rise to the attack and exhibits which goal is violated.

First we have specified the actions of each participant in a
module, which is called a basic role; the role of the constrained
client in the protocol is modeled as follows:

role peer(A, B, Pi, T : agent,
 Kat, Kapi, Kpit: symmetric_key,
 SND_BA, RCV_BA, SND_PiA, RCV_PiA,

 SND_TA, RCV_TA: channel (dy))
played_by A
def=

The RCV and SND parameters indicate the channels upon
which the participant playing role peer will communicate with
other roles. Here A communicates with B and Pi both sending
and receiving packets.

After defining basic roles, we have defined composed roles
which describe the whole session of our protocol by the
execution of all basic roles simultaneously.

role session(
)
Def=
local
composition
 peer()
 /\ trustparty()
 /\ proxy()
 /\ server()

 Finally, a top-level role was defined including the intruder
activity trying to play some roles as a legitimate user.

role environment()

def=

 const
 ()
 intruder_knowledge = { a, b, pi, t, kt, kb, ks,

 ki,kipi,kai,kti,inv(ki),
 {i.ki}_(inv(ks)) }

 composition
 session(a,b,pi,t,h,keygen,kat,kapi,kpit,kt,kb,ks)
 /\ session(a,b,i,t,h,keygen,kat,kai,kti,kt,kb,ks)
 /\ session(a,i,pi,t,h,keygen,kat,kapi,kpit,kt,ki,ks)
 /\ session(i,b,pi,t,h,keygen,kti,kipi,kpit,kt,kb,ks)

In the above extract, one can notice that the intruder may
have had its public key (i.ki) signed by the same certificate
authority that authenticates B, as represented by its knowledge
of an {i.ki}_(inv(ks)) statement. Another noticeable point is the
variation of the roles that the intruder i may assume in the
protocol test, as shown in the last three lines: i is successively
described as being able to act as Pi, A and B.

The security goals were finally specified in a goal section
asserting that the secrecy should be achieved for the final
master key (MS) between the client A and the server B, and for
the Lamport private key between the sensor network trusted
party T and each proxy.

The secrecy of a parameter was also declared before in the
role section of the agent who has generated it. For example,
after the generation of the Lamport key material in the role of
the trusted party, we have further described the transition
(exchanges) with the following secret facts

 /\ Kpi' := new() %material key generation

 /\ secret (inv(Kpi'),k,{T,Pi})

This means that the trusted party T declares that the
generated Lamport private key Kpi is kept secret between T
and Pi only and that this security objective is to be referred to
as ‘k’.

In a second part of the goal section, we asserted that
authentication should be verified between each proxy and the
server in order to prove that the node is legitimate and
authorized to act on behalf of the constrained node and that the
proxy communicates with the desired entity.

Eventually, these three goals (goal k and mutual
authentication between proxy and server) translate to:

goal
 secrecy_of k,ms
 authentication_on server_proxy
 authentication_on proxy_server

Goal facts related to the mutual authentication between the
proxy and the server are used at the role proxy and role server
sections. The goal fact witness is used by the role to be
authenticated in order to express that he wants to be the peer of
the other role and will prove later its legitimacy. The goal fact
request preceded by an accompanying witness is used by the
authenticating role releasing in the transition after which the
authentication is verified and is considered successful.

In our protocol we have used witness and request for the
mutual authentication between the proxy and the server:

• proxy authenticates server on the value of Npb (because
server sends back the received fresh nonce Npb signed with its
private key). This translates as:

/\ witness(B,Pi,proxy_server,Npb') (at the role server)
/\ request(Pi,B,proxy_server,Npb) (at the role proxy)

 • server authenticates proxy on the value of Nbp
(because proxy sends back the received fresh nonce Nbp
signed with its Lamport private key). This translates as:

/\ witness(Pi,B,server_proxy,Nbp') (at the role proxy)
/\ request(B,Pi,server_proxy,Nbp) (at the role server)

Subsequently, we checked the correctness of the
implemented HLPSL code and of the protocol state machine by
the use of the protocol animation tool called SPAN [18].

Finally, the security of the protocol was evaluated by
executing the four AVISPA back ends (OFMC, SATMC, CL-
AtSe and TA4SP) against our defined intended security goals.
Peer authentication, secrecy, message integrity, delivery proof,
identity proof and replay protection were evaluated. AVISPA
tool produced a formal report as an output indicating that the
protocol is “SAFE” against OFMC, CL-AtSe, and SATMC and
“INCONCLUSIVE” against TA4SP database. No
vulnerabilities were detected: according to the tool, it is not
possible for an intruder to obtain a legitimate access to violate a
security requirement and alter the successful protocol run,
based on the specified security goals and the described
assumptions.

2) Analysis of the Proxy-based Scheme
The formal security analysis described above and

performed using the AVISPA tool consisted in validating the
security of the simplex delivery of a secret fragment between
the two peers A and B through a proxy Pi. However, other
threats may menace the proper operation of the system due to
its distributed nature. At each proxy, a cleartext part of the
secret is processed. We assume that proxies can collude by
sharing different secret parts delivered by the client, in order to
reassemble them and reconstitute the secret key. AVISPA tool
is unable to reason about this collusion attack. Hence, further
security considerations were needed for the design of our
protocol.

The proposed technique to counter this collusion attack is to
base the selection of supporting proxies on a trust model. This
model relies on a system that tracks nodes behavior in the
network and takes into account previous experience, reputation
and actual resources capabilities to eventually select
appropriate nodes and revoke malicious ones from the
cooperative delivery of the secrets x and y. The trust model
should be also applied at the proxies’ side in order to select
honest participants with which they will accept to interact, in
order to protect the proxies against exhaustion attacks – which
AVISPA is not designed to detect either.

Another important point of focus in this security analysis is
the unfair playing. Without need to collude with other nodes to
disturb the smooth running of the collaborative process, a

single proxy can refuse to process its part of the secret key or
send instead bogus traffic to the server. Without an adapted
protection scheme, a selfish proxy could paralyze the whole
system and make the key exchange between the client and the
server fail. This kind of “unfair” play has been carefully
considered in the design of our solution. We have elaborated
both prevention and reaction techniques to overcome this
attack.

Recovery is ensured through the use of error correction
scheme. Adding redundancy to each fragment sent by a proxy
makes the rebuild of the secret key possible even if some
malicious proxies refuse to cooperate during the secret key
delivery process. Thus, it ensures resiliency of our solution to
this type of attack. Prevention technique is handled by the
server, which identifies the cooperative proxies when
reassembling the secret key and reports a feedback to the client
containing the list of participating proxies’ identifiers. Thereby,
the client deduces the identities of misbehaving proxies and
will prevent their selection in the future.

B. Performance Analysis

In this section, we analyze our collaborative key
establishment scheme in terms of computation and
communication energy overhead. We compare it with a non-
collaborative simple scheme, based on a two-pass key transport
wherein secret values x and y are public key –encrypted and
then signed [19].

Let consider the notations used as follows (1) Cs, the cost of
performing a symmetric operation (encryption or decryption
with a symmetric key);(2) Csig, the cost for performing an
asymmetric private operation (plaintext decryption or signature
using a private key); (3) Cver the cost for performing an
asymmetric public operation (plaintext encryption or signature
verification using a public key); (4) Ch the cost of keyed hash
function (MAC); (5) Cij, the cost of a transmitted message from
the entity i to the entity j; (6) Cji, the cost of a received message
from the entity j to the entity i;(7) Cr the cost for performing the
error redundancy scheme.

TABLE I. TABLE TYPE STYLES

Table Head

Solution based on

Asymmetric

Cryptography

Distributed Approach

A B A Pi B

Cryptographic

operation

2*Csig+

2*Cver

2*Csig+

2*Cver

(3+na+mb

)*Cs+m*
Ch +Cr

2*Cs+

2*Csig+
2*Cver

Cs+Ch+

2n*Csig+
2n*Cver

Message

Transmission
2*CAB 2*CBA

CAB+
2*CAT+

n*

CAPi

CPiT+

2*CPiB+C

PiA

2n*CBPi+

CBA

Message Reception 2*CBA 2*CAB
CBA+2*
CTA+m*

CPiA

CTPi+
2*CBPi+C

APi

2n*CPiB+

CAB

a. n proxies are selected to assist the key exchange between two peers

b. m is a sufficient number of messages needed by A to learn y

As shown in the table, in the simple scheme the constrained
node A has to perform two public key operations (encrypt and
sign) to push its secret x and two other public key operations
(verify and decrypt) to receive the secret y. The total
computation and communication cost at the client side is:

 CSimple = 2*(Csig+Cver)+2*(CAB+CBA) (2)

Considering our proposed solution, the computational load
of these public key operations is delegated to proxies at
neighborhood while the constrained node only needs to
perform few symmetric operations and to exchange more
messages during the protocol exchange. The total computation
and communication cost at the client side is:

 CDistr. = (3+n+m)*Cs+m*Ch+Cr+CAB+2*CAT+
 n*.CAPi+CBA+2*CTA+m*CPiA (3)

It has to be noted that the messages sent to the proxies Pi
can be grouped within one single packet (when compatible
with the number of proxies, their location and the size of the
messages to be sent) so as to decrease the cost of the
transmission required to deliver these messages to all n proxies.

Yet the energy cost of a symmetric operation or a message
reception/ transmission is 1000 times faster than an asymmetric
operation [20]. Hence, according to the above evaluation, we
prove that our proposed scheme is efficient and fit for the
envisioned heterogeneous M2M communication model.

V. CONCLUSION

In this paper, a novel cooperative key establishment scheme
has been proposed for heterogeneous M2M communications.
The proposed scheme allows a highly resource-constrained
node to set up a shared secret key with a remote server using
asymmetric cryptography primitives. The approach does not
require the constrained node to perform heavy asymmetric
operations. Instead, assisting nodes at neighborhood take
charge of this computational load on a distributed and
cooperative basis. A formal security analysis using AVISPA
has demonstrated that our proposed protocol is safe and fulfills
required security goals. Further, cost overhead evaluation has
proved that the protocol is efficient and reduces significantly
resources consumption at the constrained client.

REFERENCES

[1] Y. Ben saied, A. Olivereau and D. Zeghlache,” Energy Efficiency in
M2M Networks: A Cooperative Key Establishment System”, 3rd Int.
Congress on Ultra Modern Telecommunications and Control Systems
(ICUMT), 2011.

[2] H. Chan, A. Perrig and D. Song,“Key Distribution Techniques for
Sensor Networks,” Wireless Sensor Networks, T. Znati et al., eds., 2004.

[3] P. Szczechowiak, L. B. Oliveira, M. Scott, M. Collier, and R. Dahab,
“NanoECC: testing the limits of elliptic curve cryptography in sensor

networks,” Proceedings of the 7th international Conference on
Information Processing in Sensor Networks (IPSN '08), pp. 305–320,
2008.

[4] H. Wang and Q. Li, “Efficient implementation of public key
cryptosystems on mote sensors,” in Proceedings of the International
Conference on Information and Communication Security (ICICS '06),
pp. 519–528, December 2006.

[5] R. Watro, D. Kong, S. Cuti, C. Gardiner, C. Lynn, P. Kruss, “TinyPK:
Securing sensor networks with public key technology,” in Proceedings
of the 2nd ACM workshop

[6] W. Hu, P. Corke , W. C. Shih, L. Overs, “secFleck: A Public Key
Technology Platform for Wireless Sensor Networks,” in Proceedings of
the 6th European Conference on Wireless Sensor Networks, February
11-13, 2009, Cork, Ireland.

[7] P. Pecho, J. Nagy, and P. Hanáček, “Power consumption of hardware
cryptography platform for wireless sensor,” in Proceedings of the
International Conference on Parallel and Distributed Computing,
Applications and Technologies (PDCAT '09), pp. 318–323, December
2009.

[8] G. Murphy, A. Keeshan, R. Agarwal, and E. Popovici, “Hardware—
software implementation of public-key cryptography for wireless sensor
networks,” in IET Irish Signals and Systems Conference, pp. 463–468,
June 2006.

[9] R. Riaz, A. Naureen, A. Akram, A. Akbar, K. Kim, and H. Farooq
Ahmed, “A unified security framework with three key management
schemes for wireless sensor networks,” Computer Communications, vol.
31, no. 18, pp. 4269–4280, 2008.

[10] J. Mache, C.-Y. Wan, and M. Yarvis, “Exploiting heterogeneity for
sensor network security,” in Proceedings of IEEE Communications
Society Conference on Sensor, Mesh and Ad Hoc Communications and
Networks, June 2008, pp. 591–593.

[11] M. Petrova et al, “ Overall secure PN architecture,” in My Personal
Adaptive Global NET (MAGNET), D2.1.2/D4.1.3,Octobre 2005

[12] L. Lamport, “Constructing digital signatures from one-way function,” in
Technical Report SRI-CLS-98, SRI international (October 1979).

[13] M. Jakobsson, T. Leighton, S. Micali, and M. Szydlo, “Fractal Merkle
Tree Representation and Traversal,” in RSA Cryptographers Track,
2003.

[14] B. Sklar. Reed-solomon codes, available at
http://ptgmedia.pearsoncmg.com/images/art-sklar7-reed-
solomon/elementLinks/art-sklar7-reed-solomon.pdf

[15] A. Francillon and C. Castelluccia "TinyRNG: A cryptographic random
number generator for wireless sensors network nodes", 5th Int. Symp.
Modeling and Optimization Mobile, Ad Hoc, and Wireless
Networks(WiOpt), 2007.

[16] A. Armando et al, “The AVISPA Tool for the Automated Validation of
Internet Security Protocols and Applications,” in Etessami, K.,
Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, Springer,
Heidelberg (2005), http://www.avispa-project.org

[17] D. Dolev and A. C. Yao. On the security of. public key protocols. In
Proc. 22th IEEE Symposium on Foundations of Computer Science,
pages 350-357, 1981.

[18] Y. Glouche and T. Genet. “SPAN – a Security Protocol ANimator for
AVISPA – User Manual,” IRISA / Université de Rennes 1, 2006. 20
pages. http ://www.irisa.fr/lande/genet/span/.

[19] A.J. Menezes, P.C. van Oorschot and S.A. Vanstone, Handbook of
Applied Cryptography, CRC Press, 1997, pp. 509–510.

[20] N.R. Potlapally, S. Ravi, A. Raghunathan and N.K. Jha, A study of the
energy consumption characteristics of cryptographic algorithms and
security protocols. IEEE Transactions on Mobile Computing (2006), pp.
128–143.

