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ABSTRACT

Context.

Aims. The cosmic microwave background (CMB) power spectrum is a powerful cosmological probe as it entails almost
all the statistical information of the CMB perturbations. Having access to only one sky, the CMB power spectrum
measured by our experiments is only a realization of the true underlying angular power spectrum. In this paper we aim
to recover the true underlying CMB power spectrum from the one realization that we have without a need to know the
cosmological parameters.
Methods. The sparsity of the CMB power spectrum is first investigated in two dictionaries; Discrete Cosine Transform
(DCT) and Wavelet Transform (WT). The CMB power spectrum can be recovered with only a few percentage of the
coefficients in both of these dictionaries and hence is very compressible in these dictionaries.
Results. We study the performance of these dictionaries in smoothing a set of simulated power spectra. Based on this,
we develop a technique that estimates the true underlying CMB power spectrum from data, i.e. without a need to know
the cosmological parameters.
Conclusions. This smooth estimated spectrum can be used to simulate CMB maps with similar properties to the true
CMB simulations with the correct cosmological parameters. This allows us to make Monte Carlo simulations in a given
project, without having to know the cosmological parameters. The developed IDL code, TOUSI, for Theoretical pOwer
spectrUm using Sparse estImation, will be released with the next version of ISAP.

Key words. Keywords should be given

Cosmology : Cosmic Microwave Background, Methods : Data Analysis, Methods : Statistical

1. Introduction

Measurements of the CMB anisotropies are powerful cosmological probes. In the currently favored cosmological model,
with the nearly Gaussian-distributed curvature perturbations, almost all the statistical information are contained in the
CMB angular power spectrum. The observed quantity on the sky is generally the CMB temperature anisotropy Θ(~p) in
direction ~p, which is described as T (~p) = TCMB [1 + Θ(~p)]. This field is expanded on the spherical harmonic functions as

Θ(~p) =

+∞∑

ℓ=0

ℓ∑

m=−ℓ

a[ℓ,m]Yℓm(~p) , (1)

where a[ℓ,m] =

∫

S2

Θ(~p)Y ∗

ℓm(~p)d~p , (2)

S
2 ⊂ R

3 is the unit sphere, ℓ is the multipole moment which is related to the angular size on the sky as ℓ ∼ 180◦/θ and
m is the phase ranging from −ℓ to ℓ. The a[ℓ,m] are the spherical harmonic coefficients of the (noise-free) observed sky.
For a Gaussian random field, the mean and covariance are sufficient statistics, meaning that they carry all the statistical
information of the field. In case where the random field has zero mean, E(a00) = 0 and the expansion can be started
at ℓ = 2, neglecting the dipole terms, i.e. ℓ = 11. For ℓ > 2, the triangular array (a[ℓ,m])ℓ,m represents zero-mean,
complex-valued random coefficients, with variance

E(|a[ℓ,m]|2) = C[ℓ] > 0 , (3)

⋆ paniez.paykari@cea.fr
1 The dipole anisotropy is dominated by the Earth’s motion in space and it is hence ignored.
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where C[ℓ] is the CMB angular power spectrum, which only depends on ℓ due the isotropy assumption. Therefore, from
(3), an unbiased estimator of C[ℓ] is given by the empirical power spectrum

Ĉ[ℓ] =
1

2ℓ+ 1

∑

m

|a[ℓ,m]|2 . (4)

Furthermore, as the random field is stationary, the spherical harmonic coefficients are uncorrelated,

E(a[ℓ,m]a∗[ℓ′,m′]) = δℓℓ′δmm′C[ℓ] . (5)

Since they are Gaussian they are also independent. The angular power spectrum depends on the cosmological parameters
through an angular transfer function Tℓ(k) as

C[ℓ] = 4π

∫
dk

k
T 2

ℓ (k)P (k) , (6)

where k defines the scale and P (k) is the primordial matter power spectrum.
Making accurate measurements of this power spectrum has been one of the main goals of cosmology in the past two

decades. We have seen a range of ground- and balloon-based experiments, such as Acbar (Reichardt et al. 2009) and CBI
(Readhead et al. 2004), as well as satellite experiments, such as WMAP (Bennett et al. 2003) and the recently launched
satellite Planck (Planck Collaboration et al. 2011). All these experiments estimate the CMB angular power spectrum from
a sky map, which is a realization of the underlying true power spectrum; no matter how much the experiments improve,
we are still limited to an accuracy within the cosmic variance. This means that even if we had a perfect experiment (i.e.
with zero instrumental noise) we would not be able to recover a perfect power spectrum due to the cosmic variance limit.

In this paper we investigate the possibility of estimating the true underlying power spectrum from a realized spectrum;
an estimation of the true power spectrum without a need to know the cosmological parameters. For this we exploit the
sparsity properties of the CMB power spectrum, and capitalize on it to propose an estimator of the theoretical power
spectrum. This estimate will not belong to a set of possible theoretical power spectra (i.e. all C[ℓ] that can be obtained
by CAMB2 by varying the cosmological parameters). Instead, such an estimation should be useful for other applications,
such as:

• Monte Carlo: we may want to make Monte Carlo simulations in some applications without assuming the cosmological
parameters.

• Wiener filtering: Wiener filtering is often used to filter the CMB map and it requires the theoretical power spectrum
as an input. We may not want to assume any cosmology at this stage of the processing.

• Some estimators (weak lensing, ISW, etc.) require the theoretical power spectrum to be known. Using a data-based
estimation of the theoretical C[ℓ] could be an interesting alternative, or at least a good first guess in an iterative
scheme where the theoretical C[ℓ] is required to determine the cosmological parameters.

2. Sparsity of the CMB Power Spectrum

2.1. A brief tour of sparsity

A signal X = (X[1], . . . , X[N ]) considered as a vector in R
N , is said to be sparse if most of its entries are equal to zero. If

k number of the N samples are not equal to zero, where k ≪ N , then the signal is said to be k-sparse. In the case where
only a few of the entries have large values and the rest are zero or close to zero the signal is said to be weakly sparse
(or compressible). With a slight abuse of terminology, in the sequel, we will call compressible signals sparse. Generally
signals are not sparse in direct space, but can be sparsified by transforming them to another domain. For example, sin(x)
is 1-sparse in the Fourier domain, while it is clearly not sparse in the original one. In the so-called sparsity synthesis
model, a signal can be represented as the linear expansion

X = Φα =

T∑

i=1

φiα[i] , (7)

where α[i] are the synthesis coefficients of X, Φ = (φ1, . . . , φT ) is the dictionary, and φi are called the atoms (elementary
waveforms) of the dictionary Φ. In the language of linear algebra, the dictionary Φ is a N ×T matrix whose columns are

the atoms normalized, supposed here to be normalized to a unit ℓ2-norm, i.e. ∀i ∈ [1, T ], ‖φi‖2
2 =

∑N
n=1 |φi[n]|2 = 13. A

function can be decomposed in many dictionaries, but the best dictionary is the one with the sparsest (most economical)
representation of the signal. In practice, it is convenient to use dictionaries with fast implicit transform (such as Fourier
transform, wavelet transform, etc.) which allow us to directly obtain the coefficients and reconstruct the signal from
these coefficients using fast algorithms running in linear or almost linear time (unlike matrix-vector multiplications).
The Fourier, wavelet and discrete cosine transforms provide certainly the most well known dictionaries. A comprehensive
account on sparsity and its applications can be found in the monograph (Starck et al. 2010).

2 CAMB solves the Boltzmann equations for a cosmological model set out by the given cosmological parameters.
3 The lp-norm of a vector X, p ≥ 1, is defined as ‖X‖p =

`

P

i |X[i]|p
´1/p

, with the usual adaptation ‖X‖∞ = maxi X[i].
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2.2. Which Dictionary for the Theoretical CMB Power Spectrum?

We investigate the sparsity of the CMB power spectrum in two different dictionaries, both having a fast implicit transform:
the Wavelet Transform (WT) and the Discrete Cosine Transform (DCT).

Fig. 1. A theoretical CMB power spectrum along with the reconstructed power spectra, using the DCT and WT dic-
tionaries. The panels show the reconstructions for different fractions of the coefficients used. The inner plots show the
differences between the actual and the reconstructed power spectra. Both dictionaries suffer from boundary effects, but
this is more severe for DCT as the corresponding atoms are not compactly supported. It is worth mentioning that the
power spectrum that is decomposed onto the two dictionaries is in the form ℓ(ℓ+ 1)C[ℓ]/2π.

Figure 1 shows an angular power spectrum (calculated by CAMB (Lewis et al. 2000) with WMAP7 (Larson et al.
2010) parameters) along with the DCT- and WT-reconstructed power spectra with a varying fraction of the largest
transform coefficients retained in the reconstruction. The inner plots show the difference between the actual power
spectrum and the reconstructed ones. It can be seen that with only a few percentage of the coefficients the shape of the
power spectrum is correctly reconstructed in both dictionaries. The height and the position of the peaks and troughs
are of great importance here as the estimation of the cosmological parameters heavily relies on these characteristics of
the power spectrum. The best domain would be the one with the sparsest representation and yet the most accurate

representation of the power spectrum. Let C[ℓ]
(M)

be its best M -term approximation, i.e. obtained by reconstructing
from the M -largest (in magnitude) coefficients of C[ℓ] in a given domain. To compare the WT and DCT dictionaries, we
plot the resulting non-linear approximation (NLA) error curve in Figure 2, which shows the reconstruction error EM as
a function of M , the number of retained coefficients;

EM =

∥∥∥C[ℓ] − C[ℓ]
(M)

∥∥∥
2

‖C[ℓ]‖2

× 100 . (8)

As M increases we get closer to the complete reconstruction and the error reaches 0 when all the coefficients have been
used. Usually the domain with the steepest EM curve is the sparsest domain. In this case though both dictionaries
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Fig. 2. Non-Linear Approximation (NLA) error curves for the two dictionaries. Below 1% the DCT curve is dropping
faster, which means it is doing a better job. However, past ∼ 2% the DCT curve flattens off while WT decreases to ∼ 0
very quickly.

have very similar behaviors. There is only a small window in the coefficients for which DCT does a better job than
WT. However, DCT flattens after using ∼ 1% of the coefficients and does not improve the reconstruction until a big
proportion of the coefficients have been used.

Both dictionaries seem to suffer from boundary issues at low and high ℓs. This can be solved for high ℓs as one
can always perform the reconstruction beyond the desired ℓ. For low ℓs it can be solved by different means, such as
extrapolation of the spectrum. Note that the boundary issues are more severe in the DCT domain than WT; this is due
to the fact that DCT atoms are not compactly supported.

Next we investigate the sparsity of a set of realized spectra in the two dictionaries. We simulate 100 maps from the
theoretical power spectrum used previously and estimate their power spectra using equation 4 . As before, we decompose
each realization in the DCT and WT dictionaries and reconstruct keeping increasing fractions of the largest coefficients.
At this stage, it is important to note that, as we are dealing with the empirical power spectrum, we are no longer in
an approximation setting but rather in an estimation one. Indeed, the empirical power spectrum can be seen as a noisy
version of the true one. Intuitively, reconstructing from a very small fraction of high coefficients will reject most of the
noise (low estimator variance) but at the price of retaining only a small fraction of the true spectrum coefficients (large
bias). The converse is true when a large proportion of coefficients is kept in the reconstruction. Therefore, there will exist
a threshold value that will entail a bias-variance tradeoff, hence minimizing the estimation risk. This is exactly the idea
underlying thresholding estimators in sparsifying domains.

This discussion is clearly illustrated by the inner plots of Figure 3, which shows the normalized mean-square error
(NMSE) defined as

NMSEM =

∥∥∥∥C[ℓ] − Ĉ[ℓ]
(M)

∥∥∥∥
2

‖C[ℓ]‖2

× 100 , (9)

as a function of the fraction of coefficients used in the reconstruction. The error is large when only a few coefficients are
used. As more coefficients are included, one starts to recover the main (i.e. the general shape of the spectrum) features of
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Fig. 3. A simulated CMB power spectrum along with the reconstructed spectra, using the DCT and WT dictionaries.
The black solid line is the true underlying power spectrum from which the simulations were made. The blue and red dots
show the simulated and the reconstructed power spectra respectively. With only 1% of the coefficients, DCT can recover
the input power spectrum (i.e. the black solid line) very well, recovering the peaks and troughs accurately. Unlike DCT,
WT seems to have difficulties in recovering the peaks and troughs. The inner plots shows the NMSE curves.

the power spectrum. With more coefficients, more noise enters the estimation and the error increases again. The NMSE
curve shows a clear minimum at which the underlying true power spectrum is best recovered.

Despite the differences in the performance of the two dictionaries, the minima of the NMSE are around the same
proportions of the coefficients. This is because the NMSE reflects a global behavior. On the one hand, although the DCT
can recover the features of the spectrum correctly, it is less smooth than WT. Conversely, the WT cannot reconstruct
the proper shape of the power spectrum, but provides a smoother estimate.

To summarize, from the above discussion, we conclude the following:

• the CMB power spectrum is very sparse in both the DCT and WT dictionaries, although their sparsifying capabilities
are different;

• DCT recovers global features of spectrum (i.e. the peaks and troughs) while WT recovers localized features;
• in the case of realizations, WT recovers more localized (noisy) features than the global ones, while the DCT concen-

trates on the global features.

In the next section, these complementary capabilities of the DCT and WT transforms will be combined to propose a
versatile way for adaptively estimating the theoretical power spectrum from a single realization of it.

3. Sparse Reconstruction of the Theoretical Power Spectrum

Let’s start with the simple model where the observed signal Y is contaminated by a zero-mean white Gaussian noise,
Y = X + ε, where X is the signal of interest and ε ∼ N (0, σ2). Sparse recovery with an analysis-type sparsity prior
amounts to finding the solution of the following problem:

min
X

∥∥ΦTX
∥∥

1
s.t. ‖Y −X‖2 ≤ δ , (10)
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where ΦTX represent the transform coefficients of X in the dictionary Φ, and δ controls the fidelity to the data and
obviously depends on the noise standard deviation σ.

Let’s now turn to denoising the power spectrum from one empirical realization of it. In this case, however, the noise
is highly non-Gaussian and needs to be treated differently. Indeed, as we will see in the next section, the empirical power
spectrum will entail a multiplicative χ2-distributed noise with a number of degrees of freedom that depends on ℓ. That
is, the noise has a variance profile that dependents both on the true spectrum and ℓ. We therefore need to stabilize the
noise on the empirical power spectrum prior to estimation, using a Variance Stabilization Transform (VST). Hopefully,
the latter will yield stabilized samples that have (asymptotically) constant variance, say 1, irrespective of the value of
the input noise level.

3.1. Variance Stabilizing Transform

In the statistical literature the problem of removing the noise from an empirical power spectrum goes by the name of
periodogram denoising (Donoho 1993). In (Komm et al. 1999), approximating the noise with a correlated Gaussian noise
model, a threshold was derived at each wavelet scale using the MAD (Median of Absolute Deviation) estimator. A more
elegant approach was proposed in (Donoho 1993; Moulin 1994), where the so-called Wahba VST was used. This VST is
defined as:

T (X) = (logX + γ)

√
6

π
, (11)

where γ = 0.57721... is the Euler-Mascheroni constant. After the VST, the stabilized samples can be treated as if the
noise contaminating them were white Gaussian noise with unit variance.

We will take a similar path here, generalizing the above approach to the case of the angular power spectrum. Indeed,
from (4), one can show that under mild regularity assumptions on the true power spectrum,

Ĉ[ℓ]
d→ C[ℓ]Z[ℓ], where ∀ℓ ≥ 2, 2LZ[ℓ] ∼ χ2

2L, L = 2ℓ+ 1 . (12)

d→ means convergence in distribution. From (12), it is appealing then to take the logarithm so as to transform the
multiplicative noise Z into an additive one. The resulting log-stabilized empirical power spectrum reads

Cs[ℓ] := Tℓ(Ĉ[ℓ]) = log Ĉ[ℓ] − µL = logC[ℓ] + η[ℓ] . (13)

where η[ℓ] := logZ[ℓ] − µL, L = 2ℓ + 1. Using the asymptotic results from (Bartlett & Kendall 1946) on the moments
of log−χ2 variables, it can be shown that µL = ψ0 (L) − logL, E(η[ℓ]) = 0 and σ2

L = Var [η[ℓ]] = ψ1 (L), where ψm(t) is

the standard polygamma function, ψm(t) = dm+1

dtm+1 log Γ(t).
We can now consider the stabilized Cs[ℓ] as noisy versions of the logC[ℓ], where the noise is zero-mean additive and

independent. Owing to the Central Limit Theorem, the noise tends to Gaussian with variance σ2
L as ℓ increases. At low

ℓ, normality is only an approximation. In fact, it can be show that the noise η[ℓ] has a probability density function of
the form

pη(ℓ) =
(2L)L

2LΓ(L)
exp

[
L

(
ℓ+ µL − eℓ+µL

)]
, (14)

which might be used to estimate the thresholds in the wavelet domain.
In order to standardize the noise, the VST (13) will be slightly modified to the normalized form

Cs[ℓ] := Tℓ(Ĉ[ℓ]) =
log Ĉ[ℓ] − µL

σL

= Xs[ℓ] + ε[ℓ] . (15)

where now the noise ε[ℓ] is zero-mean (asymptotically) Gaussian with unit variance, and Xs[ℓ] := logC[ℓ]/σL. It can be
checked that the Wahba VST (11) is a specialization of (15) to L = 0.

In the following, we will use the operator notation T (X) for the VST that applies (15) entry-wise to each X[ℓ], and
R(X) its inverse operator, i.e. R(X) :=

(
Rℓ(X[ℓ])

)
ℓ

with Rℓ(X[ℓ]) = exp(σLX[ℓ]).

3.2. Signal detection in the wavelet domain

Without of loss of generality, we restrict our description here to the wavelet transform. The same approach applies to
other sparsifying transforms, e.g. DCT, just as well.

In order to estimate the true CMB power spectrum from the wavelet transform, it is important to detect the wavelet
coefficients which are “significant”, i.e. the wavelet coefficients which have an absolute value too large to be due to noise
(cosmic variance + instrumental noise). Let wj [ℓ] the wavelet coefficient of a signal Y at scale j and location ℓ. We define
the multiresolution support M of Y as:

Mj [ℓ] =

{
1 if wj [ℓ] is significant,

0 if wj [ℓ] otherwise.
(16)
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For Gaussian noise, it is easy to derive an estimation of the noise standard deviation σj at scale j from the noise standard
deviation, which can be evaluated with good accuracy in an automated way (Starck & Murtagh 1998). To detect the
significant wavelet coefficients, it suffices to compare the wavelet coefficients in magnitude |wj [ℓ]| to a threshold level tj .
This threshold is generally taken to be equal to κσj , where κ ranges from 3 to 5. This means that a small magnitude
compared to the threshold implies that the coefficients is very likely to be due to noise and hence insignificant. Such a
decision rule corresponds to the hard-thresholding operator

if |wj [ℓ]| ≥ tj then wj [ℓ] is significant ,
if |wj [ℓ]| < tj then wj [ℓ] is not significant.

(17)

To summarize, The multiresolution support is obtained from the signal Y by computing the forward transform
coefficients, applying hard thresholding, and recording the coordinates of the retained coefficients.

3.3. Power Spectrum Recovery Algorithm

Let’s now turn to the adaptive estimator of the true CMB power spectrum C[ℓ] from its empirical estimate Ĉ[ℓ]. As we
benefit from the (asymptotic) normality of the noise in the stabilized samples Cs[ℓ] in (15), we are in position to easily
construct the multiresolution support M of Cs as described in the previous section. Once the support M of significant

coefficients has been determined, our goal is reconstruct an estimate X̃ of the true power spectrum, known to be sparsely
represented in some dictionary Φ(regularization), such that the significant transform coefficients of its stabilized version
reproduce those of Cs (fidelity to data). Furthermore, as a power spectrum is a positive, a positivity constraint must
be imposed. These requirements can be cast as seeking an estimate that solves the following constrained optimization
problem:

min
X

‖ΦTX‖1 s.t.

{
X > 0

M ⊙
(
ΦTT (X)

)
= M ⊙

(
ΦTCs

) , (18)

where ⊙ stands for the Hadamard product (i.e. entry-wise multiplication) of two vectors. This problem has a global
minimizer which is bounded. However, beside non-smoothness of the l1-norm and the constraints, the problem is also
non-convex because of the VST operator T . It is therefore far from obvious to solve.

In this paper we propose the following scheme which starts with an initial guess of the power spectrum X(0) = 0, and
then iterates for n = 0 to Nmax − 1,

X̃ = R
(
T

(
X(n)

)
+ ΦM ⊙

(
ΦT

(
Cs − T

(
X(n)

))))

X(n+1) = P+

(
Φ STλn

(ΦT X̃)
)
,

(19)

where P+ denotes the projection on the positive orthant and guarantees non-negativity of the spectrum estimator,
STλn

(w) = (STλn
(w[i]))i is the soft-thresholding with threshold λn that applies term-by-term the shrinkage rule

STλn
(w[i]) =

{
sign(w[i])(|w[i]| − λn) if |w[i]| > λn ,

0 otherwise .
(20)

Here, we have chosen a decreasing threshold with the iteration number n, λn = (Nmax − n)/(Nmax − 1). More details
pertaining to this algorithm can be found in Starck et al. (2010)

3.4. Instrumental Noise

In practice, the data are generally contaminated by an instrumental noise, and estimating the true CMB power spectrum

C[ℓ] from the empirical power spectrum Ĉ[ℓ] requires to remove this instrumental noise. The instrumental noise is
assumed stationary and independent from the CMB. We will also suppose that we have access to the power spectrum

of the noise, or we can compute the empirical power spectrum ŜN [ℓ] of at least one realization, either from a JackKnife
data map or from realistic instrumental noise simulations. The above algorithm can be adapted to handle this case after
rewriting the optimizing problem as follows:

min
X

‖ΦTX‖1 s.t.

{
X > 0

M ⊙
(
ΦTT (X + ŜN )

)
= M ⊙

(
ΦTCs

) . (21)

Thus, (19) becomes

X̃ = R
(
T

(
X(n) + ŜN

)
+ ΦM ⊙

(
ΦT

(
Cs − T

(
X(n) + ŜN

))))
− ŜN

X(n+1) = P+

(
Φ STλn

(ΦT X̃)
)
.

(22)
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3.5. Combining Several Dictionnaries

We have seen in Section 2.2 that the WT and DCT dictionaries had complementary benefits. Indeed each dictionary
is able to capture well features with shapes similar to its atoms. More generally, assume that we have D dictionaries
Φ1, · · · ,ΦD. Given a candidate signal Y , we can derive a support Md associated to each dictionary Φd, for d ∈ {1, · · · , D}.
The optimization problem to solve now reads

min
X

‖ΦTX‖1 s.t.

{
X > 0

Md ⊙
(
ΦT

d T (X + ŜN )
)

= Md ⊙
(
ΦT

dC
s
)
, d ∈ {1, · · · , D} . (23)

Again, this is a challenging optimization problem. We propose to attack it by applying successively and alternatively
(22) on each dictionary Φd. Algorithm 1 describes in detail the different steps.

Algorithm 1: TOUSI Power Spectrum Smoothing with D dictionaries

Require:

Empirical power spectrum bC, D dictionaries Φ1, ..., ΦD, noise power spectrum bSN ,
Number of iterations Nmax,
Threshold κ (default value is 5).
Detection

1: Compute Cs using (15).
2: For all d, compute the decomposition coefficients Wd of Cs in Φd, Wd = ΦT

d Cs.
3: For all d, compute the support Md from Wd with the threshold κ, assuming standard additive white Gaussian noise.

Estimation

4: Initialize X(0) = 0,
5: for n = 0 to Nmax − 1 do
6: Zd = X(n).
7: for d = 1 to D do

8: eZ = R
“

T
“

Zd + bSN

”

+ ΦdM ⊙
“

Φd
T

“

Cs − T
“

Zd + bSN

””””

− bSN .

9: Zd+1 = P+

“

Φd STλn
(Φd

T
eZ)

”

.

10: end for
11: X(n+1) = ZD+1.
12: λn+1 = Nmax−(n+1)

Nmax−1
.

13: end for
14: Get the estimate eX = X(Nmax).

4. Data with Instrumental Noise

Here we present the performance of the TOUSI algorithm in the presence of instrumental noise. The noise maps were
simulated using a theoretical (PLANCK level) noise power spectrum. They were added to the CMB maps simulated
previously and the power spectra of the combined maps were estimated using equation 4.

Figure 4 shows the reconstruction of the theoretical CMB spectrum in the presence of noise. The blue dots show the
empirical power spectrum of one realization having instrumental noise. Yellow dots show the estimated power spectrum
of one of the simulated noise maps. Green dots show the the spectrum with the noise power spectrum removed. The
black and red solid lines are the input and reconstructed power spectra respectively. The theoretical power spectrum can
be reconstructed up to the point where the structure of the power spectrum has not been destroyed by the instrumental
noise. In our case, having PLANCK level noise, this goes to ℓ up to 2500. It can be seen that TOUSI can do a great job
in reconstructing the input power spectrum even in the presence of instrumental noise.

5. Sparsity versus Averaging

A very common approach to reduce the noise on the power spectrum is the moving average filter, i.e. average values in
a given window,

C̃A[b] =
1

b(b+ 1)ωb

b+
ωb

2∑

ℓ=b−
ωb

2

ℓ(ℓ+ 1)Ĉ[ℓ] , (24)

and the window size ωb is increasing with ℓ. Here, we use window sizes of {1, 2, 5, 10, 20, 50, 100} respectively for ℓ ranging
from {2, 11, 31, 151, 421, 1201, 2501} to {10, 30, 150, 420, 1200, 2500, 3200}, which have also been used in the framework of
the PLANCK project in (Leach et al. 2008).
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Fig. 4. Power spectrum estimation in the presence of instrumental noise. The blue dots show the empirical power
spectrum of one realization having instrumental noise. Yellow dots show the estimated power spectrum of one of the
simulated noise maps. Green dots show the the spectrum with the noise power spectrum removed. The black and red
solid lines are the input and reconstructed power spectra respectively. The inner plots show a zoomed-in version.

Figure 5 shows the average error the 100 realizations as a function of ℓ

E[ℓ] =
1

100

100∑

i=1

‖ C[ℓ] − C̃i[ℓ] ‖2 , (25)

where C̃i is the estimated power spectrum from the i-th realization. We display the errors for the spectra estimated by
the empirical estimator (the realization, black dotted line), the averaging estimator (red dashed line) and TOUSI (solid
blue line). The cosmic variance is over-plotted as a solid black line. We can see that the expected error is highly reduced
when using the sparsity-based estimator.

6. Conclusion

Measurements of the CMB anisotropies are powerful cosmological probes. In the currently favored cosmological model,
with the nearly Gaussian-distributed curvature perturbations, almost all the statistical information are contained in
the CMB angular power spectrum. In this paper we have investigated the sparsity of the CMB power spectrum in two
dictionaries; DCT and WT. In both dictionaries the CMB power spectrum can be recovered with only a few percentages
of the coefficients, meaning the spectrum is very sparse. The two dictionaries have different characteristics and can
accommodate reconstructing different features of the spectra; The DCT can help recover the global features of the
spectrum, while WT helps recover small localized features. The sparsity of the CMB spectrum in these two domains
has helped us develop an algorithm, TOUSI, that estimates the true underlying power spectrum from a given realized
spectrum. This algorithm uses the sparsity of the CMB power spectrum in both WT and DCT domains and takes the
best from both worlds to get a highly accurate estimate from a single realization of the CMB power spectrum. This could
be a replacement for CAMB in cases where knowing the cosmological parameters is not necessary. The developed IDL
code will be released with the next version of ISAP (Interactive Sparse astronomical data Analysis Packages) via the
web site:

http://jstarck.free.fr/isap.html
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Fig. 5. Mean error for the 100 realizations, for the realizations (black dotted line), the averaging denoising (red dashed
line) and the sparse wavelet filtering (blue solid line). The inner plot shows a zoom between l = 2000 and l = 3000.
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