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ABSTRACT

The multiscale variance stabilization Transform (MSVST) has recently been proposed for Poisson data denoising (Zhang et al. 2008a).
This procedure, which is nonparametric, is based on thresholding wavelet coefficients. The restoration algorithm applied after thresh-
olding provides good conservation of source flux. We present in this paper an extension of the MSVST to 3D data—in fact 2D-1D
data— when the third dimension is not a spatial dimension, but the wavelength, the energy, or the time. We show that the MSVST
can be used for detecting and characterizing astrophysical sources of high-energy gamma rays, using realistic simulated observations
with the Large Area Telescope (LAT). The LAT was launched in June 2008 on the Fermi Gamma-ray Space Telescope mission.
Source detection in the LAT data is complicated by the low fluxes of point sources relative to the diffuse celestial foreground, the
limited angular resolution, and the tremendous variation in that resolution with energy (from tens of degrees at ∼30 MeV to ∼0.1◦
at 10 GeV). The high-energy gamma-ray sky is also quite dynamic, with a large population of sources such active galaxies with
accretion-powered black holes producing high-energy jets, episodically flaring. The fluxes of these sources can change by an order of
magnitude or more on time scales of hours. Perhaps the majority of blazars will have average fluxes that are too low to be detected
but could be found during the hours or days that they are flaring. The MSVST algorithm is very fast relative to traditional likelihood
model fitting, and permits efficient detection across the time dimension and immediate estimation of spectral properties. Astrophysical
sources of gamma rays, especially active galaxies, are typically quite variable, and our current work may lead to a reliable method to
quickly characterize the flaring properties of newly-detected sources.

Key words. methods: data analysis – techniques: image processing

1. Introduction1

The high-energy gamma-ray sky will be studied with unprece-2

dented sensitivity by the Large Area Telescope (LAT), which3

was launched by NASA on the Fermi mission in June 2008.4

The catalog of gamma-ray sources from the previous mission5

in this energy range, EGRET on the Compton Gamma-Ray6

Observatory, has approximately 270 sources (Hartman et al.7

1999). For the LAT, several thousand gamma-ray sources are8

expected to be detected, with much more accurately determined9

locations, spectra, and light curves.10

We would like to reliably detect as many celestial sources11

of gamma rays as possible. The question is not simply one of12

building up adequate statistics by increasing exposure times. The13

majority of the sources that the LAT will detect are likely to be14

gamma-ray blazars (distant galaxies whose gamma-ray emission15

is powered by accretion onto supermassive black holes), which16

are intrinsically variable. They flare episodically in gamma rays.17

The time scales of flares, which can increase the flux by a factor18

of 10 or more, can be minutes to weeks. The duty cycle of flaring19

in gamma rays is not well determined yet, but individual blazars20

can go months or years between flares and in general we will not21

know in advance where on the sky the sources will be found.22

The fluxes of celestial gamma rays are low, especially rela- 23

tive to the ∼1 m2 effective area of the LAT (by far the largest 24

effective collecting area ever in the GeV range). An additional 25

complicating factor is that diffuse emission from the Milky Way 26

itself (which originates in cosmic-ray interactions with interstel- 27

lar gas and radiation) makes a relatively intense, structured fore- 28

ground emission. The few very brightest gamma-ray sources will 29

provide approximately 1 detected gamma ray per minute when 30

they are in the field of view of the LAT. The diffuse emission 31

of the Milky Way will provide about 2 gamma rays per second, 32

distributed over the ∼2 sr field of view. 33

For previous high-energy gamma-ray missions, the standard 34

method of source detection has been model fitting – maximizing 35

the likelihood function while moving trial point sources around 36

in the region of the sky being analyzed. This approach has been 37

driven by the limited photon counts and the relatively limited 38

resolution of gamma-ray telescopes. However, at the sensitivity 39

of the LAT, even a relatively “quiet” part of the sky may have 10 40

or more point sources close enough together to need to be mod- 41

eled simultaneously when maximizing the (computationally ex- 42

pensive) likelihood function. For this reason and because of the 43

need to search in time, non-parametric algorithms for detecting 44

sources are being investigated. 45
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Literature overview for Poisson denoising using wavelets1

A host of estimation methods have been proposed in the liter-2

ature for non-parametric Poisson noise removal. Major contri-3

butions consist of variance stabilization: a classical solution is4

to preprocess the data by applying a variance stabilizing trans-5

form (VST) such as the Anscombe transform (Anscombe 1948;6

Donoho 1993). It can be shown that the transformed data are7

approximately stationary, independent, and Gaussian. However,8

these transformations are only valid for a sufficiently large num-9

ber of counts per pixel (and of course, for even more counts,10

the Poisson distribution becomes Gaussian with equal mean and11

variance) (Murtagh et al. 1995). The necessary average number12

of counts is about 20 if bias is to be avoided.13

In this case, as an alternative approach, a filtering approach14

for very small numbers of counts, including frequent zero cases,15

has been proposed in (Starck & Pierre 1998), which is based16

on the popular isotropic undecimated wavelet transform (imple-17

mented with the so-called à trous algorithm) (Starck & Murtagh18

2006) and the autoconvolution histogram technique for deriving19

the probability density function (pdf) of the wavelet coefficient20

(Slezak et al. 1993; Bijaoui & Jammal 2001; Starck & Murtagh21

2006). This method is part of the data reduction pipeline of the22

XMM-LSS project (Pierre et al. 2004) for detecting of clusters of23

galaxies (Pierre et al. 2007). This algorithm is obviously a good24

candidate for Fermi LAT 2D map analysis, but its extension to25

2D-1D data sets does not exist. It is far from being trivial, and26

even if it were possible, computation time would certainly be27

prohibitive to allow its use for Fermi LAT 2D-1D data sets. Then,28

an alternative approach is needed. Several authors (Kolaczyk29

1997; Timmermann & Nowak 1999; Nowak & Baraniuk 1999;30

Bijaoui & Jammal 2001; Fryźlewicz & Nason 2004; Zhang et al.31

2008b) have suggested that the Haar wavelet transform is very32

well-suited for treating data with Poisson noise. Since a Haar33

wavelet coefficient is just the difference between two random34

variables following a Poisson distribution, it is easier to derive35

mathematical tools for removing the noise than with any other36

wavelet method. Starck & Murtagh (2006) study shows that37

the Haar transform is less effective for restoring X-ray astro-38

nomical images than the à trous algorithm. The reason is that39

the wavelet shape of the isotropic wavelet transform is much40

better adapted to astronomical sources, which are more or less41

Gaussian-shaped and isotropic, than the Haar wavelet. Some pa-42

pers (Scargle 1998; Kolaczyk & Nowak 2004; Willet & Nowak43

2005; Willett 2006) proposed a spatial partitioning, possibly44

dyadic, of the image for complicated geometrical content recov-45

ery. This dyadic partitioning concept is however again not very46

well suited to astrophysical data.47

The MSVST alternative48

In a recent paper, Zhang et al. (2008a) have proposed to merge49

a variance stabilization technique and the multiscale decomposi-50

tion, leading to the Multi-Scale Variance Stabilization Transform51

(MSVST). In the case of the isotropic undecimated wavelet52

transform, as the wavelet coefficients w j are derived by a sim-53

ple difference of two consecutive dyadic scales of the input im-54

age (see Sect. 3.2), w j = a j−1 − a j, the stabilized wavelet coeffi-55

cients are obtained by applying a stabilization on both a j−1 and56

a j, w j = A j−1(a j−1) −A j(a j), whereA j−1 andA j are non-linear57

transforms that can be seen as a generalization of the Anscombe58

transform; see Sect. 3 for details. This new method is fast and59

easy to implement, and more importantly, works very well at60

very low count situations, down to 0.1 photons per pixel.61

This paper 62

In this paper, we present a new multiscale representation, de- 63

rived from the MSVST, which allows us to remove the Poisson 64

noise in 3D data sets, when the third dimension is not a spa- 65

tial dimension, but the wavelength, the energy or the time. Such 66

3D data are called 2D-1D data sets in the sequel. We show that 67

it could be very useful to analyze Fermi LAT data, especially 68

when looking for rapidly time varying sources. Section 2 de- 69

scribes the Fermi LAT simulated data. Section 3 reviews the 70

MSVST method relative to the isotropic undecimated wavelet 71

transform and Sect. 4 shows how it can be extended to the 72

2D-1D case. Section 5 presents some experiments on simulated 73

Fermi LAT data. Conclusions are given in Sect. 6. 74

Definitions and notations 75

For a real discrete-time filter whose impulse response is h[i], 76

h̄[i] = h[−i], i ∈ Z is its time-reversed version. For the sake 77

of clarity, the notation h[i] is used instead of hi for the location 78

index. This will lighten the notation by avoiding multiple sub- 79

scripts in the derivations of the paper. The discrete circular con- 80

volution product of two signals will be written �, and the contin- 81

uous convolution of two functions ∗. The term circular stands for 82

periodic boundary conditions. The symbol δ[i] is the Kronecker 83

delta. 84

For the octave band wavelet representation, analysis (re- 85

spectively, synthesis) filters are denoted h and g (respec- 86

tively, h̃ and g̃). The scaling and wavelet functions used 87

for the analysis (respectively, synthesis) are denoted φ (with 88

φ( x
2 ) =

∑
k h[k]φ(x − k), x ∈ R and k ∈ Z) and ψ (with ψ( x

2 ) = 89
∑

k g[k]φ(x − k), x ∈ R and k ∈ Z) (respectively, φ̃ and ψ̃). We 90

also define the scaled dilated and translated version of φ at scale j 91

and position k as φ j,k(x) = 2− jφ(2− jx − k), and similarly for ψ, 92

φ̃ and ψ̃. A function f (x, y) is isotropic if it is constant along all 93

points (x, y) that are equidistant from the origin. 94

A distribution is stabilized if its variance is made constant, 95

typically equal to 1, independently of its mean. A transforma- 96

tion applied to a random variable is called a variance stabilizing 97

transform (VST), if the distribution of the transformed variable 98

is stabilized and is approximately Gaussian. 99

Glossary 100

WT WaveletTransform
DWT Discrete(decimated)WaveletTransform
UWT UndecimatedWaveletTransform
IUWT IsotropicUndecimatedWaveletTransform
VST VarianceStabilizationTransform
MSVST Multi − ScaleVarianceStabilizationTransform
LAT LargeAreaTelescope(LAT)
FDR FalseDiscoveryRate

101

2. Data description 102

2.1. Fermi Large area telescope 103

The LAT (Fig. 1) is a photon-counting detector, converting 104

gamma rays into positron-electron pairs for detection. The tra- 105

jectories of the pair are tracked and their energies measured in 106

order to reconstruct the direction and energy of the gamma ray. 107

The energy range of the LAT is very broad, approximately 108

20 MeV−300 GeV. At energies below a few hundred MeV, the 109
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Fig. 1. Cutaway view of the LAT. The LAT is modular; one of the
16 towers is shown with its tracking planes revealed. High-energy
gamma rays convert to electron-positron pairs on tungsten foils in the
tracking layers. The trajectories of the pair are measured very precisely
using silicon strip detectors in the tracking layers and the energies are
determined with the CsI calorimeter at the bottom. The array of plastic
scintillators that cover the towers provides an anticoincidence signal for
cosmic rays. The outermost layers are a thermal blanket and microme-
teoroid shield. The overall dimensions are 1.8 × 1.8 × 0.75 m.

reconstruction and tracking efficiencies are lower, and the angu-1

lar resolution is poorer, than at higher energies. The point spread2

function (PSF) width varies from about 3.5◦ at 100 MeV to bet-3

ter than 0.1◦ (68% containment) at 10 GeV and above. Owing to4

large-angle multiple scattering in the tracker, the PSF has broad5

tails; the 95%/68% containment ratio may be as large as 3.6

Wavelet denoising of LAT data has application as part of an7

algorithm for quickly detecting celestial sources of gamma rays.8

The fundamental inputs to high-level analysis of LAT data will9

be energies, directions, and times of the detected gamma rays.10

(Pointing history and instrument live times are also inputs for11

exposure calculations.) For the analysis presented here, we con-12

sider the LAT data for some range of time to have been binned13

into “cubes” v(x, y, t) of spatial coordinates and time or, v(x, y, E)14

of spatial coordinates and energy, because, as we shall see, the15

wavelet denoising can be applied in multiple dimensions, and16

so permits estimation of counts spectra. The motivations for fil-17

tering data with Poisson noise in the wavelet domain are well18

known—sources of small angular size are localized in wavelet19

space.20

2.2. Simulated LAT data21

The application of MSVST to problems of detection and charac-22

terization of LAT sources was investigated using simulated data.23

The simulations included a realistic observing strategy (sky sur-24

vey with the proper orbital and rocking periods) and response25

functions for the LAT (effective area and angular resolution as26

functions of energy and angle). Point sources of gamma rays27

were defined with systematically varying fluxes, spectral slopes,28

and/or flare intensities and durations. The simulations also in-29

cluded a representative level of diffuse “background” (celestial30

plus residual charged-particle) for regions of the sky well re-31

moved from the Galactic equator, where the celestial diffuse32

emission is particularly intense. The denoising results reported33

in Sect. 5 use a data cube obtained according to this simulation 34

scenario. 35

3. The 2D multiscale variance stabilization 36

transform (MSVST) 37

In this section, we review the MSVST method (Zhang 38

et al. 2008a), restricted to the Isotropic Undecimated Wavelet 39

Transform (IUWT). Indeed, the MSVST can use other trans- 40

forms such as the standard three-orientation undecimated 41

wavelet transform, the ridgelet or the curvelet transforms; see 42

(Zhang et al. 2008a). In our specific case here, only the IUWT is 43

of interest. 44

3.1. VST of a filtered Poisson process 45

Given X a sequence of n independent Poisson random variables 46

Xi, i = 1, · · · , n, each of mean λi, let Yi =
∑n

j=1 h[ j]Xi− j be the 47

filtered process obtained by convolving the sequence X with a 48

discrete filter h. Y denotes any one of the Yi’s, and τk =
∑

i(h[i])k 49

for k = 1, 2, · · ·. 50

If h = δ, then we recover the Anscombe VST (Anscombe 51

1948) of Yi (hence Xi) which acts as if the stabilized data arose 52

from a Gaussian white noise with unit variance, under the as- 53

sumption that the intensity λi is large. This is why the Anscombe 54

VST performs poorly in low-count settings. But, if the filter h 55

acts as an “averaging” kernel (more generally a low-pass filter), 56

one can reasonably expect that stabilizing Yi would be more ben- 57

eficial, since the signal-to-noise ratio measured at the output of h 58

is expected to be higher. 59

Using a local homogeneity assumption, i.e. λi− j = λ for all j 60

within the support of h, it has been shown (Zhang et al. 2008a) 61

that for a non-negative filter h, the transform Z = b
√

Y + c with 62

b > 0 and c > 0 defined as 63

c =
7τ2

8τ1
− τ3

2τ2
, b = 2

√
τ1

τ2
(1) 64

is a second order accurate variance stabilization transform, with 65

asymptotic unit variance. By second-order accurate, we mean 66

that the error term in the variance of the stabilized variable Z 67

decreases rapidly as O(λ−2). From (1), it is obvious that when 68

h = δ, we obtain the classical Anscombe VST parameters b = 69

2 and c = 3/8. The authors in (Zhang et al. 2008a) have also 70

proved that Z is asymptotically distributed as a Gaussian variate 71

with mean b
√
τ1λ and unit variance. A non-positive h with a 72

negative c could also be considered; see (Zhang et al. 2008a) for 73

more details. 74

Figure 2 shows the Monte-Carlo estimates of the expecta- 75

tion E[Z] (left) and the variance Var [Z] (right) obtained from 76

2 × 105 Poisson noise realizations of X, plotted as a function of 77

the intensity λ for both Anscombe (Anscombe 1948) (dashed- 78

dotted), Haar-Fisz (dashed) (Fryźlewicz & Nason 2004) and our 79

VST with the 2D B3-Spline filter as a low-pass filter h (solid). 80

The asymptotic bounds (dots) (i.e. 1 for the variance and
√
λ for 81

the expectation) are also shown. It can be seen that for increas- 82

ing intensity, E[Z] and Var [Z] approach the theoretical bounds 83

at different rates depending on the VST used. Quantitatively, 84

Poisson variables transformed using the Anscombe VST can be 85

reasonably considered to be unbiased and stabilized for λ � 10, 86

using Haar-Fisz for λ � 1, and using out VST (after low-pass 87

filtering with the chosen h) for λ � 0.1. 88
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Fig. 2. Behavior of the expectation E[Z] (left) and variance Var [Z] (right) as a function of the underlying intensity, for the Anscombe VST,
2D Haar-Fisz VST, and out VST with the 2D B3-Spline filter as a low-pass filter h.

3.2. The isotropic undecimated wavelet transform1

The undecimated wavelet transform (UWT) uses an analysis fil-2

ter bank (h, g) to decompose a signal a0 into a coefficient set3

W = {d1, . . . , dJ, aJ}, where d j is the wavelet (detail) coefficients4

at scale j and aJ is the approximation coefficients at the coarsest5

resolution J. The passage from one resolution to the next one is6

obtained using the “à trous” algorithm (Holschneider et al. 1989;7

Shensa 1992)8

a j+1[l] = (h̄↑ j � a j)[l] =
∑

k

h[k]a j[l + 2 jk], (2)

w j+1[l] = (ḡ↑ j � a j)[l] =
∑

k

g[k]a j[l + 2 jk], (3)

where h↑ j[l] = h[l] if l/2 j ∈ Z and 0 otherwise, h̄[l] = h[−l], and9

“�” denotes discrete circular convolution. The reconstruction is10

given by a j[l] = 1
2

[
(h̃↑ j � a j+1)[l] + (g̃↑ j � w j+1)[l]

]
. The filter11

bank (h, g, h̃, g̃) needs to satisfy the so-called exact reconstruc-12

tion condition (Mallat 1998; Starck & Murtagh 2006).13

The Isotropic UWT (IUWT) (Starck et al. 2007) uses the14

filter bank (h, g = δ − h, h̃ = δ, g̃ = δ) where h is typically a15

symmetric low-pass filter such as the B3-Spline filter. The re-16

construction is trivial, i.e., a0 = aJ +
∑J

j=1 w j. This algorithm17

is widely used in astronomical applications (Starck et al. 1998)18

and biomedical imaging (Olivo-Marin 2002) to detect isotropic19

objects.20

The IUWT filter bank in q-dimension (q ≥ 2) becomes21

(hqD, gqD = δ − hqD, h̃qD = δ, g̃qD = δ) where hqD is the ten-22

sor product of q 1D filters h1D. Note that gqD is in general23

non-separable.24

3.3. MSVST with the IUWT25

Now the VST can be combined with the IUWT in the follow-26

ing way: since the filters h̄↑ j at all scales j are low-pass filters27

(so have nonzero means), we can first stabilize the approxima-28

tion coefficients a j at each scale using the VST, and then com-29

pute in the standard way the detail coefficients from the stabi-30

lized a j’s. Given the particular structure of the IUWT analysis31

filters (h, g), the stabilization procedure is given by 32

IUWT

{
a j = h̄↑ j−1 � a j−1
w j = a j−1 − a j

=⇒
MSVST
+

IUWT

{
a j = h̄↑ j−1 � a j−1
w j = A j−1(a j−1) −A j(a j).

(4)

Note that the VST is now scale-dependent (hence the name 33

MSVST). The filtering step on a j−1 can be rewritten as a filtering 34

on a0 = X, i.e., a j = h( j) � a0, where h( j) = h̄ j−1 � · · · � h̄1 � h̄ 35

for j ≥ 1 and h(0) = δ.A j is the VST operator at scale j 36

A j(a j) = b( j)
√

a j + c( j). (5) 37

Let us define τ( j)
k =

∑
i

(
h( j)[i]

)k
. Then according to (1), the con- 38

stants b( j) and c( j) associated to h( j) must be set to 39

c( j) =
7τ( j)

2

8τ( j)
1

− τ
( j)
3

2τ( j)
2

, b( j) = 2

√√
τ

( j)
1

τ
( j)
2

· (6) 40

The constants b( j) and c( j) only depend on the filter h and the 41

scale level j. They can all be pre-computed once for any given h. 42

A schematic overview of the decomposition and the inversion of 43

MSVST+IUWT is depicted in Fig. 3. 44

In summary, IUWT denoising with the MSVST involves the 45

following three main steps: 46

1. Transformation: compute the IUWT in conjunction with 47

the MSVST as described above. 48

2. Detection: detect significant detail coefficients by hypothesis 49

testing. The appeal of a binary hypothesis testing approach 50

is that it allows quantitative control of significance. Here, we 51

take benefit from the asymptotic Gaussianity of the stabi- 52

lized a j’s that will be transferred to the w j’s as it has been 53

shown by (Zhang et al. 2008a). Indeed, these authors have 54

proved that under the null hypothesis H0:w j[k] = 0 corre- 55

sponding to the fact that the signal is homogeneous (smooth), 56

the stabilized detail coefficients w j follow asymptotically a 57

centered normal distribution with an intensity-independent 58

variance; see (Zhang et al. 2008a, Theorem 1) for details. 59
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Fig. 3. Diagrams of the MSVST combined with the IUWT. The notations are the same as those of (4) and (7). The left dashed frame shows
the decomposition part. Each stage of this frame corresponds to a scale j and an application of (4). The right dashed frame illustrates the direct
inversion (7).

This variance depends only on the filter h and the current1

scale, and can be tabulated once for any h. Thus, the distri-2

bution of the w j’s being known (Gaussian), we can detect the3

significant coefficients by classical binary hypothesis testing.4

3. Estimation: reconstruct the final estimate using the knowl-5

edge of the detected coefficients. This step requires invert-6

ing the MSVST after the detection step. For the IUWT filter7

bank, there is a closed-form inversion expression as we have8

a0 = A−1
0

⎡
⎢⎢⎢⎢⎢⎢⎣AJ(aJ) +

J∑

j=1

w j

⎤
⎥⎥⎥⎥⎥⎥⎦ . (7)9

3.3.1. Example10

Figure 4 upper left shows a set of objects of different sizes11

and different intensities contaminated by a Poisson noise. Each12

object along any radial branch has the same integrated inten-13

sity within its support and has a more and more extended sup-14

port as we go farther from the center. The integrated inten-15

sity reduces as the branches turn in the clockwise direction.16

Denoising such an image is challenging. Figure 4, top-right,17

bottom-left and right, show respectively the filtered images by18

Haar-Kolaczyk (Kolaczyk 1997), Haar-Jammal-Bijaoui (Bijaoui19

& Jammal 2001) and the MSVST.20

As expected, the relative merits (sensitivity) of the MSVST21

estimator become increasingly salient as we go farther from the22

center, and as the branches turn clockwise. That is, the MSVST23

estimator outperforms its competitors as the intensity becomes24

low. Most sources were detected by the MSVST estimator even25

for very low counts situations; see the last branches clockwise26

in Fig. 4 bottom right and compare to Fig. 4 top right and Fig. 427

bottom left.28

4. 2D-1D MSVST denoising29

4.1. 2D-1D wavelet transform30

In the previous section, we have seen how a Poisson noise can31

be removed from 2D image using the IUWT and the MSVST.32

Extension to a qD data sets is straightforward, and the denoising33

will be nearly optimal as long as each object belonging to this34

q-dimensional space is roughly isotropic. In the case of 3D data 35

where the third dimension is either the time or the energy, we 36

are clearly not in this configuration, and the naive analysis of a 37

3D isotropic wavelet does not make sense. Therefore, we want 38

to analyze the data with a non-isotropic wavelet, where the time 39

or energy scale is not connected to the spatial scale. Hence, an 40

ideal wavelet function would be defined by: 41

ψ(x, y, z) = ψ(xy)(x, y)ψ(z)(z), (8)

where ψ(xy) is the spatial wavelet and ψ(z) is the temporal (or en- 42

ergy) wavelet. In the following, we will consider only isotropic 43

and dyadic spatial scales, and we note j1 the spatial resolution 44

index (i.e. scale = 2 j1), j2 the time (or energy) resolution index. 45

Thus, define the scaled spatial and temporal (or energy) wavelets 46

ψ
(xy)
j1

(x, y) =
1

2 j1
ψ(xy)

( x
2 j1

,
y

2 j1

)

and 47

ψ(z)
j2

(z) =
1√
2 j2

ψ(z)
( z
2 j2

)

· 48

Hence, we derive the wavelet coefficients w j1, j2[kx, ky, kz] from 49

a given data set D (kx and ky are spatial index and kz a time (or 50

energy) index). In continuous coordinates, this amounts to the 51

formula 52

w j1, j2 [kx, ky, kz] =
1

2 j1

1√
2 j2

� +∞

−∞
D(x, y, z)

×ψ(xy)

(
x − kx

2 j1
,
y − ky

2 j1

)

ψ(z)

(
z − kz

2 j2

)

dxdydz

= D ∗ ψ̄(xy)
j1
∗ ψ̄(z)

j2
(x, y, z), (9)

where ∗ is the convolution and ψ̄(x) = ψ(−x). 53

Fast undecimated 2D-1D decomposition/reconstruction 54

In order to have a fast algorithm for discrete data, we use wavelet 55

functions associated to filter banks. Hence, our wavelet decom- 56

position consists in applying first a 2D IUWT for each frame kz. 57

Using the 2D IUWT, we have the reconstruction formula: 58

D[kx, ky, kz] = aJ1[kx, ky] +
J1∑

j1=1

w j1 [kx, ky, kz], ∀kz, (10)
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Fig. 4. Top, XMM simulated data, and Haar-Kolaczyk (Kolaczyk 1997) filtered image. Bottom, Haar-Jammal-Bijaoui (Bijaoui & Jammal 2001)
and MSVST filtered images. Intensities logarithmically transformed.

where J1 is the number of spatial scales. Then, for each spa-1

tial location (kx, ky) and for each 2D wavelet scale scale j1, we2

apply a 1D wavelet transform along z on the spatial wavelet co-3

efficients w j1 [kx, ky, kz] such that4

w j1 [kx, ky, kz] = w j1,J2[kx, ky, kz]

+

J2∑

j2=1

w j1, j2[kx, ky, kz], ∀(kx, ky), (11)

where J2 is the number of scales along z. The same processing5

is also applied on the coarse spatial scale aJ1[kx, ky, kz], and we6

have7

aJ1 [kx, ky, kz] = aJ1,J2[kx, ky, kz]

+

J2∑

j2=1

wJ1, j2 [kx, ky, kz], ∀(kx, ky). (12)

Hence, we have a 2D-1D undecimated wavelet representation of8

the input data D:9

D[kx, ky, kz]= aJ1,J2[kx, ky, kz] +
J1∑

j1=1

w j1,J2[kx, ky, kz]

+

J2∑

j2=1

wJ1, j2[kx, ky, kz]+
J1∑

j1=1

J2∑

j2=1

w j1, j2 [kx, ky, kz]. (13)

From this expression, we distinguish four kinds of coefficients:10

– Detail-Detail coefficients ( j1 ≤ J1 and j2 ≤ J2):11

w j1, j2[kx, ky, kz] = (δ − h̄1D) �
(
h( j2−1)

1D � a j1−1[kx, ky, .]

− h( j2−1)
1D � a j1 [kx, ky, .]

)
. (14)

– Approximation-Detail coefficients ( j1 = J1 and j2 ≤ J2): 12

wJ1, j2[kx, ky, kz] = h( j2−1)
1D � aJ1[kx, ky, .]

− h( j2)
1D � aJ1 [kx, ky, .]. (15)

– Detail-Approximation coefficients ( j1 ≤ J1 and j2 = J2): 13

w j1,J2[kx, ky, kz] = h(J2)
1D � a j1−1[kx, ky, .]

− h(J2)
1D � a j1 [kx, ky, .]. (16)

– Approximation-Approximation coefficients ( j1 = J1 and 14

j2 = J2): 15

aJ1,J2[kx, ky, kz] = h(J2)
1D � aJ1[kx, ky, .]. (17)

As the 2D-1D undecimated wavelet transform just described is 16

fully linear, a Gaussian noise remains Gaussian after transfor- 17

mation. Therefore, all thresholding strategies which have been 18

developed for wavelet Gaussian denoising are still valid with the 19

2D-1D wavelet transform. Denoting TH the thresholding oper- 20

ator, the denoised cube in the case of additive white Gaussian 21

noise is obtained by: 22

D̃[kx, ky, kz] = aJ1,J2 [kx, ky, kz] +
J1∑

j1=1

TH(w j1,J2[kx, ky, kz])

+

J2∑

j2=1

TH(wJ1, j2[kx, ky, kz]) +
J1∑

j1=1

J2∑

j2=1

TH(w j1, j2[kx, ky, kz]).(18)

A typical choice of TH is the hard thresholding operator, i.e. 23

TH(x) = 0 if |x| is below a given threshold τ, and TH(x) = x 24

if |x| ≥ τ. The threshold τ is generally chosen between 3 and 5 25

times the noise standard deviation (Starck & Murtagh 2006). 26
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Fig. 5. Overview of MSVST with the 2D-1D IUWT. The diagram summarizes the main steps for computing the detail coefficients w j1 , j2 in (19).
The notations are exactly the same as those of Sect. 4.2 with ḡ1D = δ − h̄1D.

4.2. Variance stabilization1

Putting all pieces together, we are now ready to plug the MSVST2

into the 2D-1D undecimated wavelet transform. Again, we dis-3

tinguish four kinds of coefficients that take the following forms:4

– Detail-Detail coefficients ( j1 ≤ J1 and j2 ≤ J2):5

w j1, j2[kx, ky, kz] = (δ − h̄1D) �

(

A j1−1, j2−1

[

h( j2−1)
1D

�a j1−1[kx, ky, .]

]

−A j1, j2−1

[
h( j2−1)

1D � a j1[kx, ky, .]
]
)

.(19)

The schematic overview of the way the detail coefficients 6

w j1, j2 are computed is illustrated in Fig. 5. 7

– Approximation-Detail coefficients ( j1 = J1 and j2 ≤ J2): 8

wJ1, j2[kx, ky, kz] = AJ1, j2−1

[
h( j2−1)

1D � aJ1[kx, ky, .]
]

−AJ1, j2

[
h( j2)

1D � aJ1[kx, ky, .]
]
. (20)

– Detail-Approximation coefficients ( j1 ≤ J1 and j2 = J2): 9

w j1,J2[kx, ky, kz] = A j1−1,J2

[
h(J2)

1D � a j1−1[kx, ky, .]
]

−A j1,J2

[
h(J2)

1D � a j1[kx, ky, .]
]
. (21)
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– Approximation-Approximation coefficients ( j1 = J1 and1

j2 = J2):2

cJ1,J2 [kx, ky, kz] = h(J2)
1D � aJ1[kx, ky, .]. (22)

Hence, all 2D-1D wavelet coefficients w j1, j2 are now stabi-3

lized, and the noise on all these wavelet coefficients is Gaussian4

with known scale-dependent variance that depends solely on h.5

Denoising is however not straightforward because there is no6

explicit reconstruction formula available because of the form of7

the stabilization equations above. Formally, the stabilizing oper-8

ators A j1, j2 and the convolution operators along (x, y) and z do9

not commute, even though the filter bank satisfies the exact re-10

construction formula. To circumvent this difficulty, we propose11

to solve this reconstruction problem by defining the multireso-12

lution support (Murtagh et al. 1995) from the stabilized coeffi-13

cients, and by using an iterative reconstruction scheme.14

4.3. Detection-reconstruction15

As the noise on the stabilized coefficients is Gaussian, and with-16

out loss of generality, we let its standard deviation equal to 1, we17

consider that a wavelet coefficient w j1, j2 [kx, ky, kz] is significant,18

i.e., not due to noise, if its absolute value is larger than a critical19

threshold τ, where τ is typically between 3 and 5.20

The multiresolution support will be obtained by detecting at21

each scale the significant coefficients. The multiresolution sup-22

port for j1 ≤ J and j2 ≤ J2 is defined as23

M j1 , j2[kx, ky, kz] =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1 if w j1, j2 [kx, ky, kz] is significant,

0 otherwise.
(23)

In words, the multiresolution support M indicates at which24

scales (spatial and time/energy) and which positions, we have25

significant signal. We denote W the 2D-1D undecimated26

wavelet transform described above, R the inverse wavelet trans-27

form and Y the input noisy data cube.28

We want our solution X to preserve the significant struc-29

tures in the original data by reproducing exactly the same co-30

efficients as the wavelet coefficients of the input data Y, but31

only at scales and positions where significant signal has been de-32

tected (i.e. MWX = MWY). At other scales and positions, we33

want the smoothest solution with the lowest budget in terms of34

wavelet coefficients. Furthermore, as Poisson intensity functions35

are positive by nature, a positivity constraint is imposed on the36

solution. It is clear that there are many solutions satisfying the37

positivity and multiresolution support consistency requirements,38

e.g. Y itself. Thus, our reconstruction problem based solely on39

these constraints is an ill-posed inverse problem that must be40

regularized. Typically, the solution in which we are interested41

must be sparse by involving the lowest budget of wavelet co-42

efficients. Therefore our reconstruction is formulated as a con-43

strained sparsity-promoting minimization problem that can be44

written as follows45

min
X
‖ WX ‖1 subject to

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

MWX = MWY

and X ≥ 0,
(24)

where ‖ . ‖1 is the �1-norm playing the role of regularization and46

is well known to promote sparsity (Donoho 2004). This problem47

can be solved efficiently using the hybrid steepest descent algo-48

rithm (Yamada 2001; Zhang et al. 2008a), and requires about49

Fig. 6. Image obtained by integrating along the z-axis of the simulated
data cube.

10 iterations in practice. Transposed into our context, its main 50

steps can be summarized as follows: 51

Require: Input noisy data Y; a low-pass filter h; multiresolu- 52

tion support M from the detection step; number of itera- 53

tions Nmax. 54

1: Initialize X(0) = MWY = MwY , 55

2: for t = 1 to Nmax do 56

3: d̃ = MwY + (1 − M)WX(t−1), 57

4: X(t) = P+
(
R STβt [d̃]

)
, 58

5: Update the step βt = (Nmax − t)/(Nmax − 1). 59

6: end for 60

where P+ is the projector onto the positive orthant, i.e. P+(x) = 61

max(x, 0). STβt is the soft-thresholding operator with thresh- 62

old βt, i.e. STβt [x] = x − βtsign(x) if |x| ≥ βt, and 0 otherwise. 63

4.4. Algorithm summary 64

The final MSVST 2D-1D wavelet denoising algorithm is the 65

following: 66

Require: Input noisy data Y; a low-pass filter h; threshold 67

level τ, 68

1: 2D-1D-MSVST: apply the 2D-1D-MSVST to the data us- 69

ing (19)−(22). 70

2: Detection: detect the significant wavelet coefficients that are 71

above τ, and compute the multiresolution support M. 72

3: Reconstruction: reconstruct the denoised data using the al- 73

gorithm above. 74

5. Experimental results and discussion 75

5.1. MSVST-2D-1D versus MSVST-2D 76

We have simulated a data cube according to the procedure de- 77

scribed in Sect. 2.2. The cube contains several sources, with spa- 78

tial positions on a grid. It contains seven columns and five rows 79

of LAT sources (i.e. 35 sources) with different power-law spec- 80

tra. The cube size is 161 × 161 × 31, with a total number of pho- 81

tons equal to 25 948, i.e. an average of 0.032 photons per pixel. 82

Figure 6 shows the 2D image obtained after integrating the sim- 83

ulated data cube along the z-axis. Figure 7 shows a comparison 84

between 2D-MSVST denoising of this image, and the image ob- 85

tained by first applying a 2D-1D-MSVST denoising to the input 86

cube, and integrating afterward along the z-axis. Figure 7 upper 87
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Fig. 7. Top, 2D-MSVST filtering on the integrated image with respectively a τ = 3 and a τ = 5 detection level. Bottom, integrated image after a
2D-1D-MSVST denoising of the simulated data cube, with respectively a τ = 4 and a τ = 6 detection level.

left and right show denoising results for the 2D-MSVST with1

respectively threshold values τ = 3 and τ = 5, and Fig. 7 bot-2

tom left and right show the results for the 2D-1D-MSVST using3

respectively τ = 4 and τ = 6 detection levels. The reason for us-4

ing a higher threshold level for the 2D-1D cube is to correct for5

multiple hypothesis testings, and to get the same control over6

global statistical error rates. Roughly speaking, the number of7

false detections increases with the number of coefficients being8

tested simultaneously. Therefore, one must correct for multiple9

comparisons using e.g. the conservative Bonferroni correction or10

the false discovery rate (FDR) procedure Benjamini & Hochberg11

(1995). As the number of coefficients is much higher with the12

whole 2D-1D cube, the critical detection threshold τ of 2D-1D13

denoising must be higher to have a false detection rate compa-14

rable to the 2D denoising. As we can clearly see from Fig. 7,15

the results are very close. This means that applying a 2D-1D de-16

noising on the cube instead of a 2D denoising on the integrated17

image does not degrade the detection power of the MSVST. The18

main advantage of the 2D-1D-MSVST is the fact that we recover19

the spectral (or temporal) information for each spatial position.20

Figure 8 shows two frames (frame 16 top left and frame 25 bot-21

tom left) of the input cube and the same frames after the 2D-1D-22

MSVST denoising top right and bottom right. Figure 9 displays23

the obtained spectra at two different spatial positions (112, 47)24

and (126, 79) which correspond to the centers of two distinct25

sources.26

5.2. Time-varying source detection27

We have simulated a time varying source in a cube of size28

64 × 64 × 128. The source has a Gaussian shape both in space29

and time. It is centered in the middle of the cube at (32, 32, 64);30

i.e. its brightest point is at this location. The standard deviation31

of the Gaussian is 1.8 in space (pixel unit), and 1.2 along time32

(frame unit). The total flux of the source (i.e. spatial and tempo-33

ral integration) is 100. We have added a background level of 0.1. 34

Finally, Poisson noise was generated. Figure 10 shows respec- 35

tively from left to right an image of the original source, the flux 36

per time frame and the integration of all noisy frames along the 37

time axis. As it can be seen, the source is hardly detectable in 38

Fig. 10 right. By running the 2D-MSVST denoising method on 39

the time-integrated image, we were not able to detect it. Then 40

we applied the 2D-1D-MSVST denoising method on the noisy 41

3D data set. This time, we were able to restore the source with a 42

threshold level τ = 6. Figure 11 left depicts one frame (frame 64) 43

of the denoised cube, and Fig. 11 right shows the flux of the re- 44

covered source per frame (dotted line). The solid and thick-solid 45

lines show respectively the flux per time frame after background 46

subtraction in the noisy data and the original noise-free data set. 47

We can conclude from this experiment that the 2D-1D-MSVST 48

is able to recover rapidly time-varying sources in the spatio- 49

temporal data set, whereas even a robust algorithm such as the 50

2D-MSVST method will completely fail if we integrate along 51

the time axis. This was expected since the co-addition of all 52

frames mixes the few frames containing the source with those 53

which contain only the noisy background. Co-adding followed 54

by a 2D detection is clearly suboptimal, except if we repeat the 55

denoising procedure with many temporal windows with varying 56

size. We can also notice that the 2D-1D-MSVST is able to re- 57

cover very well the times at which the source flares, although 58

the source is slightly spread out on the time axis and the flux of 59

the source is not very well estimated, and other methods such 60

as maximum likelihood should be preferred for a correct flux 61

estimation, once the sources have been detected. 62

5.3. Diffuse emission of the Galaxy 63

In this experiment, we have simulated a 720 × 360 × 128 cube 64

using the Galprop code Strong et al. (2007) that has a model 65

of the diffuse gamma-ray emission of the Milky Way. The units 66
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Fig. 8. Top, frame number 16 of the input cube and the same frame after the 2D-1D-MSVST filtering at 6σ. Bottom, frame number 25 of the input
cube and the same frame after the 2D-1D-MSVST filtering at 6σ.

Fig. 9. Pixel spectra at two different spatial locations after the 2D-1D-MSVST filtering.

Fig. 10. Time-varying source. From left to right, simulated source, temporal flux, and co-added image along the time axis of noisy data cube.

of the pixels are photons cm−2 s−1 sr−1 MeV−1. The gridding in1

Galactic longitude and latitude is 0.5 degrees, and the 128 energy2

planes are logarithmically spaced from 30 MeV to 50 GeV. A six3

months LAT data set was created by multiplying the simulated 4

cube with the exposure (6 months), and by convolving each en- 5

ergy band with the point spread function of the LAT instrument. 6
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Fig. 11. Recovered time-varying source. Left, one frame of the denoised cube. Right, flux per time frame for the noisy data after background
subtraction (solid line), for the original noise-free cube (thick-solid line) and for the recovered source (dashed line).

Fig. 12. Left, from top to bottom, simulated data of the diffuse gamma-ray emission of the Milky Way in energy band 171−181 MeV, noisy
simulated data and filtered data using the MSVST. Right, same images for energy band 9.87−1.04 GeV.

The PSF strongly varies with the energy. Finally we have created1

the noisy observations assuming a Poisson noise distribution.2

Figure 12 left shows from top to bottom the original3

simulated data, the noisy data and the filtered data for the4

band at energy 171−181 Mev. The same figures for the band5

9.87−1.04 GeV are shown in Fig. 12 right.6

6. Conclusion7

The motivations for a reliable nonparametric source detection8

algorithm to apply to Fermi LAT data are clear. Especially for9

the relatively short time ranges over which we will want to study10

sources, the data will be squarely in the low counts regime with11

widely varying response functions and significant celestial fore-12

grounds. In this paper, we have shown that the MSVST, associ-13

ated with a 2D-1D wavelet transform, is a very efficient way to14

detect time-varying sources. The proposed algorithm is as pow-15

erful as the 2D-MSVST applied to co-added frames to detect16

a source if the latter is slowly varying or constant over time.17

But when the source is rapidly varying, we lose some detec- 18

tion power when we co-add frames having no source and those 19

containing the sources. Our approach gives us an alternative to 20

frame-co-adding and outperforms the 2D algorithms on the co- 21

added frames. Unlike 2D denoising, our method fully exploits 22

the information in the 3D data set and allows to recover the 23

source dynamics by detecting temporally varying sources. 24
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