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Quentin Bernical†,‡, Xavier Joulia‡, Isabelle Noirot-Le Borgne†, Pascal Floquet‡,*, Pierre 

Baurens†, and Guillaume Boissonnet† 

† CEA, Liten, DTBH, F-38054 Grenoble, France 

‡ Université de Toulouse, INPT, UPS, Laboratoire de Génie Chimique, 4 allée Émile Monso, F-

31432 Toulouse, France 

‡ CNRS, Laboratoire de Génie Chimique, F-31062 Toulouse, France 

This work addresses the integrated design of the High Temperature Steam Electrolysis (HTSE) 

and Biomass to Liquid (BtL) hybrid process. The comprehensive gate-to-gate analysis includes 

BtL and hydrogen production on-site operations. Simulations are carried out using commercial 

process simulation software – ProSimPlus
®

 – to allow physical modeling as well as mass and 

energy balances; modeling is based on standard elementary and user modules and supported by 

various CEA (French Atomic Energy and Alternative Energies Commission) previous works. 

The framework for assessment is proposed. Considering productivity, efficiency, cost and 

environmental issues, five sustainability criteria are chosen: carbon matter yield; energy 
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efficiency; greenhouse gas emissions; electrolysis water use; levelized biofuels production cost. 

Simulations results verify that hydrogen input is almost doubling the biogenic carbon conversion 

into liquid biofuels. They bring out significant secondary energy saving for HTSE compared to 

standard process; and clear advantages over alkaline electrolysis considering technical and 

environmental criteria. HTSE coupling allows a sharp increase in productivity (biofuels/biomass) 

with a limited increase in cost and environmental impacts at almost constant primary efficiency. 

1. Introduction 

Transport undergoes an increase in energy consumption, consisting almost exclusively in 

petroleum products.
1
 This has a negative impact on major challenges of the energy system, such 

as GreenHouse Gas Emissions (GHGE), energy insecurity and depletion of resources. Biomass 

could address these issues and is the raw energy most considered regarding the substitution of 

oil.
2,3

 However the first-generation biofuels (using agricultural biomass) are criticized for their 

environmental impacts (mainly change of land use). They also compete with the agriculture food 

chain (land use, pressure on prices) and generate significant non-recoverable by-product. The 

second generation liquid biofuels (using lignocellulosic biomass from forest resources, and 

agriculture and forestry residues) are promising regarding substitution of petroleum: they offer 

both interesting energy efficiency and potential for GHGE cut.
3,4

 Additionally, the Biomass to 

Liquid (BtL) thermochemical route can produce fuels similar to conventional fuels with higher 

quality
5
; this allows to keep the current distribution network and internal combustion engines and 

thus to benefit from their maturity. This route is based on the gasification of the biomass 

followed by Fischer-Tropsch Synthesis (FTS), producing naphtha, gasoline, kerosene and diesel; 

so BtL fuels are also called FT biofuels. 
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However, lignocellulosic resources are significant but not plentiful: in Europe, the primary 

energy feedstock from forestry
6
 is about the third of the final energy consumption for 

transportation
1
. As a consequence it is necessary to use the biogenic carbon to the utmost. This 

increase in productivity is possible using optimized energy efficiency of the BtL processes, but 

also by providing extra hydrogen input. Hydrogen production coupled with BtL process is 

therefore studied.
7,8

 This interest is obvious referring to chemical equations: biomass gasification 

is roughly described by eq. (1)  

     (1) 

while desired FTS (producing mainly saturates 
5
) is described by eq. (2) for alkanes,  

    (2) 

with n belonging to [5, 20],   

which leads to eq. (3) for the BtL process.  

      (3) 

Only one-third of the biogenic carbon is valorized in biofuels. With extra hydrogen input, the 

process equation can be described by eq. (4) instead.  

     (4) 

Then, by adding extra hydrogen, two-third of the biogenic carbon can theoretically be valorized 

in biofuels. 

For consistency, primary energy to produce hydrogen has to be in line with energy issues such 

as GHGE, this is possible considering electrical power due to numerous alternatives in raw 

energy. Water electrolysis produces both hydrogen for extra input and oxygen for gasification, in 

the required one half ratio shown above (eq. (5)).  

          (5) 
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Furthermore, water reuse from BtL could theoretically lead to full matter integration for the 

hybrid process (eq. (6)). Note that, in this case, there is still no net extra matter input to the 

process, only extra energy as electrical power is required.  

         (6) 

Contrary to standard alkaline electrolysis, High Temperature Steam Electrolysis (HTSE) can 

use heat at different temperature levels, both for water vaporization and for the high temperature 

electrochemical reaction, so it allows the recovery of free heat from BtL
7
. HTSE also allows to 

reuse easily the FTS coproduced water (and so to get close to eq. (6)) due to inherent handling of 

hydrocarbons and additionally it offers very high secondary efficiency
9
. Figure 1 sums-up these 

relevant synergies of HTSE coupling to BtL process. 

 

Figure 1. Principle and interest of BtL and HTSE hybrid process to produce biofuels. 

This paper aims at defining the framework for assessment, validation and quantification of the 

relevance of the HTSE and BtL hybrid process regarding sustainability, suitable for instance for 

multicriteria optimization. Both integrated design and further optimization require a detailed 

modeling: selected technologies and method used are first presented through a brief description 
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of the modeling, in the next section. Sustainability criteria and matching performance data of the 

base case integrated design are then discussed. Finally the proposed framework and a 

comparison with the standard BtL process are summed-up. 

2. Process description 

2.1 Integrated process 

The BtL process is based on two main steps: gasification of the biomass into syngas then FTS 

of desired fuels: naphtha, gasoline, kerosene and diesel. Cobalt catalyst is chosen for FTS in 

order to favor the diesel range, most used in Europe
1
. In addition, the complete process includes 

preparation or recovery operations that impact process performance data. Operations involving 

heat or matter are simulated, from raw biomass to liquid fuels. Selected technologies are shown 

in the block diagram Figure 2 (EFR: Entrained Flow Reactor, WGS: Water Gas Shift). 

Regarding extra-hydrogen input and alternate technologies shown in Figure 3, base case is used 

for the results presented here with three options for hydrogen ratio adaptation: HTSE, Alkaline 

Electrolysis (AE) and WGS. 

 

Figure 2. Block diagram of the standard BtL process. Material streams in italics, operations in 

bold, technologies underlined. 
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Figure 3. Block diagram of the integrated HTSE-enhanced BtL process. Material streams in 

italics, operations in bold, base case technologies underlined. 

Simulations are carried out using a commercial process simulation software (ProSimPlus
®

) to 

allow physical modeling, including mass and energy balances as well as thermodynamic 

computing. Concerning reactions modeling, equilibrium is considered when possible (i.e. 

temperature (EFR and combustions) or catalyst (reforming, WGS) provides near-equilibrium 

output), accounting for potential changes in the reaction conditions; in case of non-standard 

kinetics (torrefaction, FTS, hydrocraking), phenomenological modeling at fixed conditions and 

conversions is used; HTSE is managed by user-built module. The process model is built from 

standard elementary and user modules, supported by various CEA (French Atomic Energy and 

Alternative Energies Commission) previous works, including modeling work and selection of 

relevant elementary processes and technologies 
8,10,11

. Modeling is briefly presented in the next 

section. 

2.2 BtL process 
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Fixed characteristics of the raw material is a major simplification, commonly assumed for 

process analysis. Wood is considered as biomass; it is 51% C, 6% H, 41% O, 2% N and 35% 

water (mass, dry basis) with a Lower Heating Value (LHV) of 18 MJ/kg. 

First, raw biomass is dried by direct contact with flue gas or heated air. This type of drying is 

the most widely used industrially, due to its maturity and low cost.
12

 Drying is modeled by the 

mixing of process exhaust gases and wet biomass followed by separation of steam and flue gas 

from the biomass. For this first order modeling, output residual moisture of the biomass, output 

steam and flue gas temperature (over temperature from dew point), and input hot gas temperature 

(through the use additional fresh air) are set to match standard values. Secondly, torrefaction
13

 is 

used to lower the energy consumption of biomass grinding. Mechanical grinding is necessary to 

achieve the required particle size for fluidization of biomass for feeding into the EFR. A fraction 

of the biomass is converted into a poor gas mixture, usually burned to provide energy to the 

reaction, resulting in a slight loss of biogenic carbon. Modeling includes fixed reaction at 550 K, 

torrefied wood moisture uptake and gas combustion. 

Adiabatic pressurized oxygen-blown EFR is used for gasification. The thermodynamic 

equilibrium and the operating temperature (1600-1900 K) avoid the formation of methane and 

thus maximize the conversion of biomass into useful compounds for the FTS. It also avoids the 

formation of particulates, all this in a single step. In addition, working under pressure is 

particularly useful for large installations.
11,14

 These benefits can be found on the production cost, 

and this reactor benefits from development for the coal-based integrated gasification combined 

cycle. Oxygen is recovered from electrolysis if available, or supposed to be otherwise produced 

by an Air Separation Unit (ASU). Modeling includes oxygen compression (if produced from 
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ASU), oxygen demand computing (to meet the temperature), CO2 compression, steam generation 

and equilibrium reaction at 1673 K, 3 MPa. 

Between gasification and synthesis, it is necessary to process the gas in order to comply with 

the requirements of the FTS.
15

 First gas quenching aims at fixing syngas composition. Modeling 

includes water consumption computing (water quench) to reach 1170 K and fixed sudden WGS 

reaction. Radiant heat exchanger or recirculating cold raw syngas can also be considered as dry 

quench in order to minimize sudden shift reaction. Considering the gas cleaning step, only CO2 

(diluent) removal is modeled. Both chemical (amines) and physical (methanol) washings are 

considered. Chemical washing generates a high heat demand (set at 420 K
16

) for solvent 

regeneration while physical washing consumes more electrical power. Modeling includes 

separation of CO2 and water from the syngas as well as heat and electrical power consumption. 

Cobalt catalyzed FTS requires near stoichiometric H2/CO feed and works at around 500 K, 

temperature range for efficient liquid production is narrow. Modeling of the reaction is 

performed with a fixed α parameter (the probability of propagation instead of termination in the 

polymerization process, typically alkanes' growth), and includes short-loop tail gas recycling as 

well as products separation. Some works
15

 offer correlations for α, but the validity range is 

narrow and values obtained are not in agreement with state-of-art FTS regarding liquid 

production. Therefore α is set in this work at 0.92, value which is both currently achievable
17

 and 

ensuring a good conversion into liquids
14

. Products are modeled as alkanes up to C20H42, while a 

single component is used for wax (C20+). 

Finally too light (tail gas) or too heavy (wax) products from the FTS are valued given that they 

can contain up to a quarter of the introduced carbon each. Wax upgrading is performed by 

hydrocracking long-chains molecules into liquids and gas. Modeling includes a fixed reaction 



 9 

(alkanes’ distribution) and hydrogen consumption. The tail gas recycling improves performance 

on the system by reinjecting the biogenic carbon upstream.
18

 The tail gas is reformed using 

conventional steam reforming. This reaction requires high temperature heat (1100 K); modeling 

includes steam generation and equilibrium reaction. As with any recycling, a part must be purged 

to prevent the accumulation of inerts (mainly nitrogen from biomass itself) and it is burned to 

provide high temperature heat. 

2.3 Hydrogen adjustment 

An adjustment of hydrogen is required to bring the H2/CO ratio of the synthesis gas (lower 

than 1 out of gasification) to stoichiometric conditions (higher than 2) for the cobalt catalyzed 

FTS. This adjustment can be either a conversion of a part of the syngas into H2 and CO2 using 

WGS reaction or an extra hydrogen input to the process in order to increase the carbon yield. 

Using steam reforming of natural gas to produce hydrogen creates GHGE. With low-carbon 

electricity (e.g. renewable or nuclear power), the Alkaline Electrolysis (AE) (consuming only 

electricity) can reduce these GHGE, the downside is an increase in production cost and a poor 

energy yield with generation of waste (80°C) heat
9
. Finally, HTSE (using heat both to vaporize 

the water and to the electrochemical reaction at 1000 K) brings the advantage of better energy 

efficiency of the process, but with an increased cost. Modeling of HTSE includes steam 

generation, water consumption and excess oxygen production computing, and HTSE reaction 

with a user-build module, at 3 MPa and with hydrogen production matching the consumption for 

syngas adjustment. WGS, NG reforming (not presented here) and AE can be considered as 

touchstones for HTSE performance and suitability. 

2.4 Energy calculations 
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Electrical power consumption is obtained from consumption of pumps and compressors as 

well as electrolysis and ASU if used. Concerning heat, heat integration
19

 is performed as part of 

the simulation from the results obtained simulating the complete flowsheet, which are input-

output temperatures and enthalpy changes along the operations (steam generations, reactions, …) 

involving heat in the process. Thus, contrary to matter computing, heat integration is computed 

for the hybrid process, as shown in Table 1. 

Table 1. Heat and matter integration of BtL and HTSE hybrid process: computing issues. 

 HTSE  BtL Note 

H2, O2 
Produces required H2 

and additional O2 

 

 

Requires H2 

aand also O2 
Excess O2 

H2O 
 internal reuse 

and reuse from FTS 
 

Requires and produces H2O 

 internal recycling 

(treatment required, not simulated) 

HTSE additional 

water use 

computed 

Heat 
 

Complete heat integration performed 

Net heat 

exchange 

is from 

BtL to HTSE 

 

Figure 4 shows the importance of heat integration for the whole process while major sources 

and HTSE thermal coupling is studied later (Figure 5). Hot utility is considered to be produced 

using natural gas; cold utility is valued by producing electrical power (with 40% exergetic 

efficiency) if it is higher than 373 K, modeling a steam turbine (slight power loop in Figure 4). 

As the standard pinch analysis, this integration is a techno-economic sub-optimization based on 

the parameter  (minimum temperature difference in exchangers), supposed to offer a trade-

off between investment cost and energy savings: temperatures of sinks and sources are corrected 
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using half matching typical fixed  values
19

. This method allows targeting both utilities and 

capital cost without explicit heat exchange network. 

 

Figure 4. Heat integration for the BtL and HTSE hybrid process: Grassmann (exergy flow) 

diagram. Basis (100%) costing inputs only (Biomass, Power and Natural Gas); exergy 

destruction in italics. 

3. Criteria and preliminary analysis 

In order to study the relevance of the HTSE and BtL hybrid process, issues of second-

generation biofuels bring us to select several criteria as performance indices or compliance 

constraints. Matching key points of the process are discussed using the base case results, in order 

to provide a relevant framework and analysis for further multicriteria optimization, not 

considered in this study. 

3.1. Energy 

The first criterion needed for an energy transformation process is the energy efficiency of such 

a process. This technical criterion is used in all publications on the BtL process, expressed in 

energy (lower or higher heating value for fuels) or, in some papers, exergy (work equivalent)
18

. 

Exergy is particularly useful to point out irreversibilities, so it is relevant for a given process 

analysis. It also allows to value heat, that is why it is used in Figure 4. Given that no steam 

credit is considered
21

 for the processes under study, only high-exergy inputs/outputs are 

involved, so energy does not distort the efficiencies. Additionally, exergy of fuels is higher than 

LHV (biomass: 113%, liquid fuels: 107%
22

) but exergy equals power for electricity. Thus, 
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exergy inputs/outputs data favor the use of electrical power over biomass; we choose not to use 

exergy in studying this electrical power hybrid process relevance. Finally, we must account for 

upstream electrical power production and inferred technical energy efficiency of this prior 

conversion 
21

. The energy criterion is then expressed as the yield of equivalent primary energy: 

the primary energy of a fuel (biomass, produced liquid biofuel) is taken as its LHV; electrical 

power is affected by a conversion efficiency
7,16

, fixed here at 1/2.6 or 39%. Considering 

terminology, primary energy is found in nature (e.g. wind, biomass or natural gas); on the 

contrary secondary energy has been converted (e.g. electricity) and thus it has been affected at 

least once by a conversion efficiency; primary energy is sometimes referred as thermal value
7
. 

Primary efficiencies are then computed according to eq. (7) using net costing inputs and outputs 

(Figure 4): biofuels are outputs; and biomass, electrical power and natural gas are inputs. 

        (7) 

Regarding heat integration, the composites curves (Figure 5) plot cumulative heat demand and 

heat excess versus availability temperature for process operations. They show two pinch points: 

heat integration is limited in two different points; further integration would require acting on 

several operations. Contrary to expectations, the heat of FTS is not required to HTSE steam 

generation: in the studied case, the steam can be generated by the heat of syngas cooling from 

gasification. Otherwise, i.e. to achieve heat integration between these two operations, adjusting 

FTS temperature or HTSE pressure is needed. For example, a synthesis at 500 K allows 

producing hydrogen by HTSE at 1.8 MPa maximum (taking into account pressure losses and 

difference temperature in exchangers); to avoid further compression of hydrogen, EFR should 

operate at 2.3 MPa. This analysis addresses the first (500 K) pinch point. Regarding the second 

pinch point, high temperature heat consumption due to HTSE reaction can be supplied either by 
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heat or by electrical power (Joule effect), given that from a thermodynamic point of view only 

free Gibbs energy is required as electrical power for electrolysis. The results presented here use 

high temperature heat for the HTSE reaction, that is why heat consumption appears in the cold 

composite curve. On the contrary, by fully supplying reaction enthalpy by electrical power, the 

surface is reduced (and so capital cost) but it would not be possible to value high temperature 

heat from a process source (purge combustion). Thus the flexibility of HTSE regarding pressure 

and heat behavior allows more advanced heat integration. 

 

Figure 5. Heat integration for the BtL and HTSE hybrid process: composite curves with main 

sources labeled. 

Regarding HTSE efficiency, standard process secondary (i.e. gate-to-gate) efficiency is 46% 

while hybrid process efficiency is 59%. The specific or marginal
23

 efficiency of HTSE, 

calculated as additional energy in produced biofuels against additional input energy compared to 

the standard process, is 89% (using exergy, it would reach 95%). This point illustrates how 

efficient the HTSE is. However, accounting for upstream electrical power production efficiency 

(39%), primary specific efficiency of HTSE is cut down to 36%. Recalculated breakeven 

electrical power production efficiency is 47%: for more efficient production (e.g. renewable is 

conventionally 100%) the hybrid process is more efficient than the standard one, but for less 
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efficient electrical power generation (as in this study) the HTSE and BtL integrated process is 

considered less efficient than the standard process. 

3.2. Biogenic carbon 

The main function of the coupling is to enhance the conversion of biogenic carbon into liquid 

biofuels, so a yield is required as a technical performance criterion, biomass as input and fuels as 

output. The process basically removes oxygen from the input, leading to limited mass yield: eq. 

(6) mass yield is 40%. Biogenic carbon yield (also called carbon utilization 
7
) is therefore 

selected as criterion, maximum biogenic carbon yield being 100% (in this case the process 

indeed requires net additional matter input as hydrogen element). Flow diagrams are presented 

for the standard and HTSE coupling case in Figure 6. 

 

Figure 6. Biogenic carbon flows for the standard and HTSE coupled BtL process, CO2 

formations emphasized. 

CO2 formations translate in loss of energetic biogenic carbon; roughly one-third of input 

biogenic carbon remains as material for the produced biofuel in the standard process. The loss 

avoidable using extra hydrogen input instead of WGS adjustment is roughly an additional third 

of the input biomass. Water quench also induces an important shift, that is why dry quench is 

proposed as alternative in Figure 3 in order to save a sixth of biogenic carbon as support for fuel 

(not studied here). Biogenic carbon losses at pretreatment (torrefaction) and gasification are due 

to the chosen EFR technology; on the other hand this technology offers to perform CO2 reuse for 
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the injection of biomass, and to recycle 
18

 tail gas thanks to minimum inert (nitrogen) input in the 

process. Due to remaining CO2 in the washed syngas in the standard case there is almost no net 

CO2 formation for tail gas purge and reforming. 

3.3 GHGE 

The impact of biofuel in GHGE is the subject of much research, the change of land use is 

particularly discussed and impacting. Additionally it is questionable whether the biomass is a 

renewable energy or not. These variables are outside the scope of this work: it is assumed that 

the biomass available at the entrance of the process and biogenic CO2 emitted during 

combustions (in the process or as biofuel) are not responsible for any GHGE. Additionally, 

avoided emissions are directly related to productivity (or in this study, the conversion of biogenic 

carbon), therefore raw emissions are preferred. GHGE are calculated for the process from natural 

gas consumption for hot utility and for electrical power production from indirect emissions. 

GHGE due to electrical power highly impact the relevance of the hybrid process: if they are 

low (nuclear or renewable), the HTSE-coupled BtL process offer biofuels suitable with European 

Union requirements 
3
; for moderate GHGE due to electrical power (> 150 geq fossil CO2 / kWh) the 

produced biofuels can't meet European Union 2018 requirements; and finally for high GHGE 

(> 400 geq fossil CO2 / kWh) the hybrid process leads to higher GHGE than fossil fuels (Figure 7). 

This is another example of how the relevance of the HTSE and BtL hybrid process depends on 

electrical power characteristics. 
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Figure 7. Raw GHGE for the standard and HTSE coupled BtL process, versus GHGE of 

electrical power. French and German electricity mix
1,24,25

, and European threshold values are 

shown. 

3.4 Water use 

Water consumption of energy processes is under recent and growing concern. Fresh water 

consumption is used in life cycle analyses and water consumption due to cooling (cold utility of 

heat integration) is presented in recent studies
20

 using a process engineering approach. As 

electrolysis uses water as raw material, additional fresh water consumption due to electrolysis is 

accounted here in order to compare the hybrid process from the standard BtL process. Focusing 

on matter, water consumption due to upstream electrical power production or to process cooling 

is not accounted here. The process is always globally a net producer of water due to moisture of 

raw biomass; the additional water consumption is calculated then without waste water recycling 

facilities. 

Consumption of fresh water by HTSE can be notably reduced with simple reuse of the water 

byproduced by the FTS. This water meets specifications for HTSE catalysts due to harsh 

specifications for FTS
15

 and organics are harmless for HTSE. 

3.5 Cost 
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The cost criterion is included in almost all studies of the process. Indeed the production cost of 

the fuel must be given special attention, as an indicator of economic suitability of the process; 

even though the confidence on the calculated production cost is narrow due to sensitivity to cost 

assessment parameters. As standard economic evaluation, the levelized cost is calculated from 

annualized investment and operating costs.
11,26

 Capacity based correlations are applied for a 

100 tanhydrous biomass / h or 500 MWbiomass heat power plant; as a consequence capital expenditure 

(capex) cost of the integrated plant is almost twice as high as for the standard plant, matching the 

increase in productivity. Biomass price is 70 €/t, power 70 €/MWh and natural gas 35 €/MWh.  

4. Results 

Simulations have been carried out for the proposed base case (Figure 3) for standard BtL 

process and electrolysis. Two technical criteria (yield or efficiency; to maximize) are used for the 

two main functions of the process and three other criteria (expressed per produced liquid 

biofuels) are presented (the standard economic criterion and two environmental criteria). 

Computing issues are summarized in Figure 8. Base case results (Table 2) are consistent with 

expectations: the use of electrolysis can nearly double the conversion of biogenic carbon, but this 

leads to lower performance in terms of environmental and economic criterion; the HTSE use can 

limit the drop in performance compared to the AE. Concerning energy, the secondary energy 

efficiency increases with HTSE but the equivalent primary energy efficiency is lower (39%) than 

the standard BtL process (42%). This is due to poor efficiency of electrical power production: the 

criterion in equivalent primary energy is indeed necessary. Concerning GHGE emitted by the 

process, they are strongly linked to power consumption in case of electrolysis, given that little 

natural gas is used compared to electrical power. 
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Figure 8. Framework for BtL and HTSE hybrid process evaluation. 

Table 2. Comparison of standard and HTSE hybrid BtL process. 

 Standard BtL BtL + HTSE 

Biogenic carbon yield 33% 62% 

Primary energy efficiency 42% 39% 

GHGE (geq fossil CO2 / kWhliquid biofuels) 14 41 (59 for AE) 

Additional water use (kg / GJliquid biofuels) reference basis +12 (+51 without water reuse) 

Levelized cost (€2011, France / Lliquid biofuels) 1.4 (capex: 0.9 B€) 1.5 (capex: 1.7 B€) 

 

The biogenic carbon yield and additional water use are the most accurate results, directly based 

on flowsheet simulation. However they still suffer from major assumptions, such as fixed 

moisture (35%) and chosen LHV (18 MJ/kg) of the input biomass. Primary efficiency, GHGE 

and levelized cost strongly depend on the parameters used for their calculation. Regarding 

GHGE and primary efficiency these parameters are electrical power characteristics, chosen here 

to account for French industrial electricity mix. 
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Conclusion 

This paper presents the comprehensive framework for the assessment of HTSE-enhanced BtL 

process regarding sustainability. The challenges of the energy system and particularly second-

generation biofuels lead to select five criteria: carbon matter yield; energy efficiency; greenhouse 

gas emissions; water use; levelized biofuels production cost. Results are presented for base case 

flowsheets; they allow discussing key points of the process. 

The first concluding elements in studying integrated HTSE-BtL process verify that hydrogen 

input is almost doubling the biogenic carbon conversion compared to the standard BtL process. 

They bring out significant secondary energy saving for HTSE; and clear advantages over AE 

considering technical and environmental criteria.  

HTSE is therefore suitable and promising, although its performance data is strongly linked to 

electrical power characterization. With a clean (< 150 geq fossil CO2 / kWh) and efficient (> 50%) 

production, HTSE coupling offer a more efficient biofuel production with limited environmental 

impact (< 100 geq fossil CO2 / kWh, +12 kg / GJliquid biofuels) and over cost 

(0.1 €2011, France / Lliquid biofuels) while almost doubling the productivity (biofuels/biomass). On the 

contrary GHGE intensive (> 400 geq fossil CO2 / kWh) electrical power production would lead to 

more GHGE than fossil fuels. 

Finally the results presented suffer from major assumptions for estimated or average 

parameters, such as input biomass or electricity characteristics. For a specific case study, these 

parameters have to be chosen matching situations and sensitivity analysis have to be carried out 

matching inputs data accuracy; statistical evaluation would also be appropriate. Regarding the 

process modeling, multicriteria optimization would make the proposed comparison more 

accurate by providing adapted operating points for the integrated design under study; this is 
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currently under study. Further work would take into account multi-period issues (both 

characterization and modeling) in order to study the suitability of the integrated process with 

inconstant electrical power. 
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