
Throughput constrained parallelism reduction in

cyclo-static dataflow applications

Sergiu Carpov, Löıc Cudennec, Renaud Sirdey

To cite this version:

Sergiu Carpov, Löıc Cudennec, Renaud Sirdey. Throughput constrained paral-
lelism reduction in cyclo-static dataflow applications. International Conference
on Computational Science (ICCS 2013), Jun 2013, Barcelona, Spain. 18, pp.30-
39, 2013, Proceedings of the International Conference on Computational Science,
ICCS 2013. <http://www.sciencedirect.com/science/article/pii/S1877050913003098>.
<10.1016/j.procs.2013.05.166>. <hal-00832508>

HAL Id: hal-00832508

https://hal.inria.fr/hal-00832508

Submitted on 10 Jun 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.inria.fr/hal-00832508

International Conference on Computational Science, ICCS 2013

Throughput constrained parallelism reduction in cyclo-static
dataflow applications

Sergiu Carpov∗, Loïc Cudennec, Renaud Sirdey

CEA, LIST,

Embedded Real Time Systems Laboratory,

Point Courrier 94, 91191 Gif-sur-Yvette Cedex, France.

Abstract

This paper deals with semantics-preserving parallelism reduction methods for cyclo-static dataflow applications. Parallelism re-

duction is the process of equivalent actors fusioning. The principal objectives of parallelism reduction are to decrease the memory

footprint of an application and to increase its execution performance. We focus on parallelism reduction methodologies con-

strained by application throughput. A generic parallelism reduction methodology is introduced. Experimental results are provided

for asserting the performance of the proposed method.

Keywords: Parallelism reduction; dataflow programming; CSDF; actor fusion

1. Introduction

Nowadays, much effort is dedicated to the study of many-core computing systems, beginning with hardware archi-

tecture design issues and ending with software programmability aspects. The main difficulty of efficient utilization of

parallel systems resides in their programming, both in terms of conception time and as well as execution performance.

The dataflow model of computation has been purposely introduced to facilitate parallel systems programming.

A dataflow application is a network of actors communicating through unbounded, unidirectional FIFO channels

and exclusively through this channels. There are many instantiations of dataflow programming models (SDF, CSDF,

BDF, etc.) [1]. One of these is the cyclo-static dataflow (CSDF) graph [2]. CSDF model is particularly well suited

for programming embedded systems because several important application properties (absence of deadlock, bounded

memory execution etc.) can be proven. Let A be a CSDF application. The main goal of this study is to obtain a

new application A′ which is semantically equivalent to the initial application (i.e. application A′ has to produce the

same results when applied to the same input data) but with fewer “parallelism” in it. We call this action parallelism

reduction. We are allowed to change the CSDF network topology (add/delete actors and communication channels)

as long as the modified application preserves its semantics. The actors are considered black boxes so that we are not

allowed to modify actor code and interface.

The advantages of parallelism reduction are: memory footprint of application binaries decreases (less redundancy

in code/data loading), program compilation is faster, scheduling overhead is lower and by consequence system times

∗Corresponding author

Email address: sergiu.carpov@cea.fr (Sergiu Carpov)

1

are smaller etc. These advantages are even more important in embedded systems where on-chip memory size is small

and scheduling algorithms are sensible to the number of actors. Unlike applications dedicated to high performance

computing, the sizing of applications in embedded systems does not only rely on performance goals. It has to meet

the following requirements: (i) being parallel enough in order to offer the desired application throughput and (ii)

being small enough in order to fit the memory footprint of the target chip. Therefore, application sizing in embedded

systems can be seen as a trade-off between performance and memory consumption. As for every complex application

design, we think this trade-off should be transparently managed by the compiler.

ΣC is a programming language which allows to easily implement CSDF applications, refer to [3] for more details.

Besides providing tools and methods for dataflow graph description, the ΣC language introduces a series of system

actors which intend to facilitate the programmers’ job. The system actors allow to read, write and reorganize streams

of data tokens. One can distinguish the split and the join system actors. The main purpose of the ΣC language is

to make abstraction of the used hardware architecture. That is to say the developer expresses the maximum level

of parallelism in the conceived application and the compiler adapts (reduces) it to the specifications of the chosen

architecture. This is quite a different and uncommon approach regarding regular parallel programming languages.

Our work is particularly aimed at parallelism reduction in ΣC applications.

The parallelism reduction problem is not well known to the literature. One can mention the paper [4] to which

our work resembles the most. The authors describe a pattern substitution based method for parallelism reduction in

ΣC applications. Initially, the instantiations of a predefined set of patterns are matched in the application. Afterwards

each instantiation is replaced by an equivalent pattern of smaller size. The size of the replacement pattern is derived

from a global reduction factor. Their goal is to bound the number of actors per processing core to a predefined limit.

While reducing the memory footprint, this approach does not ensure that the execution throughput is preserved.

Although in a different context, the authors of the StreamIt [5] dataflow language mentioned about the significance

of parallelism reduction in dataflow applications. They use task fusion [6] to adapt application granularity to the target

hardware architecture. A limitation of their work is that the tasks must be either horizontal neighbors (pipeline) or

vertical neighbors (split-join) in order to be fusioned. Task fusion is not limited to equivalent tasks.

Similar approaches have been studied in the field of FPGA synthesis. The authors of [7, 8] propose a pattern-

matching based method for reducing FPGA resource usage at the price of an increased circuit latency. In the work [9]

several heuristics for maximizing FPGA resource sharing are studied.

In this paper we introduce a generic parallelism reduction method. The proposed method does not depend on a

predefined set of patterns and is not limited to horizontal or vertical actor fusion. It reduces the inherent application

parallelism in function of actor execution times and application throughput constraints. In what follows we firstly

introduce some preliminary notions and the context of our problem, afterwards we describe the generic parallelism

reduction methodology and provide some computational results, finally, the last section concludes the paper.

2. Preliminaries

A CSDF application is denoted by A = (T, E) where T is the set of actors and E is the set of communication

channels. The smallest unit of data which traverses a channel is called a token. The actors have several input and

output ports. The number and the type of these define the actor interface. An actor is simply a piece of code that reads

data from input ports, treats it and produces data on output ports. A communication channel connects two actor ports.

Each actor is executed repeatedly in a finite number of cycles. A cycle can begin only when the required quantity of

tokens is present on its input channels. In each cycle a different quantity of tokens is consumed/produced on each

input/output channel by the actor. The quantity of tokens consumed/produced on a channel is, respectively, referred

to as the cycle input degree and as the cycle output degree. The input/output degree of an actor on a channel is the

aggregated quantity of cycle input/output degrees on this channel.

A vector ~r, ~r =
[

r1, r2, . . . , r|T |
]

, is a repetition vector for a CSDF application if rt gives the number of invocations

an actor t must perform until the application returns to its initial state. By application state we mean equal token

number on each channel. The repetition vector can be found by solving CSDF balance equations [2]. This vector

plays an important role in CSDF graph consistency, liveness (absence of dead-locks) and static scheduling.

Often in the context of embedded systems a dataflow application must be able to treat input data streams with a

given throughput (e.g. audio/video streams with predefined bit-rates). System throughput is defined as the quantity

2

of data treated per unit of time. Hereafter we use an equivalent measure - actor goal frequency - which represents the

number of actor executions per time unit. Let ξt denote the goal frequency of an actor t. Without loss of generality we

suppose that only a single actor p has a predefined goal frequency ξp (usually input/output actor). It is obvious this

goal frequency propagates to other application actors. The goal frequencies of actors are proportional to repetition

vector values. Suppose, for example, an application in which an actor has a repetition value 2 and have to be executed

30 times per second, then an actor with a repetition value 3 will need to be executed 45 (= 3/2 · 30) times per second.

The application goal frequency ξA is defined as the ratio between the predefined goal frequency ξp and the repetition

value rp of the corresponding actor, i.e. ξA = ξp/rp. In this case the goal frequency of any actor t can be computed

using relation ξt = ξA · rt.

Goal frequencies are important for the execution of embedded dataflow applications. They permit to assert a priori

if an application can be executed or not on a given hardware platform. This is done by comparing the goal frequency

of each actor to its execution time inverse. An application A = (T, E) can be executed only if relation (1) is verified for

any actor t, t ∈ T , where τt denotes actor t execution time. This constraint results from the fact that the goal frequency

of an actor must be smaller than its maximal execution rate (execution time inverse).

ξt ≤ τ
−1
t (1)

In ΣC applications instances of the same actor are called equivalent actors. Equivalent actors perform the same

computation but on different data streams. Two or more equivalent actors can be merged together1. The corresponding

input and output data streams are “merged”. The goal frequency of the resulting actor is the sum of initial goal

frequencies. This goal frequency must satisfy relation (1). The merge of equivalent actors represents a parallelism

reduction method. The semantics of the modified application does not change. Parallelism reduction is particularly

well suited for ΣC applications because of the high parallelism level that the programmer is able to express.

3. Generic parallelism reduction

In this section we describe a generic parallelism reduction methodology based on equivalent actor merge. The

inherent data parallelism present in a CSDF application is reduced to a level at which goal execution constraints

remain satisfied.

3.1. Split and join actors

A split is an actor with one input port and n output ports. To each output port k is associated a production rate pk,

pk ∈ N
+. A split is executed in n cycles. During the k-th execution cycle the split takes pk tokens from its input port

and sends them to the k-th output port. After the n-th pn-token packet has been transfered the process starts over again

(round-robin behavior). A split with n outputs and different production rates is denoted S (n, p1, p2, . . . , pn).

A join is an actor which has n input ports and a single output port. As previously, for each input port k of the

join a consumption rate ck, ck ∈ N
+, is defined. A join actor is executed in n cycles. At cycle k the join takes ck

tokens from the k-th input port and sends them to its output port. After the n-th cn-token packet has been transfered

the process starts over again (round-robin behavior). A join with n inputs and different consumptions rates is denoted

J (n, c1, c2, . . . , cn).

3.2. Merge of equivalent actors

Let S , S =
{

t1, . . . , tn
}

, be a set of equivalent actors. Suppose ri is the number of times actor ti is executed during

one iteration of the CSDF application, i.e. ri is the repetition vector value for actor ti. Without loss of generality

we suppose that the actors have a single input port and a single output port. The input and output degrees2 of the

ports are d− and respectively d+. Also let us denote the channels connected to actors input ports with α1, . . . , αn and

respectively to actors output ports with β1, . . . , βn. Refer to Figure 1a for an illustration.

1We must note that equivalent actors cannot be merged together unless they are stateless. An actor is stateless if it uses data only from the input

ports and does not have state variables.
2The input and output degrees of all actors coincide because they are equivalent.

3

(a) A set of equivalent

actors.

(b) Merged actors.

Figure 1: Merge of a set S of equivalent actors.

The set of equivalent actors can be merged into a single actor denoted tS . This is done by (i) removing the actors

t1, . . . , tn and adding an actor tS which has the same code and interface, (ii) the input channels α1, . . . , αn are time-

multiplexed by a join actor J (n, c1, . . . , cn) and (iii) the output channels β1, . . . , βn are time-demultiplexed by a split

actor S (n, p1, . . . , pn). In Figure 1b a merge of equivalent actors is illustrated. In what follows we describe how the

parameters, ci, pi, of join and split actors are found.

After the merge operation, the number of data tokens taken from an input channel αi by the join actor must induce

an integral number of actor tS executions. Otherwise an incoherence in the contents of data packets treated before

and after the merge will be created. In order to avoid this incoherence d− has to be a divisor for ci. Let ki denote the

quotient of this division, i.e. ci = ki · d
−. The data produced on channel βi must originate from executions of actor

tS on data consumed from the channel αi, so to ki consumptions on channel αi must correspond ki productions on

channel βi. The split parameters must verify pi = ki · d
+.

The rates at which data is consumed from channels αi and produced to channels βi should not change after the

merge operation, otherwise an incoherency in the application is created. Consumption rate before the merge operation

on channel αi is ri ·d
−. After the merge, the consumption rate is rJ · ci = rJ · ki ·d

−, here rJ denotes the repetition value

of the join actor. These two rates (before and after merge) must be equal (i.e. ri · d
− = rJ · ki · d

−). The repetition value

rJ must satisfy relations:

ri = ki · rJ , ∀i = 1, . . . , n,

thus rJ have to divide all ri-s.

The quotients ki are computed given a value for rJ . The best choice for rJ is the greatest common divisor of

repetition values:

rJ = gcd
i

(ri)

We could also use the trivial solution rJ = 1. The disadvantage of the latter, compared to the greatest common divisor

one, is that join input degrees ci will have larger values and consequently the CSDF edge buffers will potentially

augment in size.

To sum up, initially we compute the quotients ki using equation (2) and then the input degrees ci = ki · d
− of join

actor and the output degrees pi = ki · d
+ of split actor for any i = 1, . . . , n.

ki =
ri

gcd j

(

r j

) (2)

For the case of equivalent actors with more than one input and/or output ports the procedure is practically the same,

except that a join actor is added for each input port and a split actor for each output port. The input and output degrees

of join and split are computed equivalently using ki.

4

Figure 2: Deadlock due to invalid multiplexing order.

3.3. Parallelism reduction methodology

As we have seen in the previous subsection a set of equivalent actors can be merged together without changing

application semantics. Here, we describe a methodology for reducing the parallelism of an entire CSDF application

using equivalent actor merge operations.

Initially application actors are partitioned into sets of equivalent actors, i.e. instances of the same actor are grouped

together. The sets of equivalent actors containing only one actor are directly discarded as no parallelism reduction is

possible. The sets containing more than one element are kept for a potential parallelism reduction.

Let S =
{

t1, . . . , tn
}

be a set of equivalent actors found above. The set S is split into m partitions S 1, S 2, . . . , S m,

which satisfy goal execution frequency constraints. The partitioning procedure is described in more details in the next

subsection.

The actors from each partition S i are merged into a single actor tS i . The corresponding input and output ports

are time-multiplexed and respectively time-demultiplexed. The multiplexing order is i1, i2, . . . , i|S i |. This order should

verify the following property: for any couple of actors tik and til if tik ∈ anc
(

til
)

then ik < il. Here anc (t) is the set

of ancestors of actor t in the CSDF graph3. If the last condition is not satisfied the application will deadlock. For

example, suppose the application illustrated in Figure 2 (top). The reduction illustrated in the bottom part uses an

invalid multiplexing order. The join actor deadlocks because no data is available on channel α2.

One way to interpret the parallelism reduction described above is that in the resulting CSDF application the actors

belonging to a set S i are serialized. The sequential execution order of these actors is given by the indexes i1, i2, . . . , i|S i |.

One can choose this sequence such that an objective function is optimized, refer to [10] for a possible model which

aims data reuse optimization.

The result of the parallelism reduction is the replacement of actors t1, . . . , tn with actors tS 1 , . . . , tS m , thus a re-

duction of parallelism from n to m. At the same time the goal frequency constraints remain satisfied in the modified

application.

3.4. How to choose the partitions

Earlier we have supposed that the sets of equivalent actors are already divided into partitions, but we did not

provide any details on how to choose these partitions. In this section a bin-packing based approach for partitioning a

set of equivalent actors is described.

Suppose a set S of n equivalent actors t1, t2, . . . , tn is given. Each actor ti has a repetition value ri defined. The

goal frequency ξi of this actor is computed using relation ξi = ξA · ri (recall that ξA is the application goal frequency).

The execution times of the actors are the same and denoted by τ. The problem we search to solve consists in finding

a minimal integer m and a m-partition S 1 ∪ S 2 ∪ . . . ∪ S m of S such that relation (3) is verified.

∑

t∈S k

rt ≤
1

ξA · τ
, ∀k = 1, . . . ,m (3)

The repetition value of a composed actor equals to the sum of repetition values of its elements, r
(

tS
)

=
∑

t∈S k
rt, hence

the goal frequency of the composed actor is ξA ·r
(

tS
)

= ξA ·
∑

t∈S k
rt. Inequality (3) is inferred from the last equality and

3If the CSDF graph is not acyclic then a similar method, based on CSDF graph unfolding, can be used to define the multiplexing order.

5

F1

F2

F3

3a
a
a
a

F1,2

F3

3a
a

aS1 J1 S1 J1
J2 S2

a

a
a

2a 2a a
a a
a
a

3a3a
a

a
a

F1,2

F3

3a
aS1 J1

J2 S22a

a
3a

2a2a
2a 2a

2aF1,2

F3

3a S1 J1 3a
2a 2a

a a

Figure 3: Elimination of parallelism reduction redundancies. Above some channels are indicated production and

consumption rates of corresponding actor ports.

from relation (1). This constraint assures that the composed actors can be executed without violating the throughput

constraint.

The problem defined in this way is a bin packing problem. It is well known and has been extensively studied in

the past decades. For a complete survey on bin packing models refer to [11]. In general the bin packing problem

is NP-hard [12] but can be solved in polynomial time when the number of item sizes is bounded4. In our case this

corresponds to a bounded number of actor repetition values.

For real life dataflow applications it is unrealistic to have a large number of different repetition values for equiv-

alent actors. In extremis we can restrict the notion of equivalent actors by considering actor repetition value as a

discriminating parameter when the sets of equivalents actors are found (see the initial phase in Subsection 3.3). So it

is conceivable to find optimal solutions using this method for real world applications.

A disadvantage of the bin packing model is that it is not straightforward to include other measures in the objective

function than the number of used bins. It would be interesting to partition the actors more intelligently (maximize the

data reuse for example) and not only with the number of partitions minimization objective.

3.5. Parallelism reduction induced redundancies

The use of the parallelism reduction methodology described above has pointed out that redundancies are intro-

duced in some ΣC dataflow applications. In the next paragraph we show that these redundancies can be removed

without any implication on application semantics.

In several applications, after the parallelism reduction, redundant edges are created between split and join actors.

For example, lets examine a simple application illustrated in the top-left corner of Figure 3. Suppose that two equiv-

alent actors F1, F2 are merged into a single one F1,2. The input channels of these actors are time-multiplexed using

join J2 and respectively the output channels are time-demultiplexed using split S2. The obtained application is shown

in the top-right corner of the figure.

Consecutive links between a split and a join actor with equal consumption and production rates can be merged into

a single link. The new production (consumption) rate is equal to the sum of initial production (consumption) rates.

In our example the links between actors S1, J2 and respectively between actors S2, J1 are merged and the resulting

application is illustrated in the bottom-right corner. The last application can be further optimized by shortcutting splits

and joins with only one input and one output (these actors being useless) with a link. See the bottom-left corner of

Figure 3.

From now on we suppose that the application redundancies are removed if present.

4Even when this number is not bounded several algorithms provide good worst-case performance ratios.

6

R

L1

L2

L3

L4

S1

J1

J2

T1

T2

S2

S3

C1

C2

C3

C4

J3 T3 W

Figure 4: LoG edge detection application.

4. Computational results

In this section we examine the impact of parallelism reduction on the compilation chain for ΣC applications and

on the execution of ΣC application binaries. The tests have been performed on a mid-range laptop with an Intel P8600

processor (2 cores).

As sample application we use the Laplacian of Gaussian (LoG) edge detection algorithm [13] with an image

smoothing step. The smoothing step is done by a convolution of the input image with a Gaussian kernel. Image edges

are found by convolving the smoothed image with a LoG kernel. The order in which the convolutions are applied

does not matter because the convolution operator is commutative. So, we can smooth the image after the edges are

found. Furthermore, if the convolution kernel is separable into horizontal and vertical components we can apply the

convolution by lines and after by columns, which is our case.

This edge detection algorithm has been implemented in ΣC language. The application graph is illustrated in

Figure 4 together with a sample input and output image. We use 11×11 convolution kernels and input image sizes are

64×64. The available parallelism is the number of line, Li, or column, Ci, filters (horizontal and vertical convolutions)

which can be executed in parallel. For example, the application illustrated in Figure 4 has an available parallelism of 4.

We have generated four versions of edge detection application with an available parallelism of 2, 4, 8 and respectively

16. Goal frequency of line (column) filters is fixed in such a way that their number cannot drop below 2 after the

parallelism reduction.

Two types of parallelism reductions (obtained by manually modifying the equivalence of transpose actors) are used

for exemplification purposes. In the first one, denoted partial reduction, only the first two transpose actors, T1 and T2,

are merged together. In the second reduction, denoted full reduction, all three transpose actors are merged. The partial

reduction is illustrated in Figure 5 and the full reduction in Figure 6. In these applications the transpose actors are

merged and their input and output channels are multiplexed using join actor J4 and split actor S4. For the full reduction

case it can be observed that the order in which the transpose input channels are multiplexed prevent a deadlock

creation. Split and join actors used to time-(de)multiplex input and output channels of filter actors were deleted

because they were parallelism reduction induced redundancies. The goal frequency constraint remains respected as

the number of line and column filters is 2 after the reduction. Although the final application graphs have the same

structure they differ by the granularity of split and join actors, S1, S2, S3, J1, J2, J3, which are respectively 64, 128,

256, 512 for available parallelism of 2, 4, 8 and 16. Here the granularity refers to cycle input/output degrees of split

and join actors.

4.1. Compilation

In the first experiment we examine the influence of parallelism reduction methodology on compilation times of

ΣC applications. We have generated 12 versions of LoG edge detection application. They differ in function of the

available parallelism (2, 4, 8 and 16) and parallelism reduction type (without, partial and full). Each application

version has been compiled and the compilation times have been saved. We have repeated this procedure for 50 times

7

R
L1,2

L3,4
S1

J1

J2
T1,2

S2

S3

C1,2

C3,4

J3 T3 WJ4 S4

Figure 5: Partial reduction of LoG edge detection application.

R
L1,2

L3,4
S1

J1

J2
T1,2,3

S2

S3

C1,2

C3,4

J3

W

J4 S4

Figure 6: Full reduction of LoG edge detection application.

in order to obtain statistically representative results. Average compilation times are computed for each version. The

results are reported in Figure 7.

Above each bar in the chart the number of actors in the final application is shown. These numbers are reported to

have an idea about the ratio between compilation time and actor number. This ratio is almost constant and does not

depend on application version.

In the case when the available parallelism is equal to 2 only the transpose actors are merged. We can observe

that despite the fact that the number of actors does not decrease the compilation times are smaller for partial and

full reduction versions. This is due to a lighter complexity of system actors compilation. Compilation times for the

partial and full reduction versions do not differ and are almost equal for any available parallelism. In the extremal

case (available parallelism of 16) the parallelism reduction procedure allows to compile the same application at least

two times faster. We can conclude that even if the application developer expresses an exhaustive level of parallelism

the compilation process will take the same time as for an application with an “optimal” level of parallelism.

Besides compilation times we have also examined the size of the obtained binaries for each application version.

The ratios of binary sizes after parallelism reduction to the sizes of the initial application are given in Table 1. For

partial and full reduction the binaries have approximatively the same size. The parallelism reduction decreases the

binary size in all of the studied application versions. In the extreme case (available parallelism is 16) the binary of a

non reduced version is more than 3 times larger than the binary of a reduced one.

4.2. Execution

We have employed the posix-thread back-end of the ΣC compiler for generating binaries of the edge detection

application. This back-end is used for simulating applications functional behavior. The last fact makes impossible

the use of frequency goal constraint for guiding parallelism reduction. Nevertheless we have used the 16 versions

of LoG edge detection application generated in the previous subsection for comparing execution times on a general

purpose computer. We think that the use of a real embedded platform is relevant but not mandatory to show how

the parallelism reduction optimizes the application (binary size is reduced while the execution throughput constraint

remains satisfied).

Available parallelism 2 4 8 16

No reduction/partial reduction 1,07 1,37 1,97 3,20

No reduction/full reduction 1,15 1,47 2,11 3,44

Table 1: Binary size ratios before and after parallelism reduction for the edge detection application.

8

Figure 7: Compilation times of edge detection application.

Figure 8: Execution times of edge detection application.

9

ΣC dataflow applications assume endless execution. In our tests the application is interrupted after the edge de-

tection algorithm is executed one thousand times. As previously each application version is executed for 50 times and

execution times are saved. In Figure 8 are illustrated the average execution times we obtain together with correspond-

ing standard deviations.

Application versions without reduction have comparable execution times despite that the application graphs have

different sizes. This fact is true because the same amount of information is treated by all the applications. The small

differences in execution times are due to the posix execution system (actor scheduling, etc.). As we can see the best

compromise is achieved for an available parallelism of 4.

As for the optimized versions of the application (partial and full reduction), with the increase of available par-

allelism the execution performance is better. In the application with an available parallelism of 16 both parallelism

reductions lower the execution time by approximatively one-third (30%). The decrease of execution times is due to

the increase of data transfers granularities (split and join actors) and to the decrease of posix execution system times.

It can be observed that the downward trend of execution time is bounded. There is practically no difference between

execution times of applications with partial and full reduction, despite that the full reduction generates a more complex

application graph.

5. Conclusion

In this paper we have introduced the problem of parallelism reduction under throughput constraints. This problem

arises in the domain of parallel computing and more specifically in dataflow programming.

We have proposed a generic parallelism reduction methodology. This methodology is based on equivalent actor

partitioning, actor merge operations and on data stream time-multiplexing, time-demultiplexing. Although equivalent

actor partitioning relies on aNP-hard problem, we have shown that for real life applications it can be solved in poly-

nomial time. Time-multiplexing and time-demultiplexing tools are used to respectively “join” and “split” streams of

data to and from the merged actors. When compared to the parallelism reduction method based on pattern substitution

proposed in [4] our method turns out to execute faster, predefined set of patterns is not needed and equivalent results

are obtained by both methods. Nevertheless for some applications the pattern-based method provides some reductions

of parallelism which our method is unable to do. In perspective we envisage to overcome this drawback.

The performance of the proposed methodology have been tested on a image processing algorithm - the Logarithm

of Gaussian edge detection. The results of the tests point out that with enabled parallelism reduction the compilation

times reduce, the generated binaries have smaller sizes and the execution performances are higher. The parallelism

reduction can be applied on every single application: it preserves the application semantics and performance goals

while reducing, if possible, the binary size. The worst case results in a non-modified application.

A limitation of this work is that only equivalent actors are merged, which is not always sufficient. In a future work

we envisage to study the problem of parallelism reduction with non-equivalent actors merge.

References

[1] W. Najjar, E. Lee, G. Gao, Advances in the dataflow computational model, Parallel Computing 25 (1999) 1907–1929.

[2] G. Bilsen, M. Engels, R. Lauwereins, J. Peperstraete, Cyclo-static dataflow, Signal Processing, IEEE Transactions on 44 (2) (1996) 397–408.

[3] T. Goubier, R. Sirdey, S. Louise, V. David, ΣC: A Programming Model and Language for Embedded Manycores, in: Algorithms and Archi-

tectures for Parallel Processing, Vol. 7016 of Lecture Notes in Computer Science, Springer Berlin / Heidelberg, 2011, pp. 385–394.

[4] L. Cudennec, R. Sirdey, Parallelism reduction based on pattern substitution in dataflow oriented programming languages, in: Proceedings of

the 12th International Conference on Computational Science, 2012.

[5] W. Thies, M. Karczmarek, S. Amarasinghe, Streamit: A language for streaming applications, in: Proceedings of the 11th International

Conference on Compiler Construction, 2002, pp. 179–196.

[6] M. Gordon, W. Thies, S. Amarasinghe, Exploiting coarse-grained task, data, and pipeline parallelism in stream programs, in: Proceedings

of the 12th international conference on Architectural support for programming languages and operating systems, ASPLOS-XII, 2006, pp.

151–162.

[7] J. Cong, W. Jiang, Pattern-based behavior synthesis for fpga resource reduction, in: Proceedings of the 16th international ACM/SIGDA

symposium on Field programmable gate arrays, FPGA ’08, 2008, pp. 107–116.

[8] J. Cong, H. Huang, W. Jiang, A generalized control-flow-aware pattern recognition algorithm for behavioral synthesis, in: Proceedings of the

Conference on Design, Automation and Test in Europe, DATE ’10, 2010, pp. 1255–1260.

[9] S. O. Memik, G. Memik, R. Jafari, E. Kursun, Global resource sharing for synthesis of control data flow graphs on fpgas, in: Proceedings of

the 40th annual Design Automation Conference, DAC ’03, 2003, pp. 604–609.

10

[10] S. Carpov, J. Carlier, D. Nace, R. Sirdey, Task ordering and memory management problem for degree of parallelism estimation, in: Lecture

Notes in Computer Science, Vol. 6842, 2011, pp. 592–603.

[11] E. G. Coffman, Jr., M. R. Garey, D. S. Johnson, Approximation algorithms for bin packing: a survey, PWS Publishing Co., 1997, pp. 46–93.

[12] M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H. Freeman & Co., 1979.

[13] R. Gonzalez, R. Woods, Digital Image Processing, Addison-Wesley Longman Publishing Co., Inc., 2001.

11

