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Abstract—“Decoding”, i.e. predicting stimulus related quan-
tities from functional brain images, is a powerful tool to
demonstrate differences between brain activity across condi-
tions. However, unlike standard brain mapping, it offers no
guaranties on the localization of this information. Here, we
consider decoding as a statistical estimation problem and show
that injecting a spatial segmentation prior leads to unmatched
performance in recovering predictive regions. Specifically, we
use ℓ1 penalization to set voxels to zero and Total-Variation
(TV) penalization to segment regions. Our contribution is two-
fold. On the one hand, we show via extensive experiments
that, amongst a large selection of decoding and brain-mapping
strategies, TV+ℓ1 leads to best region recovery. On the other
hand, we consider implementation issues related to this esti-
mator. To tackle efficiently this joint prediction-segmentation
problem we introduce a fast optimization algorithm based on
a primal-dual approach. We also tackle automatic setting of
hyper-parameters and fast computation of image operation on
the irregular masks that arise in brain imaging.

Keywords-fMRI; supervised learning; total-variation; sparse;
decoding; primal-dual optimization; support recovery;

I. INTRODUCTION

Functional MRI (fMRI) gives images of brain activity

via Blood Oxygen-Level Dependent (BOLD) signal changes.

Though noisy and indirect, it is the workhorse of functional

brain mapping, relating cognition or functional pathologies

to their neural basis. Brain “decoding” can extract maps that

predict behavior from fMRI. While it is an impressive evi-

dence that the observed brain activity expresses differences

between the behavioral conditions, it offers no guaranties

on the localization of this information. In this regard, brain

mapping with univariate statistics remains the reference tool.

Likewise, thresholding predictive maps to retain predictive

regions defeats the multivariate model and does not bring

guarantees for recovery.

The primary use of decoding in neuroscience research is

to provide a gage on the presence in the brain images of

discriminant information with regards to the experimental

conditions. In this sense, predictive power on left-out data

is the figure of merit of decoding: a prediction above chance

establishes the presence of a significant effect in the data.

A critical point for neuroscientists is then to know what

are the variables driving this effect, i.e. what brain regions.

This goal naturally favors linear classifiers for which the

prediction is obtained from a linear combination of the

voxel amplitudes. The weights of the estimator then form

a spatial map that can be defined over the entire brain,

hence exploiting correlations between distant brain regions:

the decoder is said to be multivariate. As we can see, another

purpose of decoders is to perform estimation of this weight

map so that it highlights the predictive regions [1]. For

this, certain decoding procedures [2], [3] output a statistical

test per voxel, a multivariate extension of standard analysis.

However, as highlighted by [4], these procedures can outline

different brain regions.

The challenge that we address here is to reconcile the

two goals of prediction and region recovery in one decoding

method: providing a unique map of weights that gives good

out-of-sample prediction and segments clearly predictive

regions. For this purpose, we study empirically a large

variety of decoding approaches on simulations where the

ground truth is known. In addition, we contribute an efficient

method that uses a prior specifically-crafted for our purpose,

building upon previous work [5].

Indeed, from a statistical standpoint, estimation of this

linear model is ill-posed, as the number of unknowns is

commonly 50 000 voxels, while the number of observations

never exceeds a few thousands. It thus requires regulariza-

tion, preferably compatible with prior knowledge on the

data. Functional MRI data are a spatially-smoothed represen-

tation of the underlying neural signals. Consequently, the ac-

tivations are spatially correlated. For better prediction perfor-

mance, a decoder should account for this structure by using a

spatial model. This can be achieved with convex penalization

promoting isotropic smooth weights via a graph [6] or piece-

wise constant weights with Total-Variation [7]. The second

important insight for fMRI decoding is that the extent of the

regions involved in the task is limited. It is therefore natural

to promote weight maps with only a small fraction of non-

zero voxels, e.g. using sparsity inducing norms such as the ℓ1
norm [1]. Combining both of these insights leads to consider

TV-ℓ1 penalization [5] that achieves the segmentation of a

limited number of predictive brain regions when decoding

from full brain data.

We now present the model and the convex optimization

procedure we employed. We then discuss key practical



details that significantly improve performance and usability

of the method, before showing some results on simulations

and publicly available fMRI data.

Notation: We write vectors with bold letters, a ∈ R
N

and matrices with capital bold letters, A ∈ R
N×N . a[i]

stands for the ith entry in a and A[i, ·] the ith row of A.

‖a‖2 =

√

∑N
i a[i]2 is the ℓ2 norm. AT stands for the

matrix transpose. mod(·, p) stands for the integer p-modulo.

II. SOLVING THE TV-ℓ1 REGRESSION

A. An efficient algorithm

Let us consider the standard linear supervised model y =
f(xw + b) where y ∈ Y represents the target to predict,

x ∈ R
P is an fMRI volume made of P voxels, w ∈ R

P is a

weight vector and b is a scalar called intercept, or bias term.

For regression Y = R and f is the identity. Let N denote

the number of fMRI volumes. The matrix X ∈ R
N×P is

formed by the concatenation of the data from all subjects.

The estimation of the model parameters (w, b) can then

be done by minimization of the errors over the training data.

In a regression setup, mean squared error (MSE) is a natural

way to quantify training errors. The estimation, formalized

as a variational problem, reads:

ŵ, b̂ = argmin
w,b

1

N

N
∑

i=1

(

y[i]−X[i, ·]w+b
)2
+λΩ(w) . (1)

with λ ≥ 0, where Ω is the penalization term. Here

we propose to use a combined TV and ℓ1 regularization

Ω(w) = (1 − ρ)TV(w) + ρ‖w‖1, 0 ≤ ρ ≤ 1. When

ρ = 0 it is equivalent to TV [7] while for ρ = 1 the

spatial model is ignored in favor of an ℓ1 penalty, a.k.a.

Lasso. Let ∇x ∈ R
P×P (resp. ∇y and ∇z) denote the

spatial gradient obtained by finite differences along the

x direction (resp. y and z directions). Let ∇ ∈ R
3P×P

be the concatenation of the 3 gradients. The sparse TV

regularization can be written as: Ω(w) = ‖Kw‖21+1 where

K ∈ R
4P×P is obtained by concatenating (1 − ρ)∇ and

ρI matrices, and the structured norm reads ‖z‖21+1 =
∑P

p=1

√

z[p]2 + z[p+ P ]2 + z[p+ 2P ]2+|z[p+3P ]|. After

discarding the bias term b from the estimation by centering

the data and the target, (1) can be written as:

argmin
w

G(w) + F (Kw) , (2)

where G is quadratic, G(w) = 1
N ‖y−Xw‖22, and F is the

convex structured norm ℓ21+1. We now introduce the tools

necessary to minimize such a function.

Definition 1 (Proximity operator): Let ϕ : RM → R be a

proper convex function. The proximity operator associated

with ϕ, denoted by proxϕ : RM → R
M reads:

proxϕ(y) = argmin
x∈RM

1

2

∥

∥y − x
∥

∥

2

2
+ ϕ(x) .

Definition 2 (Fenchel conjugate): The Fenchel conjugate

ϕ∗ : RM → R associated to ϕ : RM → R reads:

ϕ∗(y) = max
x∈RM

xTy − ϕ(x) .

Lemma 1 (Proximity operator for F ): Let z ∈ R
4P , the

proximity operator reads z = proxλF (y) where

z[i] =



















y[i]

(

1−
s[mod(i − 1, P ) + 1]

λ

)

+

if 1 ≤ i ≤ 3P

y[i]

(

1−
|y[i]|

λ

)

+

if i > 3P

,

with (a)+ = max(a, 0), a ∈ R, s ∈ R
P such that

s[i] =
√

y[i]2 + y[i+ P ]2 + y[i + 2P ]2, and setting 0
0 = 0.

Proof: See e.g. [8]

The proximity operator for F ∗ can then be obtained from

the identity: x = proxτF∗(x) + τproxF/τ (x/τ) with x ∈

R
4P and τ ∈ R. The proximity operator associated to G

yields a quadratic problem whose solution is obtained by

solving a linear system. We can now solve problem in (2)

using the primal dual iterative algorithm proposed in [9].

Algorithm 1: Primal-dual iterative solver [9]

Compute the spectral norm L of the operator K.

Set 0 ≤ θ ≤ 1, τ and σ such that στL2 < 1.

Initialize w(0) ∈ R
P , u(0) ∈ R

P and v(0) ∈ R
4P

repeat

• vk+1 = proxσF∗(vk + σKuk)
• wk+1 = proxτG(wk + τKTvk)
• uk+1 = wk+1 + θ(wk+1 −wk)

until convergence;

return wk+1

Contrary to [7] and [5] that proposed to use two nested

loops of proximal solvers (ISTA/FISTA), we have here a

single loop. As the proximal operator for G leads to a linear

system with the same operator to invert, the SVD factoriza-

tion can be precomputed to speed up the computation.

B. Practical considerations

Two major challenges arise in the use of decoding ap-

proaches in practical setting: computation time and setting

the regularization hyper-parameters.

Non regular grids: The fMRI data are not defined

over the entire Px×Py×Pz grid but over a mask so that

P < PxPyPz . Implementing the gradient computation on

the mask leads to tedious expressions [7] that are ineffi-

cient in terms of memory access patterns. We denote by

Π ∈ R
P×PxPyPz the masking operator that ignores values

outside of the mask. If we replace the matrix X by XΠ so

that w ∈ R
PxPyPz is defined over a full regular grid, the

gradients of w can be obtained much more efficiently.



Parameter scanning: To speed up scanning hyper-

parameter space, we leverage the convexity of the optimiza-

tion problem, and use warm restarts to update a solution after

changing the value of λ (both primal and dual variables need

to be updated). We start with a high λ for which convergence

is faster and then progressively reduce it. During K-Fold

cross-validation (CV), a path is computed for each fold and

for each value of ρ on grid from 0 to 1, with a step of 0.1.

The same grid of ρ was used for the ElasticNet.

Setting parameters for recovery: The common practice

for hyper-parameter tuning is CV. A caveat is however that

CV optimizes the prediction, while the segmentation of

predictive regions requires instead to optimize the recovery

of the predictive variables. In order to achieve both good pre-

diction and recovery, when using convex sparsity promoting

priors, one need to compensate for the amplitude bias due to

the shrinkage of the weights. Indeed, maximizing prediction

score leads to choosing a small penalization to minimize the

bias, which in turn leads to noisy weight maps. To alleviate

this limitation we correct for the amplitude bias by rescaling

the weights by a scalar value [6]: in the prediction function,

we use ŵscaled = κŵ where κ = yTXŵ/‖Xŵ‖2.

III. EMPIRICAL RESULTS

To investigate the performance of the TV-ℓ1 estimator,

we simulated active regions in a cube of 12 × 12 × 12
voxels as in [7]. Four regions of interest of size 4 × 4 × 4
voxels were positioned on corners of the cube (2 positive

activations and 2 negative). We simulated 400 volumes

corrupted by Gaussian smoothing (σ = 2 voxels) and added

noise to the targets to be predicted with different signal-

to-noise ratios (SNR). The TV-ℓ1 estimator was compared

with a precision-recall metric to a standard univariate F-test,

ElasticNet, Ridge regression, regression with linear Support

Vector Machines (SVR) [10], without and with z-scores [3],

as well as a searchlight [2] using a linear SVR (C=1) and

balls of radius 2 voxels. All estimators were tuned by 3-Fold

CV over a grid of hyperparameters.

On the results in Fig. 1, one can observe that the TV-ℓ1
estimator yields the best recovery performance, followed by

the F-test and the ElasticNet. Scaling coefficients improves

the recovery. The two estimators using ℓ2 regularization,

Ridge and SVR, yield overly smooth maps and fail to

isolate active regions. Computing z-score for SVR maps

[3] improves recovery but cannot compete with TV-ℓ1.

The searchlight leads also to a very smooth map of CV

scores with overestimated predictive regions. Interestingly,

the recovery performance of TV-ℓ1 varies from 0.89 to 0.95

as SNR varies from 2.5 to 10.0, while for ElasticNet it varies

from 0.71 to 0.83. The ElasticNet, that is commonly adver-

tised for support recovery, suffers much more from poor

SNR conditions than the TV-ℓ1 model. We also quantified

the prediction accuracy of the predictive models compared,

and obtain on average the best performance with TV-ℓ1, with

here little impact of the scaling of ŵ.

The TV-ℓ1 estimator was also tested on the fMRI data

from [4]. This data is of specific interest as decoding and

univariate analysis have shown different results in terms of

regions highlighted. It is a gambling task where the subject is

asked to accept or reject gambles that offered a 50/50 chance

of gaining or losing money. Each gamble has an amount that

can be used as target in a regression setting. We refer to [4]

for a detailed description of the experimental protocol. Data

are publicly available on http://openfmri.org. After standard

preprocessing (slice timing, motion correction, first level

analysis with a general linear model, inter-subject spatial

normalization), the dataset consists of 16 subjects with 48

fMRI observations per subject. For the prediction task, only

the gain condition was used (see [4]): 8 levels of gain

(targets y coded between 1 and 8.). FMRI volumes were

downsampled to 4×4×4mm voxels. The full dataset of 16

subjects consist of 768 samples with approximately 33 000

voxels. The prediction here is inter-subject: the estimator

learns on some subjects and predicts on left out subjects.

Parameter estimation was performed with 5-Folds CV.

Results obtained with F-scores, ElasticNet, and TV-ℓ1 are

presented in Fig. 2. As opposed to the linear SVM [4],

and as confirmed by our simulations, one can observe a

good agreement between the F-test and the TV-ℓ1 predictive

model. ElasticNet succeeds in selecting some neuroscien-

tificly meaningful voxels [4] but as expected selects too

many of then (false positives) when tuned with CV. The

TV-ℓ1 model, when used with rescaling of the weights, seg-

ments neuroscientificly reasonable predictive regions, while

yielding similar prediction performance as the ElasticNet.

Without weight rescaling, CV underpenalizes and yields

very noisy maps (not shown).

IV. CONCLUSION

Our contributions are the following: First we introduce

a principled optimization procedure with convergence guar-

antees for TV-ℓ1 regularized predictive models. Second we

outline practical details that make the solver more useful for

decoding applications, for example adapting cross-validation

to recovery purpose with proper rescaling of the coefficients.

Finally simulation results as well as experimental data

demonstrate the ability of the solver to segment predictive

regions in good agreement with simple F-test showing that

well-employed decoding models can actually agree with

univariate statistics while offering the statistical power of

multivariate methods. Further work will investigate a com-

parison with [6] that also imposes a spatial smoothness on

the weights and with [11] that addresses the support recovery

problem via randomization and stability scores.
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SNR = 5.0

Recovery performance

Figure 1. Performance in support recovery quantified by precision-
recall (PR) as well as prediction accuracy comparisons evaluated on
simulated data (two tables on the right). The TV-ℓ1 offers both optimal
prediction and recovery for all SNR values.

Prediction error (p-value to TV-ℓ1)
SNR 2.5 5.0 7.5 10.0

SVR 28.4 (.013) 22.6 (.009) 18.1 (.005) 14.5 (.005)
Ridge 27.8 (.007) 21.6 (.005) 17.0 (.005) 13.4 (.005)

ElasticNet 26.6 (.114) 20.7 (.050) 16.4 (.040) 13.1 (.013)
TV-ℓ1 25.7 20.1 15.8 12.5

TV-ℓ1 (unscaled) 25.6 (.878) 20.3 (.203) 16.2 (.028) 12.8 (.059)

SNR 2.5 5.0 7.5 10.0

R
e

c
o

v
e

ry
p

e
rf

o
rm

a
n

c
e

F-score .830 .847 .861 .873
SVR .562 .604 .649 .691

SVR Z .729 .780 .803 .828
SearchLight .481 .503 .527 .550

Ridge .543 .636 .701 .756
Ridge Z .424 .509 .600 .668

ElasticNet .705 .750 .791 .827
TV-ℓ1 .892 .912 .93 .946

TV-ℓ1 (unscaled) .874 .905 .91 .931

Percentile 99 Percentile 99.5 Percentile 99 Percentile 99.5 Percentile 99 Percentile 99.5

Figure 2. Results on fMRI data from [4] (from left to right F-test, ElasticNet and TV-ℓ1). The TV-ℓ1 regularized model segments neuroscientificly
meaningful predictive regions in agreement with univariate statistics while the ElasticNet yields sparse although very scattered non-zero weights.
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estimates for the M/EEG inverse problem using accelerated
gradient methods.” Phys Med Biol, vol. 57, p. 1937, 2012.

[9] A. Chambolle and T. Pock, “A first-order primal-dual algo-
rithm for convex problems with applications to imaging,” J.
Math. Imaging Vis., vol. 40, p. 120, 2011.

[10] F. Pedregosa, G. Varoquaux, and A. Gramfort et al., “Scikit-
learn: Machine Learning in Python,” Journal of Machine
Learning Research, vol. 12, p. 2825, 2011.

[11] G. Varoquaux, A. Gramfort, and B. Thirion, “Small-sample
brain mapping: sparse recovery on spatially correlated designs
with randomization and clustering,” in ICML conf., 2012.


