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Abstract 

Anon-local polycrystal approach,taking into account strain gradients, isproposedto simulate the 316LN 

stainless steel fatigue life curve in the hardening stage.Material parameters identification is performed 

on tensile curves corresponding to several 316LN polycrystalspresenting different grain sizes. Applied 

to an actual 3D aggregate of 316LN stainless steel of 1,200 grains, this modelleads to an accurate 

prediction of cyclic curves.Geometrical Necessary Dislocation densities related to the computed strain 

gradient are added to the micro-plasticity laws. Compared to standard models, this model predicts a 

decrease of the local stresses as well as a grain size effect. 

 

Keywords: low cycle fatigue; non-local polycrystalline model;grain size, austenitic stainless steel. 

 

1. Introduction 

Implemented in finite element codes, standard polycrystal models (based on dislocation density 

evolution), gave a first hint of grain size effects through the shear stresses heterogeneities [1]. If such 

models gave a first order description of plastic deformation related to dislocation motion, they could 

not describe the grain size effect on the mechanical behaviour evolutionof polycrystals. By introducing 

a mechanical interaction between mobile dislocations and grain boundaries, some authors,such as Ma 

et al [2], showed that standard polycrystal models are sensitive to grain geometry. Despitethese recent 

improvements, standard polycrystalmodelsstill could not predict,both tensile and fatigue behaviours, 

with the same set of material parameters. The aim of this paper is to propose a numerical non-local 

polycrystal model able to directly predictthe fatigue behaviour from tensile tests and its evolution with 

grain size by introducing Geometrically Necessary Dislocation (GND) densities into the constitutive 

laws of a polycrystal standard model.  

For the last 15 years, different formulations of constitutive lawshave been proposed, to describe the 

microstructure evolution in the grains of polycrystals submitted to plastic deformation. Related to the 

grain size, such formulations required constitutive laws introducing the strain gradient evolution in the 

grains. These works werereviewed by McDowell [3, 4],who analysed the different tools for 

computation modeling and for simulation bound to inelastic deformation phenomena,from atomistic to 

structural length scales. 

Except someworks based on generalized continuous-medium[5, 6, 7] and on Cosserat type coupled 

stress theories [8, 9, 10, 11], most papersdealt with the strain gradient theories. Grain size effect on 

macroscopicalas well as on microscopicalmechanical behaviour,was based on the concept of 

Geometrically Necessary Dislocations introduced by Nye [12]and Ashby [13] .As shown by Eshelby 

[14] and Kröner [15] , the GNDs are required to accommodate the elastic and plastic incompatibilities 

between grains. Ensuring compatibilities between grains,the Finite Element techniquegives a good 

approximation of local strain and stress fields at grain boundaries, but cannot take into account the 

grain size effect on mechanical properties. In polycrystals, local stress and strain fieldsare generally 

heterogeneousand presentstrain gradientsat the vicinityof grain boundaries and within grains. The 

GNDsare bound to such strain gradients. 

Several non-local rate dependent crystallographic formulations for finite strainswere proposed by 

Beaudoin et al [16],Acharya et al [17, 18, 19, 20, 21],Meissonnier et al [22],Raabe et al [23] and Evers 
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et al [24].Most of them were based on the framework of finite deformations, as defined by Asaro et al 

[25, 26, 27] and Peirce et al [28,29]. These non-local formulations, introduced GNDs densities into the 

constitutive laws. Relations between the elastic or plastic transformation field gradientsand the specific 

burgers vector of the GNDs were proposed by Acharya et al [18],Gurtin [30, 31, 32] and Cermelli and 

Gurtin [33].They showed that the transformation gradient is related to the GND density tensor of Nye 

[12], Ashby [13], Eshelby [14] and Kröner [15]. Suchnon-local models found several successful 

applications formechanical behaviour of polycrystals, such as: hardening phenomena [19],grain size 

effect [17, 34],hardening due to particles [35],texture [36] and local mechanical fields predictions [2]. 

Macroscopical models of fatigue based on phenomenological equations [37, 38, 39], gave a good 

prediction of the macroscopic behaviour of materials submitted to low cycle fatigue. But, compared to 

a polycrystal approach based on dislocation micro-plasticity laws, they could not describe accurately 

the grain size effect and the micro-behaviour such as local fields. The mechanical behaviour being 

mainly linked to the dislocation microstructure evolutions (which are different for the tensile and for 

cyclic tests) we use constitutive laws function of dislocation densities.  The GNDs (deduced from 

strain gradient computations) are introduced to relax stresses due to local incompatibilities and to 

describe more accurately the dislocation pattern evolution at the end of hardening stage. At the end of 

the hardening stage fatigue, the microstructure is composed of veins and channels which correspond to 

Persistent Slip Bands (PSBs) observed at the surface of the samples. Recently, the polycrystal 

modelling was applied to fatigue. Schwartz et al [40] showed that such approach gave a good 

description of PSBs initiation in the hardening stage of low cycle fatigue. Le Pécheur et al [41] 

successfully simulated the beginning of the stabilized stress-strain curves and compared different local 

micro-damage criteria. Li et al [42] proposed an accurate description of the softening stage and the 

associated local stress and strain fields, by assuming that the involved polycrystal was a two-phase 

material (veins and channels) which obeys the constitutive laws proposed by H. Mughrabi [43]. To 

point out the micro-mechanical consequences bound to GNDs introduction, we have chosen to 

suppress thekinematic law [44, 45] generally used to describe fatigue loading. Since the 

polycrystalmodeling must be intrinsic, dislocations micro-plasticity laws must be the same for any 

mechanical tests. To obtain some information on the validity of the constitutive laws taking into 

account GNDs, we have numerically tested these equations on tensile and low cycle fatigue loadings.In 

this first approach, the hardening stage is only studied. 

In this paper, GNDsare introduced into a local polycrystalmodel [46, 47, 48].Implemented in a finite 

element code [49], our model isbased upon the continuum dislocation theory,in the framework of finite 

deformations. The internal mechanical fieldamplitudes and distributions within the grains are 

computed with the local and with our non-local approaches. Performed on 316LN stainless steel 

presenting 3 grain sizes,tensile tests give the input data for the parameter identifications of the local 

and non-local models (section 2). Our non-local polycrystalmodel is developed in section 3.In section 

4, three sets of parameters areobtained for the local and non-local approaches (LA and NLA).The two 

models are applied to an actual316LN 3D aggregate submitted to tensile and fatigue tests. This 

aggregate is obtained by serial polishing and crystallographic orientations performed thanks to Electron 

Back Scattering Diffraction technique (EBSD). For both models, the obtained numerical tensile curves, 

the fatigue life curvesand the cyclic loops in the hardening stage are compared to experimental ones. In 

section 5, the distribution and amplitude of the internal stresses within the grains of the 3D 

aggregateare analysed for cyclic loadings. A discussion is given in section 6. A summary(section 

7)ends the paper. 

2. Material and experimental procedures 

2.1 Material characteristics 

Obtained by rolling followed by an austenitization and by a quenching,our 316LN steel was composed 

of a 99% face centered cubic austenitic phase and a1%body centered cubic residual δ ferritic phase.The 

316LN compositionis given in table 1: 

 

Elements C Mn Si P S Cr Ni Mo N Nb Ti Ta Cu B Co Fe 
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Min. - 1,6 - - - 17,0 12,0 2,3 0,06 - - - - - -   

Max. 0,03 2,0 0,5 0,025 0,1 18,0 12,5 2,7 0,08 0,01 0,01 0,15 0,3 0,001 0,05 base 

Table1. Chemical composition of the 316LN stainless steel 

 

The austenite and ferrite average grain sizes were 26µm and 10µm respectively. More than 30% of the 

austenitic grain boundaries corresponded to Σ3 twins. The material presented a negligible texture. 

To identify the material parameters of our non-local model, tensile tests were performed on different 

grain sizes. The 316LN presenting abnormal grain growth, only three different grain sizes were 

obtained by critical hardening technique: 26µm, 17µm and 13µm.  

2.1.1 Tensile tests 

The specimens were 2mm thick, with a 40mm gauge length. The tests were performed at room 

temperature with a 10
-3

 s
-1 

strain rate. The stress-strain curves at room temperature are given in Fig.1. 

 
Fig.1. Tensile stress-strain curves for 316LN polycrystals presenting three grain sizes  

 

The stress evolution versus the grain size is given in Fig. 2 and is compared to Kashyap et al 

[50],curves for a AISI 316L steel. The same order magnitude is obtained. The small differences 

observed for the two AISI316LN and AISI316L steels may be attributed to the different compositions 

of the two materials.Our 316LN obeys the Hall-Petch law given by Eq.1: 
2/1

0 )d/1(k (1) 

 

 

 
Fig.2. Experimental stress-grain size curves for several strain amplitudes. Comparison with the results of 

Kashyap et al [50]. 

 

2.1.2 Fatigue tests 

Fatigue tests were performed on cylindrical specimens (8mm diameter and 6mm gauge length). The 

studied material corresponded to the 316LN with a 26 µm grain size.At room temperature,low cycles 

were performed on MTS 100kN, for two given strains ( %3.02  and %5.02  ) at 10
-3

 s
-
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1
.The results being close for the two strain amplitudes,only the %5.02   applied strain is presented 

in this paper. 

The fatigue curves (Fig.3a) and the hysteresis loops (Fig.3b) are given for different fatigue life times: 

NH corresponds to the cycle number at the end of the hardening stage, NS to the end of the softening 

stage, N1/2 to the half-life time and NR to the rupture of the specimens. 

 

 
Fig.3. (a) Experimental fatigue curves for three 316LN identical specimens. (b) Cyclic stress-strain curves 

for different cycle numbers. 

 

3. Polycrystalmodeling 

This polycrystal plasticity model is an extension ofthe local approach proposed byErieau et al 

[46],Libert et al, [47],andCédat et al [48]. This model is developed in the framework of finite 

transformations (small elastic distortions but large lattice rotations), according to the scheme proposed 

by Asaro et al [25]and Peirce et al [28,29] for the case of single crystals. The approach was 

implemented in the Abaqus® finite element code, using aUser MATerial Subroutine.  

3.1 Kinematic 

The kinematic is based on the velocity gradient 𝐿  which is decomposed additively into an elastic part 

𝐿 𝑒  and a plastic part 𝐿 𝑝  given by: 

pe L
~

L
~

L
~

                                                   (2) 

With
eee F

~
.F

~
L
~ 
 and 

ppp F
~

.F
~

L
~ 

 . Where 
eF

~
is the elastic part and 

pF
~

 the plastic part of the 

deformation gradient tensor F
~

given by: 

pe F
~

.F
~

F
~
                                     (3) 

In the following, we note: ijijkjikij BAB
~

:A
~

 and BA)B
~

.A
~

(   

For small elastic strain 
e~ and large lattice rotations 

eR
~

we have:  
eee R

~
).~1(F

~
 (4) 

The symmetric part of the velocity gradient is given by: 

                                                                 (5) 

With:                                  
ee ~D

~
  and )ng(D

~ s

S

s

s

sp 
  (6) 

The skew symmetric part (elastic and plastic parts) of the velocity gradient is given by: 
pe W

~
W
~

W
~

  (7) 

With: )ng(W
~ s

AS

s

s

sp 
  (8) 

pe D
~

D
~

D
~
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and
eee R

~
.R

~
W
~ 

                                            (9) 

sg


and
sn


are unit vectors representing respectively the slip direction and the normal to the slip plane of 

the slip system (s) in the current configuration.
s is the slip rate on the system (s) in the current 

configuration.  

The Cauchy tensor rate ~  does not satisfy the principle of objectivity, thus, as most authors, we 

introduce the Jaumann rate *~  given by: 
ee W

~
.~~.W

~
*~   (10) 

At each time increment, the Jaumann rate tensor is bound to the elastic strain rate by the elastic moduli 

eC
~~

 so that the Cauchy stress tensor rate can be expressed as: 


s

ssee R
~

W
~

.~~.W
~

D
~

:C
~~~    (11) 

with:
ssses W

~
.~~.W

~
D
~

:C
~~

R
~

                                     (12) 

For infinitesimal strains, we assume that the Cauchy tensor ~ is equal to the Kirchhoff stress tensor ~ . 

 

3.2 Non-local approach 

Implemented in finite element code,polycrystal classical local approachescan predict heterogeneous 

strain stress and rotation fields within the grains, as well as sub-grain boundary formation. Piles up 

dislocation against the grain boundaries can be related to the observedstrain localization. Such 

heterogeneities generate strain incompatibilities and extra stresses.The non-local approach can compute 

the strain gradient between two adjacent points within the material.Deduced from the strain 

gradient,the extra GNDs reduce such incompatibilities. 

The incompatibility of the plastic strain is measuredon the current configuration connected to the lattice 

configuration with an inverse elastic transformation tensor 
1eF

~ 
by  1eF

~
curl 

.The ijcomponent is 

given by: 

r

1e

js

irsij
1e

x

F
)F(curl








  (13) 

where irs  is the alternating symbol. ij
1e )F(curl 

is thederivative of the elastic transformation tensor 

vector with respect to the vector position )t,X(x


in the current configuration. The Burgers vector 
eb


of 

the GNDs in the current configuration corresponds to the closure failure associated to the continuous 

lattice circuit S enclosing area S on a slipsystem with normal r


. 

  dsr . F
~

curlxd.F
~

b
S

1e

S

1ee 






                         (14) 

The Burgers vector can be expressed as a function of the dislocation tensor ~ defined by Nye [12]and 

Kröner [15]: 


S

e dsr.~b


                                                            (15) 

For each slip system (s),the identification of the 9 components of the tensor 
~

from experiments is not 

yet solved. Rather than introducing sucha dislocation tensor into the dislocation density evolution 

lawas Busso et al [35] and Ma et al [2],we usethe scheme proposed by Peirce et al [28,29]the 

incompatibility for slip system (s) is defined by onescalar λ
s
 via a third order tensor Λ. The relation 

between Λand the Burgers vector of the GNDsin the current configuration is defined from the elastic 

transformation: 
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dSr.~dSr:xdF
~

b
SS S

1ee

  


 
 (16) 

With 

A

1e

x

F
~






















 ,or 1e

j,ik

1e

k,ijijk FF                                             (17) 

According to Acharya et al [19], the third order tensor   represents the existence of a dislocation 

network threading the slip plane (s) with a unit normal 
sn


. 

The 
s scalar is given by: 

  sss n:n:


 (18) 

The twelveλ
s
scalars correspond to GND densities. They are determined at each computation time 

increment.  

According to Needleman and Sevillano [51], the addition of new parameters bound to GNDsrequires a 

reformulation of the constitutive laws. Some authors, as Meissonnier et al [22],Busso et al [35], Evers 

et al [24] and Kadkhodapouret al [52] describedthe dislocation densitiesevolution by two equations: 

one for the statistically stored dislocations and a secondone for GNDs. In our non-local model, we 

introduce anextra parameter k0, into the dislocation density evolution equations, via the definition of 

the mean free path of these GNDs [34]: 
s

0
s
G k1L 

                                                             (19) 

k0is a material parameterwhich will be determined from our experimental tensile curves. 

Acharyaet al [20] mentioned that this mean free path 
s

GL is associated to the pile up on the grain 

boundaries and to the cell wall patterns. We have extended this mean free path to sub-grain boundaries 

due to deformation. 

Using the continuum theory of dislocations, the statistically stored dislocation densities
s  and the 

GNDs 
s on each slip system,are added and considered as internal variables of our model.  

 

3.3 Single crystal plasticity laws 

Our polycrystal model is developed for face centered cubic structure (fcc) as well as for bodycentered 

cubic structure(bcc) and for two-phase materials (which is the case of the austenitic stainless steel 

316LN). 

In this paper, the single crystal plasticity laws,as proposed by Tabourot et al [53]and issued from the 

works of Kocks et al [54], Kocks [55] and of Estrin and Mecking [56, 57],arehere modified to take into 

account the GNDs. They are applied to each grain assumed to have the behaviour of single crystals. 

For fcc, the Schmidcriterion rules the activation of the 12 slip systems {110} <111>. For bccphase,the 

Schmidcriterion [58] is applied to the 24 slip systems {111} <110> and {111} <112>. 

The criterion is given by: 
s
c

s                                                                     (20)  

where   sss gn.~ 
   is the reduced shear stress on the glide plane (s), as computed from Eq.8.

s

c is the 

critical shear stress. 

The GNDs play the role of obstacles and are added to the statistically stored dislocation densities. For 

each time increment of the computation,we assume that the critical shear stress is given by: 

  u

u

su

12,1u

uusus
0

s
c hab   



                                           (21) 

whereµ is the isotropic shear modulus, b the norm of the Burgers vector,
c

0 the lattice friction stress,

suh  the component of the hardening matrix. For the local approach  0s  , the 
suh  matrix 
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describesan anisotropic hardening, which depends on the activated dislocations (i.e loading path). For 

the non-local approach  0s  , we assume that the 
suh  matrix describes both anisotropic and 

kinematic hardenings. 

The critical shear stress, given by Eq.15 and Eq.16, is a function of the components a
su

 of the 

interaction matrix (forest hardening) between the systems (s) and (u). There is no evidence that the 

interactions between statistically stored dislocations with the forest obstacles are similar to interactions 

between these dislocations and the obstacles created by GNDs. But, in this first approach, we have 

used the same interaction matrix. Moreover, this matrix is an asymptoticvalue, when compared to the 

one proposed by Devincre et al [59], Queyreau et al [60] and Monnet et al [61]  

For afcc single crystal, the 12x12 interaction matrix is composed of six different terms which are 

computed in section 4.The glide velocity 
s is expressed with a classical viscoplastic potential based 

on the resolved shear stress and the critical shear stress for glide activating on system (s):  

otherwise  0

   if   )(  sign

s

s

c

ss

n

s

c

s

0

s






























                            (22) 

 

Where 0  is a reference shear rate and n isthe rate exponent. 

The dislocation density evolution (Eq.18), is governed by a dislocation production term, based on 

Orowan relationship and is balanced by an annihilation dislocation term which takes into account the 

dynamic recovery during deformation. 




















 s

c

su

u

s
0

s

s y2
K

k
b











             (23) 

2yc is a material parameter related to an annihilation distance of dislocations. The first term 

corresponds to the inverse of the average mean free path 
s

GL  of GNDs, whereas the secondterm 

corresponds to the inverse of the average mean free path 
s

SL  of the statistically stored dislocations on 

the system (s). The third term corresponds to annihilation of dislocations. Material parametersk0 and 

Kare related to the two average mean free path on each slip system
s

GL and 
s

SL . The evolution of 
s

SL  

comes from the evolution of the dislocation densities on the other glide systems (u) which intersect the 

glide plane (s), through: 





su

us

S KL                                                                (24) 

The equations are solved thanks to a scheme using the forward gradient approximation close to the 

scheme proposed by Peirce et al [28] and Teodosiu et al [62]. 

 

4. Aggregate, meshing, boundary conditions, model parameter identification 

4.1 Aggregate 

A representative volume of the material is required to analyse the effect of the actual material 

microstructure (containing a large amount of twin boundaries) on the local stress and strain fields. To 

avoid artefacts due to boundary conditions and free surfaces, a large aggregate volume is used. To 

obtain such a Representative Volume (RV) of the 316LN material, a 600 x 600 x150 µm
3 

aggregate 

was built,composed of 30 layers, each one corresponding to an Electron Back-Scattering Diffraction 

(EBSD) map extruded over 5µm (each layer thickness being then 5µm). The EBSD step analysis 

within a layer was 1µm. The mechanical technique consisted in successive polishings and in 
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crystallographic orientation measurements by EBSD. An experimental technique and specific software 

were developed for the reconstruction of the points meshing element, need large memory space and a 

large computing time. In this paper, all simulations are actually performed on a quarter of the aggregate 

(300 x300 x150 µm
3
) named AG2 (Fig.4c) containing 1,029 grains. The FE meshing is 4 x 4 x 5 µm

3
. 

For such an aggregate, the resolution is weak, compared to those obtained by Zaefferer et al [63], 

through Orientation Microscopy in a Focused Ion Beam-Scanning Electron Microscopy (FIB-SEM). 

However, our mechanical technique enables the investigation of a large amount of large grains. 

aggregate from the successive layers [49]. The 3D aggregate (AG1) contained 4,363 austenitic grains 

and 319 ferritic grains(Fig.4). Computations on such a large aggregate(Fig.4a and 4b), presenting small 

meshing (1 x 1 x 5 µm
3
) with eight Gauss  

 

 
Fig.4. (a) 316LN 3dimensional aggregate (4,363 austenitic grains), (b) ferritic phase, (c) aggregate used 

for the simulations(1,029 austenitic grains). 

 

4.2 Numerical scheme, meshing and boundary conditions 

The polycrystal model is implemented in Abaqus software package®, using a User Subroutine 

(UMAT). The numerical scheme is an explicit forward gradient procedure which delivers a good 

accuracy as well as a high integration speed. Though this method presents the drawback to use very 

small time increments, it has the advantage to detect a progressive lattice reorientation (very small for 

fatigue tests) and the occurrence of new active glide systems. For such small time increments, our 

small elastic strain assumption is valid. Local stress and strain fields, dislocation densities, cumulated 

glide on the glide systems, total cumulated glide magnitude are respectively computed for each time 

increment, and for each Gauss point.In this first approach, the elastic transformation tensor is assumed 

equal to the lattice rotation 
ee R

~
F
~

 . 

Via a post-treatment routine, the gradient of the lattice rotation is explicitly computed for each time 

increment. 

As shown in Fig.5a,linear cubic elements (total integration) are used with eight gauss points 

(referenced as C3D8 inAbaqus code).The computation is divided in four steps: the first step is devoted 

to the computation of 
ee R

~
F
~

 at the gauss points of each meshing element, the second step 

extrapolates the 
eF

~
 values at the node of each element, the third step computes the gradient between 

the nodes, the fourth step inserts the new values of the gradient at the involved Gauss points. 

The  tensor is thencomputed at each Gauss pointas well as the GND densities 
s on the slip systems 

(s). 

 

 
Fig.5. (a) Meshing element (Gauss points are represented by о symbols and the nodes of the elements are 

represented by X symbols), (b) aggregate used for the identification of the model parameters, (c) boundary 

conditions. 
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4.3 Identification of the model parameters 

The identification is performed by an inverse method on a “model” aggregate composed of 512 grains 

presenting the isotropic texture of the 316LN steel, which meshing is composed of 4,096 square 

elements C3D8. On the base of the tensile tests, the model parameters are determined, via an interface 

[47, 48] between Sidolo
®
 [64] and Abaqus

®
. The aggregateused for the identification is given in 

Fig.5band the boundary conditions (Fig.5c) are supplied in table 2. 
 

Boundary conditions Face 1 Face2 Nodes Ni, i≠j Nodes Nj,  i≠j 

 u1=0 u1=U(t) u2(Ni)=0 u2(Nj)=0 

Table 2.Boundary conditions. 

 

Some parameters(such as elastic constants and the interaction matrix coefficients)have been found in 

the literature.The studied316LN polycrystal was found to be elastically isotropic. But each grain being 

considered as a single crystal presentsan anisotropic elasticity. Identification of the parameters isthus 

performed with anisotropic values. For a 316LN single crystal, we use the anisotropic values obtained 

by Huntington [65] (C11=198GPa, C12= 125 GPa and C44=122GPa). 

For austenitic phase, weuse the interaction matrix proposed by Devincre et al [66]. According to these 

authors, the a
su

components depend on the applied strain, via the dislocation density magnitude. In this 

work,we have used the a
su

asymptotic values.The matrix is composed of six terms representing several 

types of dislocation interactions: a0forself interaction, a1forcollinear interactions, a2for Lomer Cottrell 

locks, a3for Hirthjunctions, a4forglissile dislocation interactions, a5for sessile dislocation interactions. 

Forα iron,the a
su

 componentswere obtained by dislocation dynamic simulationsby Monnetet al [61]. In 

this paper, the ai/a0ratio given by Monnet[67]ischosen, buta0is deduced from an inverse method.For 

austenitic steel, the obtained values (a0=0.1236, a1=0.6330, a2=0.1236, a3=0.0709, a4=0.1388 and 

a5=0.1236)are close to Monnet’s ones. 

Three identifications are presented: one corresponding to the local approach (LA) (k0=0), performed on 

the tensile curve corresponding to a grain size of 26µm; the two others, corresponding to non-local 

approaches (NLA), are performed on the three grain sizes. 

The Burgers vector norm value was determined by Robertson et al [68]. For our 316LN, initial total 

dislocation density 0 is measured by TEM.  

The parameters independent of the type of approach are: the b Burgers vector norm, the 0 initial 

dislocation density, the 0 reference shear rate and the rate exponent n. These parameters are given in 

table3: 

 
b (m) 

0  (m
-2

) n 
0  (s

-1
) 

2.5410
-10

 1.7710
12

 73.50 4.00 10
-11

 

Table 3. Physical parameters independent of the type of approach 

 

From the identification performed thanks to tensile tests, two sets of (K, k0 and 2yc) parameters are 

found for small and moderate strains. The evolution of these parameters at different stages of the 

tensile curves could have been determined, but such inverse computation being time consuming, we 

have reduced our study to the twostrain ranges given in table 4.  

In the following, the non-local approach corresponding to small and moderate strains are named NLA1 

and NLA2 respectively. The local approach (k0=0) is named LA. 

 
 

0  (MPa) k0 (-) K (-) yc(m) 

LA 22.30 0 59.97 1.29 10
-9

 

NLA1           %1  22.30 150 88 9.14 10
-9

 

NLA2  %15%1    22.30 8.25 47.00 4.45 10
-9

 

Table 4. Material parameters identified from experimental data. 
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Being an intrinsic value,the friction shear stress 0 is taken constant for the three identifications. cy2 is a 

material parameter related to an annihilation distance of dislocations equal to an amplitude of a few 

Burgers vectorsb. Table 4 shows that 2yc variationsare ranging from9b to 70b. The material parameter 

K is related to the dislocation mean free path by Eq.19.For LA, the values of 
s

GL are about 48µm. For 

NLA1 and NLA2, they are 40 µm and 53 µmrespectively.Such values, slightly larger than the grain 

size, are relevant values for the initial state of an annealed material. According to Acharya and 

Beaudoin[16], the parameter k0 is bound to the “mean free path”. Its value is 150 for small strains and 

8.3 for larger strains. The 316LN steel used in this paper did not present residual stresses, so, the GND 

initial density is assumed equal to zero. 

The identification process gives 3 sets of parameters (K, yc, k0) which values depend on the strain 

amplitude. This means that Eq.23 should take into account this fact. In this first approach, we have 

successively used the relevant values for each stage of the simulations. 

 

4.4 Validation of the local and non-local approachesthrough tensile curves 

In Fig.6a, simulations of the tensile test performed with LA on AG2 aggregate are compared to 

experimental tests (grain size 26 µm).Fig.6b,c,d shows that the non-local approach NLA2 (

%15%1  ), gives a good description of the grain size effect on tensile tests (
13 s10   ).The 

numerical curves fit with experimental ones, except for the micro-plasticity stage. This slight misfit 

comes from an hardening matrix assumed constant with strain amplitude.  

 

 
Fig.6. Comparison of experimental and numerical tensile stress-strain curves,(a) Local approach, (b, c, d) 

Non-local approach (
13 s10  ). 

 

For small deformations %)%.( 130   , the computed tensile curves obtained with the non-local 

approach1 (NLA1)fit with the experimental ones (Fig.7a), but as shown in Fig.7b, NLA1 cannot be 

extended to an applied deformation beyond 1%. 

Thismacroscopicalthreshold strain of 1%,corresponds to an average strain value beyond which all 

grains are plastically deformed, leading to dislocation patterns.In ourpolycrystal model, the grains are 

considered as single crystals with different crystalline orientations. The constitutive laws of the model 

correspond to single crystal laws. The first set of parameters (strain less than 1%) is bound to single 

crystal stage I (single slip), whereas the second set corresponds to stage II (hardening stage). For 

polycrystals in micro-plasticity stage, most grains are eitherin elastic stage or in stage I,where the 

dislocation pattern is not yet developed. At about 1%macroscopical strain, the change on the hardening 

slope of the tensile curve corresponds to a plastic deformation of all grains and then to hardening. 
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Fig.7. Experimental and numerical tensile stress-strain curves for the Non-local Approach1. (a) Small 

deformations, (b) Moderate deformations 

 

5. Results: Hall-Petch law andfatigue behaviour 

5.1 Grain size effect for monotonic loading 

For moderate applied strain (Fig.8a),NLA2 simulations of the Hall-Petch curves,are in very good 

agreement with experimental curves. Fig.8b shows the predicted hardening slopes for small grain sizes 

ranging between d=5 µm and d=500 µm. A large hardening is observed for very small grain sizes. 

 

 
Fig.8. (a) Comparison of experimental and stress-grain size curves simulation. (b) Simulation of the 

tensile test for polycrystals presenting several small grain sizes with the Non-local Approach2 (NLA2) for 

k0=8.25 (moderate straining). 

 

5.2 Fatigue loading 

5.2.1 Comparison of Local and Non-local approaches 

Computed fatigue curves obtained for 20 cycles %).( 50 with LA and NLA1are compared to an 

experimental one. As it can be seen on Fig.9, LAidentified from tensile tests does not fit with the 

fatigue life curve. By contrast, NLA1 gives a good description of the hardening stage of the fatigue 

curve.Nevertheless, the latter non-local approach cannot describe the whole fatigue curve. This means 

that the dislocation microstructure evolution towards a two-phase material composed of walls, cells 

and persistent bands [69,70]cannot be predicted by our model without introducing back stresses. 

 

 
Fig.9. Comparison of the fatigue curves in the hardening stage computed with the Local Approach (LA) and 

Non-local Appoach 1 (small strain, k0=150) and the experimental one. 
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Fig.10. Comparison of the fatigue stress-strain curves in the hardening stage computed with the Local 

Approach (LA) and Non-local Appoach 1 (small strain, k0=150) and the experimental one ( 5
th

 and 10
th

 

fatigue cycles). 

 

As shown in Fig.10, the non-local approach gives a better description of the hysteresis loops of the 

hardening fatigue stage, by comparison with the local approach. Nevertheless, there is a slight 

discrepancy at the transition between elastic and plastic stages. This discrepancy may be explained by 

the absence of back stress, generally introduced in the constitutive law (Eq.16) for fatigue description.  

NLA mappings, as well as the distribution curves, show that introduction of GNDs densities lower the 

local equivalent stress values, when compared to LA (Fig.11a and Fig.11b). GNDs relax the internal 

stresses at grain boundaries but also relax them within the grains. The decrease of the average stress is 

about 100 MPa. 
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Fig.11. Comparison of the equivalent stress field computed with the Local approach (LA) and the non-

localapproach NLA1 corresponding to small strain (k0=150)and performed on the AG2 aggregate 

submitted to fatigue test (10
th

 cycle).(a) Distribution curves of the equivalent stress amplitude, (b)mapsof 

equivalent stress field within the 1
st
 and 15

th
 layers of the aggregate.  

 

The maps (Fig.11) show that the local intragranularstress fields present heterogeneities. The strain 

fields,not given here, also showheterogeneities. For the polycrystal model, a more accurate threshold 

might be applied to each Gauss point, but such a refinement would lead to a more complex simulation.  

Schwartz et al [40] showed that polycrystal model could describe accurately the PSBs pattern at end of 

the hardening stage. In this paper, the meshing is too large to describe such a pattern.  

 

5.2.2 Grain size effect in fatigue loading  

Grain size effect in fatigue is studied for AG2 and AG2D10 aggregates after 10 cycles (fatigue 

hardening stage). At the vicinity of the grain boundaries,the stresses are increased and are less 

homogeneously distributed in small grain sizeswhen compared to large grain sizes (Fig.12a and 

Fig.12b).  

 

 

 
Fig.12. Comparison of the equivalent stress field computed with the Local Approach(LA) and the Non-

local Approach 1 corresponding to k0=150 (NLA1) performed on the 2AG aggregate submitted to fatigue 

test (10
th

 cycle). (a) Distribution curves of the equivalent stress amplitude, (b) maps of equivalent stress 

field within the 1
st
 and 15

th
layers of the aggregate.  

 

 

6. Discussion 

A simple non-local model has been designed to predict the hardening stage, the cyclic stress-strain 

response and the distribution of the internal stress field within the grains of an actual 316LN 
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aggregatecontaining 1,029 grains. For the macroscopical and microscopical mechanical behaviour of a 

316LN steel, the contribution of GNDswhich take into account all local deformation incompatibilities, 

has been studied by comparing the numerical results of local and non-local models to experimental 

ones. The GND densities on the slip systems have been introduced in the evolution law of the total 

dislocation density and into the Schmidcriterion (τc). Instead of using 9components on 12 slip systems 

for the dislocation tensors 
s~ , we have represented the GND densitiesby 12 scalarsλ

s
, according 

toAcharya and Beaudoin [18]. Thus, only one parameter (k0)has been added to the material parameters 

of our local polycrystal model. 

A set of three material parameters (K, yc and k0) is determined throughan inverse method,using 

experimental tensile tests performed on polycrystals presenting three grain sizes. Two sets of 

parameters have been obtained for small and moderate straining. The k0parameter bound to GNDs 

mean free path drops from 150 for small strains (ε<1%)to 8 for moderate strains (1%<ε<15%). For 

moderate strains, our result is of the same order of magnitude as those obtained byKok et al [71] who 

found k0=20.2 for pure nickel (77K and ε≥ 5%) and  k0= 2.64 for HY-100 martensite. 

The existence of two sets of identified parametersfor two different strains raises some open questions. 

For standardmodeling, K and 2yc are related respectively to the mean free path of the statistically 

stored dislocations and to an annihilation distance of dislocations. These two parameters are usually 

considered as physical parameters, intrinsic to the material. Forthe local approach (LA) and non-

localapproach for small and moderate strains (NLA1 and NLA2), K is of the same order of 

magnitude.By contrast,2yc presentssome variations: 9b for LA, 70b for NLA1 and 34b for NLA2 (b is 

the norm of the Burgers vector). Though these data are not clearly defined in literature, the 

2ycdiscrepancy istoo large. Last but not the least, the k0 parameter, is decreased by a factor 20 from the 

micro-plasticity stage to the hardening stage. In this paper, the used mean free path expression(k0λ
s
) is 

very close to the one proposed by Kok et al [71]. According to our results, the k0λ
s
 term of Eq.18(which 

physical meaning has not yet been clarified)must take into account the evolution of the microstructure 

(total dislocation densities). In this first numerical approach, we have kept the classical expression of a 

mean free path but we have separated the case of small and moderate strains.Thefirst k0 value is 

obtained from micro-plasticity stage of tensile curve where only few grains are plastically deformed 

and where the dislocation microstructure is close to the initial one. This value canbe used to describe 

the cyclic stress strain curves in the hardening stage. The second k0 value can describe Hall Petch 

curves for moderate strain but cannot describe fatigue behaviour. It corresponds to a dislocation 

microstructure different from the fatigue one.This result shows that the expression of the mean free 

path of GNDs (Eq. 23) is not intrinsic for the material and must be replaced by a function. Eq. 23 is 

composed of two hardening terms (sources of dislocations) and a recovery term.  

In our approach, the hardening and recovery terms are needed to describe the non linear hardening of 

tensile curves. This recovery term describes the annihilation of two dislocations. However, this term is 

not suitable to describe a softening due to a different mechanism, such as the motion of dislocations 

within the channels of the dislocation pattern. Compared to the local approach (without kinematic 

hardening), the non-local investigation brings a significant improvement on the description of the 

Bauschinger effect. Nevertheless, it has to be upgraded to completely describe the Bauschinger effect 

due to the back stress. The back-stress (or kinematic hardening) corresponds to the elastic reaction of 

the dislocation lattice against the imposed strain at the end of each cycle: glide dislocations are 

gradually trapped into the loop patches, and into the grain boundaries and PSBs. To avoid the 

introduction of an empirical non-linear back stress to describe softening, we have to modify the second 

term of Eq. 23.  

This first approach of the hardening in low cycle fatigue provides some important results.In the 

hardening stage (10
th
 cycle), the NLA1 approach predicts a decrease of the equivalent local stress, 

when compared to the LA approach. By contrast to the LA mappings, the NLA1 stress pattern 

mappings show that the equivalent stresses are more concentrated close to the grain boundaries than 

within the grain bulks.The computing process being time consuming and needing large memory space, 
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the GND densities computed for each time increment are not saved independently, but added to the 

statistically stored dislocations. To obtain an order of magnitude of the GNDs density
s
G forsmall 

strain, it is assumedthan the GNDs mean free path is of the same order that the grain size (d=26µm). 

With dk1L s
0

s
G   and   2/1s

G
s   ,we obtain: λ

s
=2,500 m

-2
 and 

s
G =6.2 10

6
.m

-2
. Such a low value 

of 
s
G is relevantfor an annealed material.  

A NLA approach givesinformation about the grain size effect in fatigue loading.For two studied grain 

sizes (d=26µm and d=2.6 µm), computations point out larger stress distribution for small grains 

(average stress shifted about 150 MPa), meaning a larger non uniform stress pattern and a large 

concentration of stresses near some grain. 

For AG2 aggregate, the meshing (4µm x 4µm x 5µm)used for computation is too large to capture very 

small lattice misorientations between neighboring points. According to Kadkhodapouret al [52], GNDs 

measurements related to small misorientationsmust be recorded witha 50nm step size. The obtained 

local stress and strain field in the real 316LN aggregate can be used to test damage criteria. 

 

7. Summary 

To check the validity of the laws, we have numerically tested these equations on tensile and low cycle 

fatigue loadings.The main advantage of our straightforward non-local approach is to only need seven 

physical parameters (τ0, n,a0, 𝜌0, k0, K and yc) which can be experimentally identified from tensile tests 

performed on different grain sizedpolycrystals. When compared to the local approach, the non-

localapproach, identified on the micro-plasticity stage of tensile tests, is a very efficient tool to predict 

the hardening stage of fatigue, cyclic stress-strain curves and the related local stresses. Our results 

show that a better formulation of the GND mean free path must be investigated to describe the back-

stress phenomenon. The proposed non-local approach gives also a first hint of the grain size effect 

during fatigue. 
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