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Abstract. The estimation of intra-subject functional connectivity is greatly 
complicated by the small sample size and complex noise structure in functional 
magnetic resonance imaging (fMRI) data. Pooling samples across subjects im-
proves the conditioning of the estimation, but loses subject-specific connec-
tivity information. In this paper, we propose a new sparse group Gaussian 
graphical model (SGGGM) that facilitates joint estimation of intra-subject and 
group-level connectivity. This is achieved by casting functional connectivity es-
timation as a regularized consensus optimization problem, in which information 
across subjects is aggregated in learning group-level connectivity and group in-
formation is propagated back in estimating intra-subject connectivity. On syn-
thetic data, we show that incorporating group information using SGGGM sig-
nificantly enhances intra-subject connectivity estimation over existing tech-
niques. More accurate group-level connectivity is also obtained. On real data 
from a cohort of 60 subjects, we show that integrating intra-subject connectivity 
estimated with SGGGM significantly improves brain activation detection over 
connectivity priors derived from other graphical modeling approaches. 

Keywords: brain connectivity, fMRI, Gaussian graphical model, regularized 
consensus optimization, sparse inverse covariance estimation 

1 Introduction 

Accumulating evidence suggests that a prominent effect of neurological diseases is 
abnormal alterations in functional connectivity [1, 2], which is fundamental to brain 
function. In recent years, functional magnetic resonance imaging (fMRI) has become 
the primary means for investigating this integrative property of the brain. Particularly 
relevant to clinical applications is the discovery of synchronized, ongoing brain activ-
ity even when a person is at rest [3]. The sets of brain areas that show such synchro-
nized activity during resting state (RS) are broadly conceptualized as networks. These 
RS networks have been shown to display high resemblance to those evoked by task 
[4], thus demonstrating the presence of important structures in RS connectivity pat-
terns that reflect brain organization [3]. This finding has significant implications for 
studying diseased populations, since patients often have trouble performing certain 
tasks, but have much less difficulties lying at rest in the scanner.  



Inference of functional connectivity from RS-fMRI data is commonly performed 
by computing the Pearson’s correlation between the observations of different brain 
areas. Due to the small sample size and the complex noise structure in RS-fMRI data, 
reliable estimation of intra-subject functional connectivity is extremely challenging 
[1, 5]. Also, Pearson’s correlation cannot distinguish whether two brain areas are 
directly connected or indirectly connected through a third area [1]. This distinction is 
crucial if one is interested in the underlying connection structure of the brain [6]. To 
improve correlation estimation given limited noisy samples, a number of techniques 
based on l2 and l1 regularization has been proposed. l2 regularization amounts to add-
ing a scaled identity matrix to the sample covariance matrix for reducing estimation 
errors and improving the conditioning, which in turn enables stable matrix inversion 
[7]. The implication of being able to stably invert a covariance matrix is that elements 
of the inverse covariance matrix are proportional to partial correlations, which ac-
counts for indirect influences [6]. The drawback of l2 regularization is that it is limited 
to uniform shrinkage of the off diagonal elements [5]. This limitation can be mitigated 
using a l1 regularization approach [5], commonly referred to as sparse Gaussian 
graphical model (SGGM), in which sparsity is imposed on the inverse covariance 
estimates to learn the partial correlation structure in a data-driven fashion. Imposing 
sparsity also helps reduce estimation errors. In the context of functional connectivity 
estimation, enforcing sparsity conforms to past findings that the connection structure 
of the brain is, in fact, sparse [1].  

In settings where the number of parameters is greater than the number of samples, 
which is typical for single-subject RS-fMRI data, accurate correlation estimation is 
far from trivial even with l2 and l1 regularization. To this end, we have previously 
proposed extending SGGM by exploiting anatomical connectivity [8] as well as 
commonalities across subjects [5]. Alternatively, a more widely-used approach is to 
pool data across subjects [9] by either averaging their correlation matrices or concate-
nating their RS-fMRI time courses to increase the number of samples. Although this 
approach sacrifices subject-specific information, it generates group-level correlation 
estimates, which are useful for population comparisons.  

The optimal way for deriving a representative group correlation matrix, while ac-
counting for inter-subject variability, is still an open question. Approaches based on 
Bayesian networks that enable learning of conditional independence structure, i.e. 
brain connection structure, common across subjects have been proposed, but these 
approaches do not scale well with increasing number of brain areas [6]. Recently, a 
probabilistic model that enables integration of fMRI and diffusion MRI (dMRI) has 
been put forth [9], but this model assumes each brain connection is independent, 
which complicates the separation of direct connections from indirect connections [1]. 

In this paper, we propose a sparse group Gaussian graphical model (SGGGM) that 
permits joint estimation of intra-subject and group-level functional connectivity. We 
cast the estimation as a regularized consensus optimization problem [10], in which 
each subject’s data is modeled as a GGM with intra-subject inverse covariance matri-
ces tied across subjects by a sparse latent group inverse covariance matrix. Common-
alities across subjects are thus exploited in handling noise and the problem of limited 
samples in each subject’s data. The general idea of aggregating information across 



subjects is akin to SGGM with group Lasso [5]. The difference is that SGGGM en-
courages intra-subject inverse covariance estimates to be similar to a sparse latent 
group inverse covariance estimate but does not impose all intra-subject inverse co-
variance estimates to have exactly the same sparsity pattern, i.e. the same connection 
structure. We show on simulated data with similar sample-to-parameter ratio as in real 
fMRI experiments that SGGGM significantly outperforms state-of-the-art covariance 
estimation techniques at both intra-subject and group level. Moreover, we illustrate on 
real data from a cohort of 60 subjects that incorporating intra-subject connectivity 
estimated using SGGGM significantly increases sensitivity in brain activation detec-
tion over connectivity computed with other widely-used methods. 

2 Methods 

The goal of this work is to address the challenge of reliable inverse covariance esti-
mation under the setting where the number of samples is much less than the number 
of parameters and the samples are contaminated by strong noise. The state-of-the-art 
method for estimating a well-conditioned sparse inverse covariance matrix under this 
setting is SGGM, which we summarize in Section 2.1. We then describe our proposed 
model, SGGGM, for coalescing information across subjects in jointly estimating in-
tra-subject and group-level inverse covariance matrices in Section 2.2. A quantitative 
scheme for validation is discussed in Section 2.3.  

2.1 Sparse Gaussian Graphical Model 

Given a d×d sample covariance matrix, S, in which the samples are drawn from a 
multivariate Gaussian distribution, estimating a well-conditioned sparse invariance 

covariance matrix, Λ̂ , can be formulated as the following optimization problem [11]: 
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in which we search over the space of d×d positive definite matrices, Λ > 0, to mini-
mize the negative log-likelihood of a multivariate Gaussian distribution, l(Λ) = 

tr(SΛ) ̶ logdet(Λ), while promoting a sparse estimate, Λ̂ , by minimizing the l1-norm 
of the off diagonal elements, which we denote as ||Λ||1. The level of sparsity is gov-
erned by λ, which can be selected in a data-driven manner through cross-validation 
(Section 2.2). In the context of functional connectivity estimation, S corresponds to 
the correlation matrix estimated from the RS-fMRI time courses of d brain areas of a 
given subject. (1) can be efficiently solved using algorithms, such as QUadratic In-
verse Covariance (QUIC) [11] and Alternating Direction Method of Multipliers 
(ADMM) [10]. The latter algorithm is described in the next section. 



2.2 Sparse Group Gaussian Graphical Model 

Given N d×d sample covariance matrices, Ss, where s is the subject index, we post the 

joint estimation of intra-subject inverse covariance, sΛ̂ , and group-level inverse co-

variance, GΛ̂ , as a regularized consensus optimization problem [10]. 
 
Regularized Consensus Optimization. For the case in which the solution is re-
stricted to reside in the space of positive definite matrices, the regularized consensus 
optimization problem written in the unconstrained form is given by [10]: 

 

2
2

10,0
||||)()(min F

GsN

s

s
s

G lJ
Gs

ΛΛΛΛ
ΛΛ




 . (2) 

 
The intuition behind (2) is that each Λs should explain its own observations as en-
couraged through the individual loss, ls(Λ

s), but to handle noise and the issue of lim-
ited samples in each subject’s data, commonalities across subjects are exploited by 
penalizing deviations of Λs from ΛG, as imposed by minimizing ||Λs – ΛG||2F where  
|| · ||2F denotes the Frobenius norm. The degree of this penalty is governed by ρ. For 
learning inverse covariance, we set ls(Λ

s) to tr(SsΛs) – logdet(Λs) as in the SGGM 
formulation and J(ΛG) to λ||ΛG||1 for enforcing sparsity. We use ADMM to solve (2). 

 
ADMM. Given initial Λs(0), ΛG(0), and Us(0), the overall idea of ADMM is to alter-
natingly update these matrices by minimizing the augmented Lagrangian [10]:  
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where Us is a d×d Lagrangian multiplier matrix. With ΛG and Us fixed, we find the 
update for Λs by minimizing Lρ(Λ

s, ΛG(k), Us(k)) over Λs: 
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where ls(Λ

s) = tr(SsΛs) – logdet(Λs) for inverse covariance estimation and k denotes 
the iteration number. For this choice of ls(Λ

s), there is an analytic solution for Λs(k+1) 
[10], computed by taking the derivative of (4) and setting that to zero, which gives: 
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Since all matrices in (5) are symmetric, the right hand side can be decomposed into 
QΓQT, where Q is the eigenmatrix of ρ(ΛG(k) – Us(k)) – Ss, and Γ is a diagonal ma-
trix containing the eigenvalues, γi. Multiplying both side by QT and Q, results in: 
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QT is thus a solution of (4). 
After computing Λs(k+1) for all subjects, we fix Λs and Us, and find the update for 

ΛG by minimizing Lρ(Λ
s(k+1), ΛG, Us(k)) over ΛG: 
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where J(ΛG) = λ||ΛG||1 to impose sparsity. Since (7) is exactly the proximal operator of 
J(ΛG), ΛG(k+1) can be found by element-wise soft thresholding [10]: 
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where (a)+ = a if a > 0 and (a)+ = 0 if a ≤ 0. ijΛ and ijU denote the subject average 

of s
ijΛ and s

ijU , respectively.  

Finally, we fix Λs and ΛG, and minimize Lρ(Λ
s(k+1), ΛG(k+1), Us) over Us to find 

an update for Us. The solution is given by: 
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(4), (7), and (9) are repeated until convergence. We highlight that (4) is separable 
across subjects. Thus, the estimation of Λs can be distributed over multiple proces-
sors, in which the computational cost of each Λs estimation is approximately that of 
an eigenvalue decomposition, i.e. O(d3). For initialization, we set Us(0) to 0d×d and 
ΛG(0) to the subject average inverse covariance, with each subject’s inverse covari-
ance estimated using oracle approximating shrinkage (OAS), which is an l2 regulari-



zation technique with a closed-form solution for the optimal shrinkage parameter [7]. 
We note that for N = 1, (1) and (2) are equivalent, thus the above procedures can be 
directly applied for pure single-subject sparse inverse covariance estimation. 
 
Convergence Criteria. We adopt the convergence criteria in [10], which are based 
on the differences between the intra-subject inverse covariance estimates and their 
means, ||R(k)||F < εpri, and the differences between the mean inverse covariance of two 
consecutive iterations, ||Q(k)||F < εdual, as summarized below: 
 

222

1

22 ||)1()(||||)(||,||)()(||||)(|| FF

N

s
F

s
F kkNkkkk  


ΛΛQΛΛR  , (10) 

}||)(||,||)(max{||relabspri F
G

F kkd ΛΛ  , (11) 

Fkd ||)(||relabsdual U  . (12) 

 
Both εabs and εrel are set to 10-4 in this work. We note that one would normally prefer 
finding solutions with εabs and εrel being as small as computationally practical. How-
ever, in the present context of functional connectivity estimation, we anticipate inter-
subject differences, thus setting εabs and εrel too low could falsely force all subjects to 
have overly-similar intra-subject connectivity estimates. 
 
Parameter Selection. SGGGM requires setting two parameters: λ and ρ. Since the 
estimated connection structure highly depends on λ, we employ cross validation in 
combination with a refined grid search strategy similar to the approach we have taken 
in [8] to find the optimal λ. We proceed by first selecting a range of λ and temporally 
splitting the data into K folds. We then estimate ΛG on K – 1 training folds and com-
pute the log data likelihood of the left-out test fold given ΛG

train for each λ, i.e.  
Σs(logdet(ΛG

train) – tr(Ss
testΛ

G
train)). We define the optimal λ as the one that gives the 

largest average log data likelihood across folds. We then search within a refined range 
around the optimal λ and repeat the procedure. The initial λ range is set as [λmax/100, 

λmax], where λmax = max| ijS |, i ≠ j is the value beyond which off-diagonal elements of 

ΛG are shrunk to 0. ijS denotes the mean sample covariance across subjects. For each 

refinement level, we evenly distribute 5 grid points on a logarithm scale to cover the λ 
range. K is set to 3, and we refine the search 3 times within the interval defined by the 
two grid points adjacent to the optimal λ found at the previous refinement level. For ρ, 
we fix it to 1 to ensure convergence [10] as well as to reduce the computation load 
arising from nesting the λ search into an internal cross-validation loop. We defer in-
vestigation of efficient means for joint selection of λ and ρ to future work. 



2.3 Validation 

We base our validation on increased sensitivity in group activation detection by using 
our recently proposed model that permits incorporation of connectivity into the esti-
mation of activation effects [12]. The rationale is that connectivity estimates that bet-
ter reflect the intrinsic wiring of the brain would presumably result in higher detec-
tion. By using this validation scheme, quantitative comparison of different connec-
tivity estimation techniques is facilitated. We summarized below our model in [12]: 
 













 




2

))()((
exp

|2|

1
),(~

1

2

1

1

1

ssssTsss

s

ssss tr
N

n

XAYVXAY

V

VXAY


 

(13) 










)(

2
exp

|2|

||
),,0(~

1
2

2

2
2

2
sssTsTs

s

Tss
ssss trMN

m

d
T

XAVAX

V

XX
XXVA





 , (14) 

 
where Ys is a d×n matrix containing task fMRI time courses of d brain areas of sub-
ject s. Xs is a m×n matrix with m regressors along the rows for modeling the expected 
task-evoked responses [13]. As is a d×m activation effect matrix to be estimated. V1

s 
and V2

s are d×d covariance matrices of Ys and As, respectively. XsXsT models the 
correlations between the m experimental conditions. MN(0,V2

s,αXsXsT) denotes the 
matrix normal distribution, which serves as a conjugate prior of (13). The influence of 
this prior on A is governed by α, which can be optimized by maximizing model evi-
dence [12]. We assume V1

s = Id×d as conventionally done, and V2
s is where we inject 

our RS connectivity estimates. We note that all parameters in the model can be esti-
mated in a data-driven manner without any manual interventions [12], thus providing 
an objective framework for evaluating different connectivity estimation methods. 

3 Materials 

3.1 Synthetic Data 

For validation, we created 100 synthetic datasets with a sample-to-parameter ratio 
similar to that in a typical fMRI connectivity study. Specifically, each dataset com-
prised 10 subjects with 500 regional time courses of 186 time samples, and was gen-
erated as follows. First, we created a random 500×500 sparse positive definite matrix, 
ΛG, with 20% of the elements being non-zero to approximately match the sparsity 
level observed when we applied SGGM to the real data. ΛG corresponds to the group 
inverse covariance matrix, representative of the 10 subjects. We then randomly drew 
10 positive definite matrices, Λs, s = 1 to 10, from Wishart(ΛG, ν), where ν is the de-



grees of freedom set to ten times the number of parameters, i.e. 10×500×499/2, to 
ensure that Λs is well-conditioned for matrix inversion. Λs corresponds to the inverse 
covariance matrix of each subject s, which was used to generate regional time courses 
by drawing samples from N(0, Σs), where Σs is the matrix inverse of Λs. 

3.2 Real Data 

60 healthy subjects were recruited and scanned at multiple centers. Each subject was 
asked to perform 10 language, computation, and sensorimotor tasks similar to those in 
[14], as fMRI data were acquired over a duration of ~5 min. ~7 min of RS-fMRI data 
were also collected. Scanning was performed using 3T scanners from multiple manu-
facturers with TR = 2200 ms, TE = 30 ms, and flip angle = 75o. The task fMRI data 
were corrected for slice timing and head motions, temporally detrended, and spatially 
normalized using the SPM8 software. The RS-fMRI data were similarly preprocessed 
except we applied a band-pass filter with cutoff frequencies at 0.01 and 0.1 Hz. White 
matter and cerebrospinal fluid confounds were regressed out from the gray matter 
voxel time courses. To create a finer brain parcellation than provided by standard 
brain atlases (< 150 regions), we divided the brain into 500 parcels by concatenating 
RS-fMRI time courses across subjects and applying Ward clustering [15]. We then 
averaged the voxel time courses within each parcel to generate parcel time courses. 
These time courses were normalized by subtracting the mean and dividing by the 
standard deviation to account for scanner variability across imaging centers. 

4 Results and Discussion 

To investigate the gain of jointly estimating intra-subject and group-level connectivity 
under a unified model, we compared SGGGM against a number of state-of-the-art 
techniques on both synthetic and real data. Contrasted methods at the intra-subject 
level include SGGM [1] and OAS [7]. We excluded Pearson’s correlation, since it 
does not provide an invertible correlation matrix when the number of parameters is 
greater than the number of samples, which is the case for our real data and quite gen-
erally in fMRI-based functional connectivity analysis. At the group level, we exam-
ined different ways of computing the mean from the SGGM and OAS intra-subject 
connectivity estimates as well as SGGM and OAS applied to concatenated observa-
tions across subjects. Specifically, we considered the conventionally-used Euclidean 
mean, ΣsΛ

s/N, and the Log-Euclidean mean [16], expm(Σslogm(Λs)/N), where  
expm( · ) and logm( · ) denote matrix exponential and matrix logarithm, respectively. 
The reason for using Log-Euclidean mean is that Λs lives on the space of positive 
definite matrices, which is not a vector space. Applying logm( · ) preserves the spec-
tral characteristics of the input matrices, which avoids the undesirable "swelling ef-
fect" observed with Euclidean mean [16]. We note that when estimating group con-
nectivity by concatenating observations across subjects, it is important to normalize 
the subjects’ observations by subtracting the mean and dividing by the standard devia-
tion to reduce inter-subject variability.  



4.1 Synthetic Data Results 

To assess the accuracy of the contrasted inverse covariance estimation methods, we 
computed the affine invariant distance [16] between the estimates and ground truth: 
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where Λ̂ denotes the estimated inverse covariance of a given method and Λgnd is the 
ground truth inverse covariance. The results are summarized in Fig. 1. At intra-subject 
level, SGGGM significantly outperformed SGGM and OAS, which demonstrates the 
benefits of incorporating group information into intra-subject inverse covariance es-
timation when the subjects belong to the same population. At the group level, using 
SGGGM also resulted in significantly more accurate inverse covariance estimates. 
Interestingly, using concatenated observations performed better than Euclidean and 
Log-Euclidean means. We speculate the reason is that the increased number of sam-
ples by concatenating observations improves the conditioning of the estimation, 
whereas using subject means amounts to averaging poorly estimated intra-subject 
inverse covariance matrices. The higher accuracy achieved with SGGM over OAS for 
the case where observations are concatenated is also likely due to a similar reason, in 
which the increased sample size enables SGGM to more accurately learn the support, 
i.e. the sparsity pattern, of the ground truth inverse covariance matrix.  
 

 
(a) Intra-subject level 

 
(b) Group-level 

Fig. 1. Synthetic data results. Subscripts “E”, “LE”, and “C” denote estimation with Euclidean 
mean, Log-Euclidean mean, and concatenated observations. Using SGGGM resulted in signifi-
cantly more accurate inverse covariance estimates than the contrasted methods. 

4.2 Real Data Results 

Validation on real data is greatly complicated by the lack of ground truth. To safely 
base our validation on increased sensitivity in brain activation detection, we employed 
the max-t permutation test [17] to enforce strict control on false positive rate. With 
detection sensitivity in group activation being the validation criterion, using a com-
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mon group connectivity prior or even injecting group information into intra-subject 
connectivity estimation could bias the results. To remove this bias, we first randomly 

permuted the rows and columns of a given estimated connectivity matrix, Λ̂ , and 
computed the percentage of parcels found to be activated. This percentage indicates 
the amount of detections that could be obtained given the same set of estimated con-
nectivity values but with the connection structure randomized. This process was re-
peated 50 times with the maximum difference in the percentages of detected parcels 
between the permuted cases and that obtained with ordinary least square (OLS), i.e. 
standard univariate analysis without any prior [13], subtracted from the original per-

centage of detected parcels found with Λ̂ . This procedure was applied for all meth-
ods that used group information in the connectivity estimation. To test the generality 
of SGGGM, we examined the mean detection rate averaged over the 10 experimental 
conditions and 21 contrasts of interest between these conditions. 

Quantitative results obtained by incorporating intra-subject connectivity priors into 
task activation detection are shown in Fig. 2(a). OLS is also plotted to serve as a base-
line. Using SGGGM significantly increased detection sensitivity over SGGM and 
OAS for a typical p-value range of 0 to 0.05. Significance is declared based on a per-
mutation described in [8]. Our results thus indicate that there are commonalities 
across subjects that can be exploited to improve intra-subject connectivity estimation. 
Denoting group-level connectivity estimation using SGGM and OAS with Euclidean 
mean, Log-Euclidean mean, and concatenated observations as SGGME, OASE, 
SGGMLE, OASLE, SGGMC, and OASC in Fig. 2(b), SGGGM was found to significant-
ly outperform SGGME, OASE, and SGGMLE. SGGGM also resulted in slightly more 
detections than OASLE and similar performance compared to SGGMC and OASC. 
Overall, our results show that SGGGM provides relevant priors for activation detec-
tion at both intra-subject and group level.  

 

 
(a) Intra-subject connectivity prior 

 
(b) Group-level connectivity prior 

Fig. 2. Real data results. Percentage of parcels with significant activation averaged across con-
trasts v.s. p-value thresholds displayed. Subscripts “E”, “LE”, and “C” denote group connectivity 
estimation with Euclidean mean, Log-Euclidean mean, and concatenated observations. 

Qualitative results obtained by incorporating intra-subject connectivity priors are 
shown in Fig. 3. We did not include the group connectivity prior results due to space 
limitation. Areas in red are parcels detected with SGGGM only. The other coloured 
areas are parcels detected by SGGGM as well as one or more of the contrasted meth-
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ods (OLS, OAS, and SGGM). For the task in which subjects performed calculations 
following auditory instructions, only SGGGM detected the right auditory thalamus 
(Fig. 3(a)), which is responsible for relaying information to the auditory cortex. For 
the case where the calculations to be performed was visually presented, SGGGM 
detected a much wider extent of the dorsal anterior cingulate cortex (Fig. 3(b)), which 
is involved with executive processing and attention. Moreover, for the task in which 
subjects listened to sentences, only SGGGM detected the right Broca’s area (Fig. 
3(c)), which is associated with processing of subtle features in speech, e.g. prosody.  
 

 
(a) Auditory math, p = 0.01 (b) Visual math, p = 0.01 (c) Listen to sentences, p = 0.01 

Fig. 3. Activation maps with intra-subject connectivity priors. Red = detected by SGGGM only. 
Other colours indicate areas detected by SGGGM and one or more of the contrasted methods.  

5 Conclusions 

We proposed a new sparse graphical model for joint estimation of intra-subject and 
group-level functional connectivity. We showed on synthetic data that SGGGM pro-
vides significantly more accurate inverse covariance estimates than state-of-the-art 
techniques at both the intra-subject and group level. We also demonstrated on real 
data that incorporating intra-subject connectivity priors learned from SGGGM results 
in higher sensitivity in activation detection compared to SGGM and OAS. Based on 
our results, a couple of insights can be drawn. First, sample size appears to be the 
limiting factor to functional connectivity estimation, as suggested by the improve-
ments obtained by concatenating observations in contrast to using subject means. 
Thus, concatenating data across subjects, while appropriately accounting for inter-
subject variability, could be a compelling strategy if only group connectivity is of 
interest. Moreover, since more sensitive activation detection can be achieved by in-
corporating a group connectivity prior, one can envision building a functional connec-
tivity atlas by applying SGGGM to datasets from a large cohort of subjects and using 
the resulting connectivity estimate as a generic prior for future activation studies.  

Acknowledgements 

This work was supported by the Genim ANR-10-BLAN-0128 grant, NSERC, and the 
Berkeley-INRIA-Stanford grant. The data were acquired within the IMAGEN project. 
Jean Baptiste Poline was partly funded by the IMAGEN project, which receives fund-
ing from the E.U. Community's FP6, LSHM-CT-2007-037286. This manuscript re-
flects only the authors’ views and the Community is not liable for any use that may be 
made of the information contained therein. 

LR LR LR



References 

1. Huang, S., Li, J., Sun, L., Ye, J., Fleisher, A., Wu, T., Chen, K., Reiman, E.: Learning 
Brain Connectivity of Alzheimer's Disease by Sparse Inverse Covariance Estimation. 
Neuroimage 50, 935—949 (2010) 

2. Delbeuck, X., Van der Linden, M., Collette, F.: Alzheimer's Disease as a Disconnection 
Syndrome? Neuropsychol. Rev. 13, 79—92 (2003) 

3. Fox, M.D., Raichle, M.E.: Spontaneous Fluctuations in Brain Activity Observed with 
Functional Magnetic Resonance Imaging. Nat. Rev. Neurosci. 8, 700−711 (2007) 

4. Smith, S.M., Fox, P.T., Miller, K.L., Glahn, D.C., Fox, P.M., Mackay, C.E., Filippini, N., 
Watkins, K.E., Toro, R., Laird, A.R., Beckmann, C.F.: Correspondence of the Brain’s 
Functional Architecture During Activation and Rest. Proc. Natl. Acad. Sci. 106, 
13040−13045 (2009) 

5. Varoquaux, G., Gramfort, A., Poline, J.B., Thirion, B.: Brain Covariance Selection: Better 
Individual Functional Connectivity Models Using Population Prior. In: Advances in Neu-
ral Information Processing Systems. 23, 2334—2342 (2010) 

6. Smith, S.: The Future of fMRI Connectivity. NeuroImage 62, 1257—1266 (2012) 
7. Chen, Y., Wiesel, A., Eldar, Y.C., Hero, A.O.: Shrinkage Algorithms for MMSE Covari-

ance Estimation. IEEE Trans. Sig. Proc. 58, 5016—5029 (2010) 
8. Ng, B., Varoquaux, G., Poline, J.B., Thirion, B.: A Novel Sparse Graphical Approach for 

Multimodal Brain Connectivity Inference. In: Ayache, N., Delingette, H., Golland, P., Mo-
ri, K. (eds.) MICCAI 2012. LNCS, vol. 7510, pp. 706—713, Springer, Heidelberg (2012)  

9. Venkataraman, A., Rathi, Y., Kubicki, M., Westin, C.F., Golland, P.: Joint Modeling of 
Anatomical and Functional Connectivity for Population Studies. IEEE Trans. Med. Imag-
ing 31, 164—182 (2012) 

10. Boyd, S. Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed Optimization and Statis-
tical Learning via the Alternating Direction Method of Multipliers. Found. Trend Mach. 
Learn. 3, 1—122 (2010) 

11. Hsieh, C.J., Sustik, M.A., Dhillon, I.S., Ravikumar, P.: Sparse Invers Covariance Matrix 
Estimation Using Quadratic Approximation. In: Advances in Neural Information Pro-
cessing Systems. 24, 2330—2338 (2011) 

12. Ng, B., Abugharbieh, R., Varoquaux, G., Poline, J.B., Thirion, B.: Connectivity-informed 
fMRI Activation Detection. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011. 
LNCS, vol. 6892, pp. 285—292, Springer, Heidelberg (2011) 

13. Friston, K.J., Holmes, A.P., Worsley, K.J., Poline, J.B., Frith, C.D., Frackowiak, R.S.J.: 
Statistical Parametric Maps in Functional Imaging: A General Linear Approach. Hum. 
Brain Mapp. 2, 189—210 (1995) 

14. Pinel, P., Thirion, B, Meriaux, S., Jober, A., Serres, J., Le Bihan, D., Poline, J.B., Dehaene, 
S.: Fast Reproducible Identification and Large-scale Databasing of Individual Functional 
Cognitive Networks. BioMed. Central Neurosci. 8, 91 (2007) 

15. Michel, V., Gramfort, A., Varoquaux, G., Eger, E., Keribin, C., Thirion, B.: A Supervised 
Clustering Approach for fMRI-based Inference of Brain States. Patt. Recog. 45, 2041—
2049 (2012) 

16. Arsigny, V., Fillard, P., Pennec, X., Ayache, N.: Fast and Simple Calculus on Tensors in 
the log-Euclidean Framework. In: Duncan, J., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 
8, pp. 115—122, Springer, Verlag (2005) 

17. Nichols, T., Hayasaka, S.: Controlling the Familywise Error Rate in Functional Neuroi-
maging: a Comparative Review. Stat. Methods Med. Research 12, 419—446 (2003) 


