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ANALYSIS OF PERIODIC DISCRETEEVENT SYSTEMS IN (MAX,+) ALGEBRAS. Lahaye, J.L. Boimond, L. HardouinLaboratoire d'Ing�enierie des Syst�emes Automatis�es, 62 Avenue Notre-Dame du La
,49000 Angers, Fran
e[lahaye, boimond, hardouin℄�istia.univ-angers.frKeywords: Dis
rete Event Dynami
 Systems, (max,+) Algebra, Periodi
 SystemsAbstra
t Dis
rete Event Dynami
 Systems modeled by (max;+) linear equationswith periodi
ally varying 
oeÆ
ients are studied. It turns out thatspe
tral properties of the so-
alled monodromy matrix 
an be used forthe performan
e evaluation of these systems.1. INTRODUCTIONDis
rete Event Dynami
 Systems (DEDS) subje
t to syn
hronizationphenomena 
an be modeled by linear equations in a parti
ular algebrai
stru
ture 
alled (max;+) algebra. A linear system theory analogousto the 
onventional theory has been developed for this 
lass of systemswhi
h 
an be, for example, manufa
turing systems or 
ommuni
ationnetworks [2℄. In parti
ular, linear time invariant systems, whose be-haviors are usually represented by Timed Event Graphs with 
onstanttimings, have been studied extensively [2℄, [5℄, [7℄. In a manufa
turingsystem, time invarian
e 
orresponds for example to assume that pro
ess-ing times are 
onstant.Lots of systems arising in pra
ti
e are time-varying, that is, the val-ues of the output response depend on when the input is applied. Timevariation is a result of system parameters 
hanging: in a manufa
turingsystem, pro
essing times of parts may depend on their type. Systemsdes
ribed by state models with varying 
oeÆ
ients in (max;+) algebrahave been 
onsidered in [10℄. The output tra
king under just-in-time
riterion has in parti
ular been extended to su
h systems.In this paper, the fo
us is on linear systems whose state models haveperiodi
ally varying 
oeÆ
ients. Expli
itly, ea
h entry of the matri
es1



2 DISCRETE EVENT SYSTEMS: ANALYSIS AND CONTROLin the state model satisfy a(k +K) = a(k), k 2 Z. We aim at extend-ing to the (max;+) 
ontext some established 
on
epts and results ofthe 
onventional periodi
 linear system theory [3℄, [6℄, [4℄. In parti
u-lar, the spe
tral properties of the so-
alled monodromy matrix, i.e., thetransition matrix over one period K, are used to show that autonomousperiodi
 systems 
ouple in �nite time to a periodi
 regime. This result
an for example be applied to the performan
e evaluation of manufa
-turing systems in whi
h tasks are s
heduled periodi
ally.The outline of the paper is as follows. In x2, we re
all the elements of(max;+) algebra we shall use throughout the paper. In x3, (max;+)linear time-varying systems are presented. Se
tion 4 is devoted to theanalysis of periodi
 systems. An appli
ation to the performan
e evalua-tion of a parti
ular 
lass of DEDS is proposed in x5.2. PRELIMINARIESWe 
onsider the semi-�eld (R [ f�1g;�;
) in whi
h the law � ismax, and 
 is the usual addition. We denote respe
tively " = �1 ande = 0 the neutral elements of � and 
. The element " is absorbing for
. The law � is idempotent, i.e., a� a = a.(R [ f�1g;�;
) is an idempotent semi-ring or dioid [2℄, [5℄, and isusually referred to as (max,+) algebra. We shall denote it by Rmax .In the following, we shall 
onsider ve
tors and matri
es with entries inRmax . The produ
t of a ve
tor u 2 Rnmax by a s
alar a 2 Rmax is de�nedas (a
 u)i = a
 ui = a+ ui :The sum and produ
t of matri
es are de�ned 
onventionally, repla
ing+ and � by � and 
, respe
tively. Let A;B 2 Rn�nmax ,(A�B)ij = Aij � Bij (A
B)ij = nLl=1Ail 
 Blj = max1�l�n(Ail + Blj) :The matrix-ve
tor produ
t is de�ned in a similar way. Most of the time,the symbol '
' is omitted as is the 
ase in 
onventional algebra.Let us re
all basi
 de�nitions and results about the (max;+) spe
tralproblem (see [2℄, [7℄ for exhaustive presentations), that is the existen
eof (nonzero) eigenvalues � 2 Rmax and eigenve
tors v 2 Rnmax for a givena matrix M 2 Rn�nmax , su
h that M 
 v = �
 v.De�nition 1 A matrix M 2 Rn�nmax is irredu
ible if8i; j 9l � 0 su
h that (M l)ij > ":Theorem 1 An irredu
ible matrix M 2 Rn�nmax has a unique eigenvaluedenoted �.There might be several eigenve
tors of an irredu
ible matrix with theunique 
orresponding eigenvalue �. A linear 
ombination (in Rmax) of



Analysis of Periodi
 Dis
rete Event Systems in (max,+) Algebra 3eigenve
tors is an eigenve
tor. An eigenve
tor has all its 
oordinatesdi�erent from ". Finally, let us re
all that in Rmax every irredu
iblematrix is 
y
li
 in the sense of the following theorem.Theorem 2 Let M 2 Rn�nmax be an irredu
ible matrix whose eigenvalueis �. There exists integers N and 
 su
h that8m � N; Mm+
 = �
 
Mm:The least value of 
 is 
alled the 
y
li
ity of M .3. TIME-VARYING (MAX,+) LINEARSYSTEMSWe study time-varying (max;+) linear systems represented by equa-tions: � x(k) = A(k � 1)x(k � 1)�B(k)u(k) (1a)y(k) = C(k)x(k) (1b)in whi
h for k 2 Z:� A(k) 2 Rn�nmax , B(k) 2 Rn�pmax , and C(k) 2 Rq�nmax ;� u(k) 2 Rpmax (resp. x(k) 2 Rnmax , y(k) 2 Rqmax) is 
alled the input(resp. state, output) ve
tor.The re
ursive equation (1a) 
an also be writtenx(k) = �(k; k0)x(k0)� kMj=k0+1�(k; j)B(j)u(j) (2)in whi
h �(k; k0) is 
alled transition matrix by analogy with 
onventionaltime-varying linear systems theory [8℄, and is given by�(k; k0) = 8<: not de�ned ; k0 > kId (identity element of Rn�nmax ) ; k0 = kA(k � 1)A(k � 2)
 � � � 
A(k0) ; k0 < k (3)Remark 1: The transition matrix satis�es the 
omposition propertyk � l � k0; �(k; k0) = �(k; l)
 �(l; k0) : (4)In parti
ular, for k > k0, we have �(k; k0) = A(k � 1) 
 �(k � 1; k0),whi
h shows that the transition matrix is solution of the homogeneousstate equation (Eq. (1a) with u(k) = ";8k).The input-output relationship is dedu
ed from Eq. (2) with x(k0) =u(k0) = " for k0 < 0, and is given byy(k) = Lj2Zh(k; j)u(j) ; with h(k; j) = � C(k)�(k; j)B(j) ; k � j;" ; k < j;(h is 
alled the impulse response).



4 DISCRETE EVENT SYSTEMS: ANALYSIS AND CONTROL4. ANALYSIS OF PERIODIC SYSTEMSIn this se
tion, we de�ne and study (max;+) linear periodi
 systemsby analogy with linear periodi
 systems over 
onventional algebra [3℄,[6℄, [4℄. Using basi
 properties and (max;+) spe
tral theory, we showthat autonomous periodi
 systems 
ouple in �nite time to a periodi
regime.De�nition 2 A system represented by Eqs. (1) is said to be periodi
of period K (or shortly K-periodi
) if K is the least integer su
h that8k 2 Z; A(k +K) = A(k) ; B(k +K) = B(k) ; C(k +K) = C(k) :Remark 2: The period K of the system is equal to the least 
ommonmultiplier of the periods of entries A(k)ij , B(k)ik and C(k)lj, i = 1 : : : n,j = 1 : : : n, k = 1 : : : p, l = 1 : : : q, k 2 Z.Proposition 1 The transition matrix is K-periodi
, i.e.,k0 < k ; �(k +K; k0 +K) = �(k; k0) (5)if, and only if, A(k) is K-periodi
.Proof: Let us suppose that A(k) is K-periodi
. We have 8k; k0 < k,�(k+K; k0+K) = A(k+K)
 : : :
A(k0+1+K) = A(k)
 : : :
A(k0+1) = �(k; k0):Conversely, the K-periodi
ity of the transition matrix gives for k0 = k�1�(k +K; k � 1 +K) = �(k; k � 1);whi
h, a

ording to the de�nition of the transition matrix (Eq. (3)),leads to 8k; A(k +K) = A(k): �The K-periodi
ity of � also writesk0 < k ; 8m 2 Z ; �(k +mK; k0 +mK) = �(k; k0) :Setting k = i+mK with k0 � i < K, m 2 N, and using the 
ompositionproperty (4) as well as the periodi
ity (5) of �, we have:�(i+mK; k0)= �(i+mK; k0+mK)�(k0+mK; k0+(m� 1)K)
 : : :
�(k0+K; k0)= �(i; k0)�(k0 +K; k0)
 : : :
 �(k0 +K; k0)| {z }m times= �(i; k0)[�(k0 +K; k0)℄m :De�nition 3 The matrix Mk0 = �(k0+K; k0) is 
alled the monodromymatrix at k0 (as in 
onventional theory [3℄).For autonomous systems, that is systems for whi
h the input is null(u(k) = ", 8k 2 Z in eq. (1a), the state ve
tor obeys:x(i+mK) = �(i+mK; k0)x(k0)= �(i; k0)[�(k0 +K; k0)℄mx(k0)= �(i; k0)Mmk0x(k0) : (6)



Analysis of Periodi
 Dis
rete Event Systems in (max,+) Algebra 5In other words, the monodromy matrix des
ribes the evolution of thestate over one period. This relation allows showing that an autonomousperiodi
 system 
ouple in �nite time to a periodi
 regime.Proposition 2 If the monodromy matrix Mk0 is irredu
ible with eigen-value �, then there exists two integers N and 
 su
h that for m � Nx(k + (m+ 
)K) = �
x(k +mK) :Proof: From equation (6), a dire
t appli
ation of theorem 2 leads to:x(i+ (m+ 
)K) = �(i; k0)Mm+
k0 x(k0) = �(i; k0)�
Mmk0x(k0)= �
�(i; k0)Mmk0x(k0)= �
x(i+mK)in whi
h � (resp. 
) is the eigenvalue (resp. the 
y
li
ity) of Mk0 . �In this periodi
 regime, the length of the pattern is equal to 
�K. In theappli
ation of se
tion 5, entries of x(k) shall point out dater variablesasso
iated with a DEDS: xi(k) will denote the date of the k-th o

urren
eof event labeled xi. The ratio (
 � �)=(
 � K) = �=K (the numeri
alevaluation of �
 in the formula equals 
 � � in 
onventional analysis)shall then be interpreted as the 
y
le time (inverse of the throughput)of the system; every 
�K o

urren
es of events are spa
ed out of 
� �units of times. The following proposition, 
laiming that the 
y
le timeis independent of k0, 
ompletes the des
ription of this periodi
 regime.Remark 3: If x(k0) is an eigenve
tor of Mk0 , we havex(k0 +K) = Mk0x(k0) = �x(k0) :From k0, the state is then periodi
. The pattern is shorter (equal to K),but the 
y
le time is still equal to �=K.Proposition 3 The spe
trum of Mk0 = �(k0+K; k0) is independent ofk0. Furthermore, if x(k0) is an eigenve
tor of Mk0 with 
orrespondingeigenvalue �, then x(k) = �(k; k0)x(k0) is an eigenve
tor of Mk = �(k+K; k) with 
orresponding eigenvalue �.Proof:� For any pair (k0; �0) with �0+K � k0 � �0, the monodromy matri
esat k0 and at �0 
an respe
tively be written� �(k0+K; k0) = �(k0+K;�0+K)�(�0+K; k0) = �(k0; �0)�(�0+K; k0)� �(�0 +K;�0) = �(�0 +K; k0)�(k0; �0)In other words, the monodromy matri
es 
an be expressed in the forms�(k0 +K; k0) = FG and �(�0 +K;�0) = GF .If � is a nonzero eigenvalue of �(k0 + K; k0), i.e., FGx = �x, x 6= ",then GFGx = G�x = �Gx, or GFy = �y, with y = Gx.Sin
e � 6= " and x 6= ", y = Gx 6= "; so that � is an eigenvalue of�(�0 +K;�0) = GF as well.



6 DISCRETE EVENT SYSTEMS: ANALYSIS AND CONTROLBy reversing the role of �(k0+K; k0) and �(�0+K;�0) in the above ar-gument, it 
onversely follows that all the nonzero eigenvalues of �(�0 +K;�0) are eigenvalues of �(k0 +K; k0).� Let us assume that x(k0) is an eigenve
tor of Mk0 with 
orrespondingeigenvalue �. We haveMkx(k) = �(k +K; k)x(k) = �(k +K; k)�(k; k0)x(k0)= �(k +K; k0)x(k0)= �(k +K; k0 +K)�(k0 +K; k0)x(k0)= �(k; k0)�x(k0)= �x(k)whi
h shows that x(k) is an eigenve
tor ofMk with 
orresponding eigen-value �. �5. APPLICATION TO THE PERFORMANCEEVALUATION OF DEDSIn this se
tion, we apply the pre
eding results to DEDS. More pre-
isely, we de�ne a 
lass of Timed Petri Nets suitable to model time-varying (max;+) linear systems (introdu
ed in [10℄). Essentially, thoseare Timed Event Graphs (TEGs, Petri net for whi
h ea
h pla
e has onlyone input ar
 and one output ar
) whose holding times asso
iated withpla
es are variable. We give their representation in (max;+) algebra.When sequen
es of holding times are periodi
, the representation is astate model with periodi
ally varying 
oeÆ
ients.5.1. FIFO TEGSWe denote by P (respe
tively, Q) the �nite set of pla
es (respe
tively,transitions) of a TEG, and Mp 2 N the number of tokens being initiallyin pla
e p 2 P; p� (respe
tively, �p) refers to the output transition(respe
tively, input transition) of p. We de�ne similarly the sets q�, �qas the set of output pla
es, and the set of input pla
es, of transitionq 2 Q.We 
all holding time the minimum amount of time tokens have to stayin a pla
e (without loss of modeling power, the �ring of transitions issupposed to be instantaneous): the k-th token in pla
e p in
urs theholding time denoted �p(k).De�nition 4 We de�ne the earliest First-In-First-Out (FIFO) fun
-tioning rule of a TEG as follows.1 A transition q �res as soon as ea
h pla
e upstream q 
ontains atleast one available token.
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 Dis
rete Event Systems in (max,+) Algebra 72 We denote q(n) the date of n-th �ring of transition q. This �ring
onsumes one token in ea
h upstream pla
e and produ
es one to-ken in ea
h downstream pla
e. A token added in pla
e p 2 q� attime q(n) is indexed k with k = n+Mp and be
omes available fortransition p� from instant max1�i�nfq(i) + �p(i+Mp)g.A TEG fun
tioning under this rule is 
alled a FIFO TEG.The only originality in this de�nition 
on
erns the token's availability.Indeed, the token indexed k in pla
e p is usually said to be available assoon as its holding time �p(k) is over [1℄.The reason why we have de�ned a new fun
tioning rule is that TEGs
an be modeled by linear equations in (max;+) algebra only if tokens donot overtake one another when traversing pla
es [1℄, [2, 
h. 2℄. Previousstudies have 
onsequently 
onsidered 
onditions on sequen
es of hold-ing times (
onstant or non-de
reasing holding times for example)and/orstru
tural 
onditions (preventing several tokens to be simultaneouslypresent in a pla
e with variable holding time). The above fun
tioningrule ensures without stru
tural 
onditions that pla
es operate as FIFO
hannels for any sequen
es of holding times, and will notably enable toeasily model mixed-model assembly lines (whi
h are intrinsi
ally over-take free) on whi
h several parts 
an be simultaneously handled at asame "station" or ma
hine. Let us 
onsider for example the automobileprodu
tion line partly shown in �gure 1.(a) where 
ars are handled bya linear a

umulative 
onveyor 
rossing su

essive working areas sepa-rated by bu�er zones. In ea
h working area, a �xed number of 
ars
x2bu�erzone

(a)
�� ��working area

(b)- - - �p2(�)- -p2x1 x3- -p1R Ri i
Figure 1 (a) A portion of an automobile produ
tion line, (b) a FIFO TEG.
an be pro
essed simultaneously (two in the represented working area)and bu�er zones have limited 
apa
ities (only one 
ar 
an be sto
ked inthe represented bu�er zone). Cars 
annot overtake one another on the
onveyor; bu�er zones and working areas work as FIFO 
hannels. Theevolution of 
ars in the 
onsidered portion of the line 
an be modeled bythe FIFO TEG of �gure 1.(b). A token in pla
e p1 (resp. p2) represents



8 DISCRETE EVENT SYSTEMS: ANALYSIS AND CONTROLa 
ar sto
ked in the bu�er zone (resp. being pro
essed in the workingarea). Pro
essing times in the working area are equal to �p2(�), and forsake of simpli
ity, travelling time in the bu�er zone as well as setup timesare assumed to be null. Finally, let us note that this system would notbe modeled by a TEG if the 
lassi
al fun
tioning rule was used.5.2. REPRESENTATION OF FIFO TEGSWith ea
h transition q 2 Q we asso
iate a dater variable also denotedq: q(k) denotes the date of the k-th �ring of transition q. The sequen
esof holding times �p(k), p 2 P, k 2 Z are assumed to be given nonnega-tive and �nite integers.Assertion 1 The dater variables of a FIFO TEG satisfy the followingequation: q(k) = Mfp2�qjq0=�pgMi�k ��p(i)
 q0(i�Mp)�; k 2 Z;or equivalently,q(k) = q(k � 1)� Mfp2�qjq0=�pg ��p(k)
 q0(k �Mp)�; k 2 Z:The methodology to obtain a state representation for FIFO TEGs in(max;+) algebra is the same one as for TEGs fun
tioning with the
lassi
al rule [2, 
hap. 2℄. One 
an partition the set of transitionsQ = U [ X [ Y where U is the set of transitions with no prede
essors(input transitions), Y is the set of transitions with no su

essors (outputtransitions), and X = Q n (U [ Y) (state transitions). We denote by u(respe
tively x, y) the ve
tor of input (respe
tively, state, output) datersq, q 2 U (respe
tively, X , Y). One 
an obtain after several 
ombinatorialmanipulations the standard state model given by Eqs. (1) (see [10℄).Example 1: We 
onsider the FIFO TEG of �gure 1.(b) (non-dotted partof the graph) whi
h may partly represent a working area of an automo-bile produ
tion line, as des
ribed in se
tion 5.1. This graph has ex
lu-sively state transitions, its dynami
 behavior 
an be represented by thefollowing equation:x(k) = 0�x1(k)x2(k)x3(k)1A = 0�" " "e " "" " "1A
0�x1(k)x2(k)x3(k)1A�0�e e "" e e" �p2(k) e1A
0�x1(k � 1)x2(k � 1)x3(k � 1)1A :This equ. 
an be written in an expli
it form (see [2, th. 2.66, p. 79℄):x(k) = 0�x1(k)x2(k)x3(k)1A = 0�e e "e e e" �p2 (k) e1A
0�x1(k � 1)x2(k � 1)x3(k � 1)1A .



Analysis of Periodi
 Dis
rete Event Systems in (max,+) Algebra 9A FIFO TEG represented by Eqs. (1) will be seen as a periodi
 systemif, and only if, all the entries of matri
es A(k), B(k) and C(k) (
orre-sponding to the holding times asso
iated with pla
es of the graph) areperiodi
. The periodi
ity of the system, denoted K, is then equal to thelowest 
ommon multiplier of the periodi
ities of the sequen
es of hold-ing times. In the manufa
turing system des
ribed above, sequen
es ofholding times represent the pro
essing times of 
ars 
rossing the workingarea. Su
h a system is then periodi
 if for example the su

essive typesof 
ars released on the produ
tion line are ordered in a periodi
 manner.In su
h a periodi
 setting, the reasoning of se
tion 4 
an be used toshow that daters asso
iated with transitions of the FIFO TEG rea
ha periodi
 regime, and to assess the 
y
le time of these daters whi
h
orrespond to the average time between two su

essive �rings.Example 2: Let us 
onsider again the portion of the automobile produ
-tion line modeled in example 1.We assume that three types of 
ars, denoted R1, R2 and R3, are handledin this line. The pro
essing time for R1 (resp. R2, R3) in the 
onsideredworking area is equal to 3 (resp. 2, 1) units of times. The s
heduling issupposed to be a 
y
li
 permutation of the di�erent types of 
ars. Morepre
isely, the su

essive types of 
ars released in the line are : R1, R2,R3, R1, R2, R3; : : : We then have 8j 2 Z;�p2(k0 + 3j) = 3; �p2(k0 + 3j + 1) = 2; �p2(k0 + 3j + 2) = 1.The system is 3-periodi
 sin
e A(k + 3) = A(k), 8k 2 Z. The mon-odromy matrix at k0 is equal toMk0 = �(k0 + 3; k0) = 0�0 3 02 3 22 4 21A :Mk0 is irredu
ible (see de�nition 1). Its unique eigenvalue � is equalto 3 and its 
y
li
ity 
 is equal to 1. The state of the systems rea
hesa periodi
 regime in �nite time. The length of the pattern is equalto 
 � K = 1 � 3 = 3 and the 
y
le time of the system is equal to�=K = 3=3 = 1.Remark 4: Repetitive manufa
turing systems have previously been stud-ied in [9℄. Nevertheless, the approa
h presented in this referen
e doesnot allow 
onsidering systems where several parts 
an be handled simul-taneously on a same ma
hine as in the 
onsidered example.6. CONCLUSIONWe have ta
kled the study of (max;+) linear systems with periodi
allyvarying parameters. We have given basi
 properties, and in parti
ularwe have shown that su
h autonomous systems rea
h a periodi
 regime



10 DISCRETE EVENT SYSTEMS: ANALYSIS AND CONTROLin �nite time. This result 
an be used for the performan
e evaluation ofparti
ular DEDS.We think that further results on 
onventional periodi
 systems 
ould beadapted to the 
onsidered DEDS. In parti
ular, for the analysis of dis-
rete time periodi
 systems, it is often useful to resort to a time-invariantreformulation [6℄, [4℄. In a similar way, (max;+) linear periodi
 systemsadmit a time-invariant reformulation whi
h 
ould extend the study ofthese systems.Referen
es[1℄ F. Ba

elli. Ergodi
 theory of sto
hasti
 Petri networks. Annals ofProbability, 20(1):375{396, 1992.[2℄ F. Ba

elli, G. Cohen, G.J. Olsder, and J.P. Quadrat. Syn
hroniza-tion and Linearity. Wiley, 1992.[3℄ S. Bittanti. Deterministi
 and sto
hasti
 linear periodi
 systems.In Springer, editor, Time series and linear systems, pages 141{182.1996.[4℄ P. Bolzern, P. Colaneri, and R. S
atolini. Zeros of dis
rete-timelinear periodi
 systems. IEEE Transa
tions on Automati
 Control,31:1057{1058, 1986.[5℄ G. Cohen, P. Moller, J.P. Quadrat, and M. Viot. Algebrai
 toolsfor the performan
e evaluation of dis
rete event systems. IEEEPro
eedings: Spe
ial issue on Dis
rete Event Systems, 77(1), Jan.1989.[6℄ P. Colaneri, R. S
atolini, and N. S
hiavoni. Stabilization, regula-tion, and optimization of multirate sampled-data systems. In C.T.Leondes, editor, Control and Dynami
 Systems, volume 71, pages95{130. A
ademi
 Press, 1995.[7℄ S. Gaubert. Th�eorie des syst�emes lin�eaires dans les dio��des. Th�ese,E
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