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Sébastien Lahaye, Jean-Louis Boimond, Laurent Hardouin

To cite this version:
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ANALYSIS OF PERIODIC DISCRETEEVENT SYSTEMS IN (MAX,+) ALGEBRAS. Lahaye, J.L. Boimond, L. HardouinLaboratoire d'Ing�enierie des Syst�emes Automatis�es, 62 Avenue Notre-Dame du La,49000 Angers, Frane[lahaye, boimond, hardouin℄�istia.univ-angers.frKeywords: Disrete Event Dynami Systems, (max,+) Algebra, Periodi SystemsAbstrat Disrete Event Dynami Systems modeled by (max;+) linear equationswith periodially varying oeÆients are studied. It turns out thatspetral properties of the so-alled monodromy matrix an be used forthe performane evaluation of these systems.1. INTRODUCTIONDisrete Event Dynami Systems (DEDS) subjet to synhronizationphenomena an be modeled by linear equations in a partiular algebraistruture alled (max;+) algebra. A linear system theory analogousto the onventional theory has been developed for this lass of systemswhih an be, for example, manufaturing systems or ommuniationnetworks [2℄. In partiular, linear time invariant systems, whose be-haviors are usually represented by Timed Event Graphs with onstanttimings, have been studied extensively [2℄, [5℄, [7℄. In a manufaturingsystem, time invariane orresponds for example to assume that proess-ing times are onstant.Lots of systems arising in pratie are time-varying, that is, the val-ues of the output response depend on when the input is applied. Timevariation is a result of system parameters hanging: in a manufaturingsystem, proessing times of parts may depend on their type. Systemsdesribed by state models with varying oeÆients in (max;+) algebrahave been onsidered in [10℄. The output traking under just-in-timeriterion has in partiular been extended to suh systems.In this paper, the fous is on linear systems whose state models haveperiodially varying oeÆients. Expliitly, eah entry of the matries1



2 DISCRETE EVENT SYSTEMS: ANALYSIS AND CONTROLin the state model satisfy a(k +K) = a(k), k 2 Z. We aim at extend-ing to the (max;+) ontext some established onepts and results ofthe onventional periodi linear system theory [3℄, [6℄, [4℄. In partiu-lar, the spetral properties of the so-alled monodromy matrix, i.e., thetransition matrix over one period K, are used to show that autonomousperiodi systems ouple in �nite time to a periodi regime. This resultan for example be applied to the performane evaluation of manufa-turing systems in whih tasks are sheduled periodially.The outline of the paper is as follows. In x2, we reall the elements of(max;+) algebra we shall use throughout the paper. In x3, (max;+)linear time-varying systems are presented. Setion 4 is devoted to theanalysis of periodi systems. An appliation to the performane evalua-tion of a partiular lass of DEDS is proposed in x5.2. PRELIMINARIESWe onsider the semi-�eld (R [ f�1g;�;
) in whih the law � ismax, and 
 is the usual addition. We denote respetively " = �1 ande = 0 the neutral elements of � and 
. The element " is absorbing for
. The law � is idempotent, i.e., a� a = a.(R [ f�1g;�;
) is an idempotent semi-ring or dioid [2℄, [5℄, and isusually referred to as (max,+) algebra. We shall denote it by Rmax .In the following, we shall onsider vetors and matries with entries inRmax . The produt of a vetor u 2 Rnmax by a salar a 2 Rmax is de�nedas (a
 u)i = a
 ui = a+ ui :The sum and produt of matries are de�ned onventionally, replaing+ and � by � and 
, respetively. Let A;B 2 Rn�nmax ,(A�B)ij = Aij � Bij (A
B)ij = nLl=1Ail 
 Blj = max1�l�n(Ail + Blj) :The matrix-vetor produt is de�ned in a similar way. Most of the time,the symbol '
' is omitted as is the ase in onventional algebra.Let us reall basi de�nitions and results about the (max;+) spetralproblem (see [2℄, [7℄ for exhaustive presentations), that is the existeneof (nonzero) eigenvalues � 2 Rmax and eigenvetors v 2 Rnmax for a givena matrix M 2 Rn�nmax , suh that M 
 v = �
 v.De�nition 1 A matrix M 2 Rn�nmax is irreduible if8i; j 9l � 0 suh that (M l)ij > ":Theorem 1 An irreduible matrix M 2 Rn�nmax has a unique eigenvaluedenoted �.There might be several eigenvetors of an irreduible matrix with theunique orresponding eigenvalue �. A linear ombination (in Rmax) of



Analysis of Periodi Disrete Event Systems in (max,+) Algebra 3eigenvetors is an eigenvetor. An eigenvetor has all its oordinatesdi�erent from ". Finally, let us reall that in Rmax every irreduiblematrix is yli in the sense of the following theorem.Theorem 2 Let M 2 Rn�nmax be an irreduible matrix whose eigenvalueis �. There exists integers N and  suh that8m � N; Mm+ = � 
Mm:The least value of  is alled the yliity of M .3. TIME-VARYING (MAX,+) LINEARSYSTEMSWe study time-varying (max;+) linear systems represented by equa-tions: � x(k) = A(k � 1)x(k � 1)�B(k)u(k) (1a)y(k) = C(k)x(k) (1b)in whih for k 2 Z:� A(k) 2 Rn�nmax , B(k) 2 Rn�pmax , and C(k) 2 Rq�nmax ;� u(k) 2 Rpmax (resp. x(k) 2 Rnmax , y(k) 2 Rqmax) is alled the input(resp. state, output) vetor.The reursive equation (1a) an also be writtenx(k) = �(k; k0)x(k0)� kMj=k0+1�(k; j)B(j)u(j) (2)in whih �(k; k0) is alled transition matrix by analogy with onventionaltime-varying linear systems theory [8℄, and is given by�(k; k0) = 8<: not de�ned ; k0 > kId (identity element of Rn�nmax ) ; k0 = kA(k � 1)A(k � 2)
 � � � 
A(k0) ; k0 < k (3)Remark 1: The transition matrix satis�es the omposition propertyk � l � k0; �(k; k0) = �(k; l)
 �(l; k0) : (4)In partiular, for k > k0, we have �(k; k0) = A(k � 1) 
 �(k � 1; k0),whih shows that the transition matrix is solution of the homogeneousstate equation (Eq. (1a) with u(k) = ";8k).The input-output relationship is dedued from Eq. (2) with x(k0) =u(k0) = " for k0 < 0, and is given byy(k) = Lj2Zh(k; j)u(j) ; with h(k; j) = � C(k)�(k; j)B(j) ; k � j;" ; k < j;(h is alled the impulse response).



4 DISCRETE EVENT SYSTEMS: ANALYSIS AND CONTROL4. ANALYSIS OF PERIODIC SYSTEMSIn this setion, we de�ne and study (max;+) linear periodi systemsby analogy with linear periodi systems over onventional algebra [3℄,[6℄, [4℄. Using basi properties and (max;+) spetral theory, we showthat autonomous periodi systems ouple in �nite time to a periodiregime.De�nition 2 A system represented by Eqs. (1) is said to be periodiof period K (or shortly K-periodi) if K is the least integer suh that8k 2 Z; A(k +K) = A(k) ; B(k +K) = B(k) ; C(k +K) = C(k) :Remark 2: The period K of the system is equal to the least ommonmultiplier of the periods of entries A(k)ij , B(k)ik and C(k)lj, i = 1 : : : n,j = 1 : : : n, k = 1 : : : p, l = 1 : : : q, k 2 Z.Proposition 1 The transition matrix is K-periodi, i.e.,k0 < k ; �(k +K; k0 +K) = �(k; k0) (5)if, and only if, A(k) is K-periodi.Proof: Let us suppose that A(k) is K-periodi. We have 8k; k0 < k,�(k+K; k0+K) = A(k+K)
 : : :
A(k0+1+K) = A(k)
 : : :
A(k0+1) = �(k; k0):Conversely, the K-periodiity of the transition matrix gives for k0 = k�1�(k +K; k � 1 +K) = �(k; k � 1);whih, aording to the de�nition of the transition matrix (Eq. (3)),leads to 8k; A(k +K) = A(k): �The K-periodiity of � also writesk0 < k ; 8m 2 Z ; �(k +mK; k0 +mK) = �(k; k0) :Setting k = i+mK with k0 � i < K, m 2 N, and using the ompositionproperty (4) as well as the periodiity (5) of �, we have:�(i+mK; k0)= �(i+mK; k0+mK)�(k0+mK; k0+(m� 1)K)
 : : :
�(k0+K; k0)= �(i; k0)�(k0 +K; k0)
 : : :
 �(k0 +K; k0)| {z }m times= �(i; k0)[�(k0 +K; k0)℄m :De�nition 3 The matrix Mk0 = �(k0+K; k0) is alled the monodromymatrix at k0 (as in onventional theory [3℄).For autonomous systems, that is systems for whih the input is null(u(k) = ", 8k 2 Z in eq. (1a), the state vetor obeys:x(i+mK) = �(i+mK; k0)x(k0)= �(i; k0)[�(k0 +K; k0)℄mx(k0)= �(i; k0)Mmk0x(k0) : (6)



Analysis of Periodi Disrete Event Systems in (max,+) Algebra 5In other words, the monodromy matrix desribes the evolution of thestate over one period. This relation allows showing that an autonomousperiodi system ouple in �nite time to a periodi regime.Proposition 2 If the monodromy matrix Mk0 is irreduible with eigen-value �, then there exists two integers N and  suh that for m � Nx(k + (m+ )K) = �x(k +mK) :Proof: From equation (6), a diret appliation of theorem 2 leads to:x(i+ (m+ )K) = �(i; k0)Mm+k0 x(k0) = �(i; k0)�Mmk0x(k0)= ��(i; k0)Mmk0x(k0)= �x(i+mK)in whih � (resp. ) is the eigenvalue (resp. the yliity) of Mk0 . �In this periodi regime, the length of the pattern is equal to �K. In theappliation of setion 5, entries of x(k) shall point out dater variablesassoiated with a DEDS: xi(k) will denote the date of the k-th ourreneof event labeled xi. The ratio ( � �)=( � K) = �=K (the numerialevaluation of � in the formula equals  � � in onventional analysis)shall then be interpreted as the yle time (inverse of the throughput)of the system; every �K ourrenes of events are spaed out of � �units of times. The following proposition, laiming that the yle timeis independent of k0, ompletes the desription of this periodi regime.Remark 3: If x(k0) is an eigenvetor of Mk0 , we havex(k0 +K) = Mk0x(k0) = �x(k0) :From k0, the state is then periodi. The pattern is shorter (equal to K),but the yle time is still equal to �=K.Proposition 3 The spetrum of Mk0 = �(k0+K; k0) is independent ofk0. Furthermore, if x(k0) is an eigenvetor of Mk0 with orrespondingeigenvalue �, then x(k) = �(k; k0)x(k0) is an eigenvetor of Mk = �(k+K; k) with orresponding eigenvalue �.Proof:� For any pair (k0; �0) with �0+K � k0 � �0, the monodromy matriesat k0 and at �0 an respetively be written� �(k0+K; k0) = �(k0+K;�0+K)�(�0+K; k0) = �(k0; �0)�(�0+K; k0)� �(�0 +K;�0) = �(�0 +K; k0)�(k0; �0)In other words, the monodromy matries an be expressed in the forms�(k0 +K; k0) = FG and �(�0 +K;�0) = GF .If � is a nonzero eigenvalue of �(k0 + K; k0), i.e., FGx = �x, x 6= ",then GFGx = G�x = �Gx, or GFy = �y, with y = Gx.Sine � 6= " and x 6= ", y = Gx 6= "; so that � is an eigenvalue of�(�0 +K;�0) = GF as well.



6 DISCRETE EVENT SYSTEMS: ANALYSIS AND CONTROLBy reversing the role of �(k0+K; k0) and �(�0+K;�0) in the above ar-gument, it onversely follows that all the nonzero eigenvalues of �(�0 +K;�0) are eigenvalues of �(k0 +K; k0).� Let us assume that x(k0) is an eigenvetor of Mk0 with orrespondingeigenvalue �. We haveMkx(k) = �(k +K; k)x(k) = �(k +K; k)�(k; k0)x(k0)= �(k +K; k0)x(k0)= �(k +K; k0 +K)�(k0 +K; k0)x(k0)= �(k; k0)�x(k0)= �x(k)whih shows that x(k) is an eigenvetor ofMk with orresponding eigen-value �. �5. APPLICATION TO THE PERFORMANCEEVALUATION OF DEDSIn this setion, we apply the preeding results to DEDS. More pre-isely, we de�ne a lass of Timed Petri Nets suitable to model time-varying (max;+) linear systems (introdued in [10℄). Essentially, thoseare Timed Event Graphs (TEGs, Petri net for whih eah plae has onlyone input ar and one output ar) whose holding times assoiated withplaes are variable. We give their representation in (max;+) algebra.When sequenes of holding times are periodi, the representation is astate model with periodially varying oeÆients.5.1. FIFO TEGSWe denote by P (respetively, Q) the �nite set of plaes (respetively,transitions) of a TEG, and Mp 2 N the number of tokens being initiallyin plae p 2 P; p� (respetively, �p) refers to the output transition(respetively, input transition) of p. We de�ne similarly the sets q�, �qas the set of output plaes, and the set of input plaes, of transitionq 2 Q.We all holding time the minimum amount of time tokens have to stayin a plae (without loss of modeling power, the �ring of transitions issupposed to be instantaneous): the k-th token in plae p inurs theholding time denoted �p(k).De�nition 4 We de�ne the earliest First-In-First-Out (FIFO) fun-tioning rule of a TEG as follows.1 A transition q �res as soon as eah plae upstream q ontains atleast one available token.



Analysis of Periodi Disrete Event Systems in (max,+) Algebra 72 We denote q(n) the date of n-th �ring of transition q. This �ringonsumes one token in eah upstream plae and produes one to-ken in eah downstream plae. A token added in plae p 2 q� attime q(n) is indexed k with k = n+Mp and beomes available fortransition p� from instant max1�i�nfq(i) + �p(i+Mp)g.A TEG funtioning under this rule is alled a FIFO TEG.The only originality in this de�nition onerns the token's availability.Indeed, the token indexed k in plae p is usually said to be available assoon as its holding time �p(k) is over [1℄.The reason why we have de�ned a new funtioning rule is that TEGsan be modeled by linear equations in (max;+) algebra only if tokens donot overtake one another when traversing plaes [1℄, [2, h. 2℄. Previousstudies have onsequently onsidered onditions on sequenes of hold-ing times (onstant or non-dereasing holding times for example)and/orstrutural onditions (preventing several tokens to be simultaneouslypresent in a plae with variable holding time). The above funtioningrule ensures without strutural onditions that plaes operate as FIFOhannels for any sequenes of holding times, and will notably enable toeasily model mixed-model assembly lines (whih are intrinsially over-take free) on whih several parts an be simultaneously handled at asame "station" or mahine. Let us onsider for example the automobileprodution line partly shown in �gure 1.(a) where ars are handled bya linear aumulative onveyor rossing suessive working areas sepa-rated by bu�er zones. In eah working area, a �xed number of ars
x2bu�erzone

(a)
�� ��working area

(b)- - - �p2(�)- -p2x1 x3- -p1R Ri i
Figure 1 (a) A portion of an automobile prodution line, (b) a FIFO TEG.an be proessed simultaneously (two in the represented working area)and bu�er zones have limited apaities (only one ar an be stoked inthe represented bu�er zone). Cars annot overtake one another on theonveyor; bu�er zones and working areas work as FIFO hannels. Theevolution of ars in the onsidered portion of the line an be modeled bythe FIFO TEG of �gure 1.(b). A token in plae p1 (resp. p2) represents



8 DISCRETE EVENT SYSTEMS: ANALYSIS AND CONTROLa ar stoked in the bu�er zone (resp. being proessed in the workingarea). Proessing times in the working area are equal to �p2(�), and forsake of simpliity, travelling time in the bu�er zone as well as setup timesare assumed to be null. Finally, let us note that this system would notbe modeled by a TEG if the lassial funtioning rule was used.5.2. REPRESENTATION OF FIFO TEGSWith eah transition q 2 Q we assoiate a dater variable also denotedq: q(k) denotes the date of the k-th �ring of transition q. The sequenesof holding times �p(k), p 2 P, k 2 Z are assumed to be given nonnega-tive and �nite integers.Assertion 1 The dater variables of a FIFO TEG satisfy the followingequation: q(k) = Mfp2�qjq0=�pgMi�k ��p(i)
 q0(i�Mp)�; k 2 Z;or equivalently,q(k) = q(k � 1)� Mfp2�qjq0=�pg ��p(k)
 q0(k �Mp)�; k 2 Z:The methodology to obtain a state representation for FIFO TEGs in(max;+) algebra is the same one as for TEGs funtioning with thelassial rule [2, hap. 2℄. One an partition the set of transitionsQ = U [ X [ Y where U is the set of transitions with no predeessors(input transitions), Y is the set of transitions with no suessors (outputtransitions), and X = Q n (U [ Y) (state transitions). We denote by u(respetively x, y) the vetor of input (respetively, state, output) datersq, q 2 U (respetively, X , Y). One an obtain after several ombinatorialmanipulations the standard state model given by Eqs. (1) (see [10℄).Example 1: We onsider the FIFO TEG of �gure 1.(b) (non-dotted partof the graph) whih may partly represent a working area of an automo-bile prodution line, as desribed in setion 5.1. This graph has exlu-sively state transitions, its dynami behavior an be represented by thefollowing equation:x(k) = 0�x1(k)x2(k)x3(k)1A = 0�" " "e " "" " "1A
0�x1(k)x2(k)x3(k)1A�0�e e "" e e" �p2(k) e1A
0�x1(k � 1)x2(k � 1)x3(k � 1)1A :This equ. an be written in an expliit form (see [2, th. 2.66, p. 79℄):x(k) = 0�x1(k)x2(k)x3(k)1A = 0�e e "e e e" �p2 (k) e1A
0�x1(k � 1)x2(k � 1)x3(k � 1)1A .



Analysis of Periodi Disrete Event Systems in (max,+) Algebra 9A FIFO TEG represented by Eqs. (1) will be seen as a periodi systemif, and only if, all the entries of matries A(k), B(k) and C(k) (orre-sponding to the holding times assoiated with plaes of the graph) areperiodi. The periodiity of the system, denoted K, is then equal to thelowest ommon multiplier of the periodiities of the sequenes of hold-ing times. In the manufaturing system desribed above, sequenes ofholding times represent the proessing times of ars rossing the workingarea. Suh a system is then periodi if for example the suessive typesof ars released on the prodution line are ordered in a periodi manner.In suh a periodi setting, the reasoning of setion 4 an be used toshow that daters assoiated with transitions of the FIFO TEG reaha periodi regime, and to assess the yle time of these daters whihorrespond to the average time between two suessive �rings.Example 2: Let us onsider again the portion of the automobile produ-tion line modeled in example 1.We assume that three types of ars, denoted R1, R2 and R3, are handledin this line. The proessing time for R1 (resp. R2, R3) in the onsideredworking area is equal to 3 (resp. 2, 1) units of times. The sheduling issupposed to be a yli permutation of the di�erent types of ars. Morepreisely, the suessive types of ars released in the line are : R1, R2,R3, R1, R2, R3; : : : We then have 8j 2 Z;�p2(k0 + 3j) = 3; �p2(k0 + 3j + 1) = 2; �p2(k0 + 3j + 2) = 1.The system is 3-periodi sine A(k + 3) = A(k), 8k 2 Z. The mon-odromy matrix at k0 is equal toMk0 = �(k0 + 3; k0) = 0�0 3 02 3 22 4 21A :Mk0 is irreduible (see de�nition 1). Its unique eigenvalue � is equalto 3 and its yliity  is equal to 1. The state of the systems reahesa periodi regime in �nite time. The length of the pattern is equalto  � K = 1 � 3 = 3 and the yle time of the system is equal to�=K = 3=3 = 1.Remark 4: Repetitive manufaturing systems have previously been stud-ied in [9℄. Nevertheless, the approah presented in this referene doesnot allow onsidering systems where several parts an be handled simul-taneously on a same mahine as in the onsidered example.6. CONCLUSIONWe have takled the study of (max;+) linear systems with periodiallyvarying parameters. We have given basi properties, and in partiularwe have shown that suh autonomous systems reah a periodi regime



10 DISCRETE EVENT SYSTEMS: ANALYSIS AND CONTROLin �nite time. This result an be used for the performane evaluation ofpartiular DEDS.We think that further results on onventional periodi systems ould beadapted to the onsidered DEDS. In partiular, for the analysis of dis-rete time periodi systems, it is often useful to resort to a time-invariantreformulation [6℄, [4℄. In a similar way, (max;+) linear periodi systemsadmit a time-invariant reformulation whih ould extend the study ofthese systems.Referenes[1℄ F. Baelli. Ergodi theory of stohasti Petri networks. Annals ofProbability, 20(1):375{396, 1992.[2℄ F. Baelli, G. Cohen, G.J. Olsder, and J.P. Quadrat. Synhroniza-tion and Linearity. Wiley, 1992.[3℄ S. Bittanti. Deterministi and stohasti linear periodi systems.In Springer, editor, Time series and linear systems, pages 141{182.1996.[4℄ P. Bolzern, P. Colaneri, and R. Satolini. Zeros of disrete-timelinear periodi systems. IEEE Transations on Automati Control,31:1057{1058, 1986.[5℄ G. Cohen, P. Moller, J.P. Quadrat, and M. Viot. Algebrai toolsfor the performane evaluation of disrete event systems. IEEEProeedings: Speial issue on Disrete Event Systems, 77(1), Jan.1989.[6℄ P. Colaneri, R. Satolini, and N. Shiavoni. Stabilization, regula-tion, and optimization of multirate sampled-data systems. In C.T.Leondes, editor, Control and Dynami Systems, volume 71, pages95{130. Aademi Press, 1995.[7℄ S. Gaubert. Th�eorie des syst�emes lin�eaires dans les dio��des. Th�ese,Eole des Mines de Paris, July 1992.[8℄ E. W. Kamen. Fundamentals of linear time-varying systems. InW. S. Levine, editor, The Control Handbook. IEEE Press and CRCPress, 1996.[9℄ S. Laftit, J.M. Proth, and X.L. Xie. Optimization of invariant ri-teria for event graphs. IEEE Transations on Automati Control,37:547{555, 1992.[10℄ S. Lahaye, J.L. Boimond, and L. Hardouin. Just in time ontrol oftime-varying disrete event dynami systems in (max,+) algebra.Internal Report R-99-01, LISA, 1999.


