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Abstract. The present paper addresses the inverse problem of time-resolved
(fluorescence) diffuse optical tomography from temporal moments of the
measurements. A methodology that enables to provide fairly comparable
reconstructions is presented. The proposed reconstruction methodology is
applied to infinite medium synthetic phantoms in the transmission geometry.
Reconstructions are performed for moment orders increasing from 0 to 3. The
reconstruction quality is shown to be increasing when higher moment orders are
added. However, the value of the highest useful moments order strongly depends
on the number of photons that can be acquired. In particular, it can be considered
that the benefit of using higher order moments vanishes when fewer than 108

photons are detected. The evolution of the reconstruction quality with respect to
the optical properties of the medium and fluorescence lifetime is also shown.
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1. Introduction

Diffuse Optical Tomography (DOT) and Fluorescence DOT (FDOT) are two
techniques aiming at exploring the inner structure of biological tissues with light in
the near infra-red range. DOT deals with the determination of the optical properties
of the medium while FDOT deals with the detection of fluorescent markers. The
principle of these methods is to process the light exiting the medium at different
detector positions for a set of source positions and to solve an inverse problem to
reconstruct 3-dimensional (3-D) maps of the parameters of interest.

When available, the time-domain (TD) light measurements are commonly reduced
to their moments up to a given order. In a companion paper, the theoretical aspects
of calculating the moments the forward problem of FDOT have been investigated.
Analytical expressions of the moments of the forward model have been derived for
any order, as well as a moment-based noise model. In the present paper, the inverse
problem is addressed. Our purpose is to accurately quantify the benefit of using
higher order moments and determine, in terms of reconstruction quality, the situations
for which the moment method is the more profitable. Toward this end, an infinite
and homogeneous medium injected with a distribution of local fluorescent markers is
considered. Synthetic TD measurements are simulated in the transmission geometry,
i.e. light sources and detectors are placed on either side of the object to be imaged.
Then, reconstructions of the markers concentration are performed for moment orders
ranging from 0 to 3.

In FDOT, the markers concentration within the medium can be assumed to
be linearly related with the measurements. This hypothesis holds provided that
the absorption of the medium is larger than the absorption of the markers, which
is generally the case in practical scenarios. From physical considerations, it is
possible to derive the so-called forward model that maps the measurement onto the
marker concentration. The building of the forward model, when moments of the
TD measurements are considered, has been described in the first part of this work
(Ducros et al., 2009).

In section 2, we briefly present our formalism. Reconstructing the markers
concentration from the measurements is addressed in the resolution of the so-called
inverse problem. Since the inverse problem in FDOT is ill-posed, meaning that
the reconstruction is highly sensitive to some perturbations in the measurements,
the reconstruction has to be performed within the framework of regularization. An
extensive literature can be found on the subject and several families of algorithms
are available (Bertero et al., 1988). A brief review of the regularization strategies
completes the section 2.

In section 3, we describe the synthetic phantoms under study as well as the
Poisson-based noise model that has been used.

It should be emphasized that in the context of this study, dealing with ill-
posedness is a necessary condition but not a sufficient one. Indeed, to provide
fairly comparable reconstructions, the reconstruction procedure must ensure that
the regularization is strictly equivalent from reconstruction to reconstruction. A
particular care must be taken to fulfil this condition since the measurements are of
different nature (different order moments have different dimensions) and sensitivity
to noise (higher order moments are more sensitive to noise). A number of general
methods, among them the discrepancy principle (Galatsanos and Katsaggelos, 1992),
the L-curve (Hansen, 1992), the generalized cross validation (Golub et al., 1979), are
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available to cope with the problem of regularization control (see Kilmer and O’Leary.
(2001) for an overview of the different approaches). Unfortunately, it has been
noticed that these general methods can lead to over-regularization in the context
of DOT (Culver et al., 2003). Hence, empirical methods based on object contrast
(Culver et al., 2003) or visual assessment (Graves et al., 2004; Selb et al., 2007;
Kumar et al., 2008) are commonly employed and show good practical results.
However, the use of empirical methods prevents from ensuring the comparability
between reconstructions.
In section 4 we present a original methodology that allows for controlling thoroughly
the regularization while avoiding the undesirable over-regularization. It is thought that
the proposed reconstruction methodology could provide a reconstruction framework
well adapted to comparative studies.

The section 5 provides the reconstructed concentrations from noisy synthetic
moments, increasing the considered orders from 0 to 3, for several configurations. The
influence of three kinds of parameters is investigated. The more critical parameter is
found to be the number of detected photons that sets the signal-to-noise ratio (SNR).
The influence of the optical properties of the medium as well as of the lifetime of the
fluorescent marker is also shown.

2. Theoretical background

2.1. Notations

Matrices are marked with bold capitals while vectors are marked with bold minuscules.
Vectors are seen as column-matrices: x = (x1, ..., xn)

T . The notation ‖.‖ denotes the
discrete l2 norm defined by ‖x‖ = (xTx)1/2. We note ‖.‖L, the weighted l2 norm
induced by the positive-definite matrix L and defined by: ‖x‖L = (xTLTLx)1/2.

2.2. Forward problem: moment-based formalism

Let us consider a fluorescence marker distribution c within the medium. The vector
c = (c1, ..., cN )T is composed of the local concentration cn at positions {rn}n=1...N .
The medium is probed by a set of light sources at positions {s} and a set of
detectors at positions {d}. In the following, I source-detector pairs {(si,di)} are
considered. The light detected at position di due to excitation at position si is
noted ui(t) = u(si,di, t). It originates from the superposition of all the local
fluorescence light contributions. Mathematically we have the following weighted
sum: ui(t) =

∑N
n=1 w

i
n(t) cn. Regarding the whole set of light measurements

u(t) = (u1(t), ..., uI(t))
T a matrix formalism can be adopted. It leads to

u(t) = W(t) c, (1)

where W(t) = (wi
n(t))i,n is the TD forward model operator that maps the local

concentrations onto the light measurements. The building of the matrix W(t),
usually referred to as the TD weight matrix, has been reported in a companion paper
(Ducros et al., 2009). Now, we consider the temporal moments of the TD forward
model given in (1). The kth order moments of a signal f is defined consistently with
Ducros et al. (2009) by: mk{f(t)} =

∫∞
0

f(t)tk dt. Then, the moment transformation
can be applied component-wise on the linear system (1), which leads to

u[k] = W[k] c, (2)
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where u[k] = mk{u(t)} is the kth order moments of the measurements and W[k] =
mk{W(t)} is the kth order moments of the TD weight matrix. In the first paper
of this serie, the analytical expression for the entries of W[k] is given for an infinite
homogeneous medium (refer to equation 14 and 17 of Ducros et al. (2009)).

2.3. Inverse problem: regularization strategies

The inverse problem in FDOT consists in determining the concentration vector c from
the measurement vector u and the knowledge of the weight matrix W. Unfortunately,
the inverse problem in FDOT is well-known to be ill-posed, meaning that a small
deviation δu in the measurement u – practically speaking the presence of noise –
leads to a large deviation δc in the reconstructed concentration c. Formally, the
amplification of the measurement deviation is given by (Regińska, 2004)

‖δc‖
‖c‖ ≤ κ(W)

‖δu‖
‖u‖ , (3)

where κ(W) is the condition number of the matrix of the forward model. In this study,
for instance, κ(W) is always larger than 108 explaining that even a small measurement
deviation can lead to a large reconstruction deviation. To reduce the influence of
noise and stabilize the inversion, regularization schemes must be introduced. We
categorized them into two groups: the implicit regularization schemes and the explicit
regularization schemes.

The implicit regularization scheme involves minimizing the classical least square
cost function

Φ(c) = ‖u−Wc‖2. (4)

The regularization is performed by minimizing (4) with some iterative algorithms.
The algebraic reconstruction technique has been used in a large number of instances
(Gaudette et al., 2000; Lam et al., 2005; Gao et al., 2002, 2006; Nielsen et al., 2009)
as well as other classical optimization approaches as Landweber algorithm, steepest
descent or conjugate gradient descent (Gaudette et al., 2000). Then, the regularization
strategy consists in stopping the retained algorithm before convergence to the
minimum of (4).
In the explicit regularization schemes, the cost function (4) is modified by adding
a regularization term, weighted by the so-called regularization parameter. In the
classical Tikhonov approach the regularization term is chosen to be the square
of the norm of the concentration. Mathematically, the Tikhonov cost function is
(Tikhonov and Arsenin, 1977)

Φα(c) = ‖u−Wc‖2 + α‖c‖2, (5)

α being the regularization parameter. The solution c = argminΦα(c) strongly
depends on α. Indeed, let us consider the two extreme scenarios: α = 0 and α = ∞.
If α = 0, then no regularization is performed and the resulting solution c(α = 0)
is dominated by noise and thus highly unstable. If α = ∞, the inverse problem is
reduced to minimizing the energy of the concentration ‖c‖2. This leads to the highly
stable – or noise-free – solution c(α = ∞) = 0. This meaningless solution is said
to be over-smoothed since its energy is zero. In section 4, the key choice of α as a
compromise between instability and over-smoothing is further discussed.
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3. Numerical Experiments

3.1. Description of the numerical phantoms

We consider the homogeneous infinite medium phantom represented on figure 1. The
refractive index n of the medium is set to 1.4. Different absorption coefficients μa

and the reduced scattering coefficients μ′
s are investigated. The study ranges –

μa ∈[0.01, 0.5] cm−1 and μ′
s ∈[1, 20] cm−1 – should cover most of the practical

situations. For the reconstruction purpose, the medium is evenly discretized. The
resulting 810 cubic voxels of size (0.5 cm)3 span a total volume of 4.5×4.5×5 cm3.
The medium is probed by 12 light sources and 12 light detectors, resulting in a set of
144 source-detector pairs. Sources and detectors are both evenly arranged within two
circular disks of radius 1.5 cm. The two disks are located 5 cm apart, surrounding the
medium in the so-called transmission geometry.
We regard fluorescent makers with lifetime τ in the range τ ∈ [0, 5] ns. The lower
bound τ = 0 ns can stand for the problem of absorption reconstruction in DOT,
while the upper bound τ = 5 ns can describe the use of long lifetime markers such
as quantum dots (Medintz et al., 2005). The phantom under study contains three
tumoral zones where the fluorescent markers concentrate (see figure 1 for illustration).
The three tumours are centred at the positions r1 = [−1.5, 1, 2.25] cm (tumor #1),
r2 = [1, 1, 3.75] cm (tumor #2) and r3 = [1, 1, 1.25] cm (tumor #3). This configuration
is not easy to deal with for two reasons. First, the tumour #1 is located far away
from both source and detector plans, within a zone of poor sensitivity (Kepshire et al.,
2007). Second, the tumours #2 and #3 are aligned along the z-axis for which FDOT
exhibits low ability to separating two adjacent inclusions (Gao et al., 2002). To
simulate the non-specificity of the makers, a homogeneous fluorescent background
is also considered. While targeted markers typically offer a tumour-to-background
ratio of 5:1, recent works have shown that the tumour-to-background ratio of activable
markers can reach 200:1 (Urano et al., 2009). In this study, the tumour-to-background
ratio is set to 40:1.

3.2. Noise model

Classically, the noise in optical measurements is assumed to follow a Poisson
distribution. Recently, this model has been complexified to take into considerations
the specificities of FDOT measurements (Hyde et al., 2007). In this study the rate of
detected photons is hypothesized to be large enough to neglect any other sources of
noise and notably the electronic (thermal) noise. Furthermore, under the Poisson
distribution can be modelled to good approximation by a Gaussian distribution.
Within this framework, any noisy measurement ũ(t) is given by

ũ(t) = u(t) +N{μ = 0, σ2 = u(t)}, (6)

where N (μ, σ2) denotes for a realization of a Gaussian random variable of mean μ and
variance σ2. In a companion paper we have shown how noise on a TD signal corrupts
its moments (see equation 20 of Ducros et al. (2009)). Using this result we have:

mk[ũ] = mk[u] +N{μ = 0, σ2 = m2k[u]}. (7)

Consistently with the notations developed in the section 2, the vector ũ[k] =
(mk{ũ1(t)}, ...,mk{ũI(t)})T denotes kth order moments of the noisy measurements.
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Figure 1. Numerical phantom used for the reconstructions. The blue circles
indicate the detectors, the red crosses indicate the sources and the black dots
indicate the contour of the mesh. The marker concentration within the medium
is plotted with the hot colour scale

For a measurement u(t) corrupted by a Poisson noise, the standard deviation
of the noisy measurement is

√
u(t). The SNR, expressed in dB, is then 20 log(u),

meaning that the value of u fixes the SNR. The larger the measurement u is, the
better the SNR. In the following, the SNR is tuned by rescaling the moments with an
appropriate constant. The constant is chosen so as to fix the largest moment of order
0 to a desired maximal count of detected photons Cmax. This mathematical operation
is experimentally equivalent to increasing the time of integration until Cmax photons
are collected on one of the detectors. In the present study, Cmax covers the range
[106, 1014] photons.

4. Reconstruction procedure

In this part, we consider the reconstruction of the concentration vector from the
moments up to a given order. Let K be highest selected moments order. Let
ũK = (ũ[0], ..., ũ[K])T be the stack of the moments of the measurements up to order
K and WK = (W[0], ...,W[K])T be the stack of the moments of the TD weight
matrix up to order K. The reconstructed concentration sought from the moments up
to order K is noted cK .

4.1. Choice of the algorithm

To benefit from thorough control of the regularization, the choice is made to consider
an explicit regularization scheme and thus to minimize the following cost function:

Φα(c) = ‖ũK −WKc‖2L + α‖c‖2. (8)

Here L is a diagonal matrix chosen to penalize the noisier measurements. Explicitly,
the jth diagonal entry of L is the standard deviation of the jth component of ũK .
Advantageously, the choice of this weighted norm results in considering dimensionless
moments and resolves the problem of dealing with measurements of different nature.
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Let cK(α) be the reconstructed concentration using moments up to order K.
cK(α) is the minimiser of the Tikhonov cost function given by (8). It can be obtained
either analytically or by iterative algorithms. Here, the analytical method is preferred
since it avoids the problems of convergence and the determination of the stopping
criterion. Explicitly, cK(α) is given by

cK(α) = (WT
KLTLWK + α IN )−1WT

KLT ũK . (9)

For conciseness, we note: cK(α) = Wα
K ũK where the Moore-Penrose pseudo inverse

Wα
K is defined accordingly to (9). Interestingly, Wα

K can be computed from the
singular value decomposition (SVD) of LWK . The SVD consists of writing LWK as
LWK = UΣVT , where U and V are two orthonormal matrices and Σ is a diagonal
matrix. Substituting this decomposition in (9), it can be seen that

cK(α) = VΣ(Σ2 + αI)−1UT ũK , (10)

where I stands for the identity matrix (see section 2 of Hansen (1987) for details).
Practically, cK(α) is obtained from the following steps: 1) SVD of LWK including
the storage of U, Σ, and V, 2) inversion of the diagonal matrix Σ2 + αI, and 3) left
multiplication of the result by VΣ and right multiplication by UT ũK . In this process,
the SVD is the time-consuming step. However, once the SVD has been performed, the
computation of (9) for multiple regularization parameters α and measurements vector
ũK is almost done on the fly. Indeed, α and ũK are only involved in steps 2 and 3,
whose computation is very fast.

4.2. Determination of the regularization parameter

The approach detailed below fixes the regularization parameter from the definition
of some acceptable reconstruction variability. To illustrate the philosophy of the

proposition, let us consider a very simple example. Let ũ
(1)
K be a given noisy

measurement vector. The concentration vector reconstructed from this noisy

measurement is c̃
(1)
K (α) = Wα

K ũ
(1)
K . If the experiment is reproduced in the same

conditions, then a new noisy measurement vector ũ
(2)
K is acquired. The resulting

reconstructed concentration is now c̃
(2)
K (α) = Wαũ(2). It is reasonable to expect that

an appropriate α = α∗ can ensure c̃
(1)
K (α∗) to be close to c̃

(2)
K (α∗).

To estimate the variability of the reconstructions, we first define the mean
reconstruction vector E[c̃K(α)] and the standard deviation reconstruction vector
δ[c̃K(α)]. Explicitly, from a set of Ω reconstructed concentration vectors, the two
quantities are computed according to the two classical non-biased estimators:

E[c̃K(α)] =
1

Ω

Ω∑
ω=1

c
(ω)
K , and δ[c̃K(α)] =

(
1

Ω− 1

Ω∑
ω=1

{c̃(ω)
K − E[c̃K(α)]}2

)1/2

.

(11)
With synthetic experiments, for which the noiseless measurements are available, only
the standard deviation has to be calculated. Indeed, the mean reconstruction vector
equals the noiseless reconstruction vector cK(α) = Wα

KuK .
Then, the reconstruction variability V is defined on the model of (3):

V(α) = ‖δ[c̃K(α)]‖
‖cK(α)‖ =

‖δ[c̃K(α)]‖
‖E[c̃K(α)]‖ . (12)
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Figure 2. 3-D reconstructions from moments up to order K of 0, 1, 2 and
3 (right) to be compared to the phantom (left). Here, μa = 0.1 cm−1, μ′

s =
10 cm−1 and Cmax = 1014 photons.

Setting Ω to 50, V(α) was computed for multiple α’s and it was observed that V(α)
decreases monotonically. For α∗ such that V(α∗) = 0.1, the reconstructions exhibit
both limited instability and over-smoothing. Therefore, the retained α∗’s are chosen
by dichotomy to verify V(α∗) = 0.1.
It can be noted that the proposed procedure for choosing α differs from the so-called
Miller criterion (Miller, 1970). The Miller criterion sets α as α∗ = ε2/E2, where ε
stands for the upper bounds of ‖u−Wc‖2 and E for the upper bound of ‖c‖2. Here
the constraint is put on the variability of the reconstruction and not on the smoothness
of the reconstruction that is a priori unknown in experimental scenarios.

5. Results and discussion

An example of the 3-D concentration reconstructions performed from moments up to
different orders (for different K) is presented on figure 2. In this illustration, μa is set
to 0.1 cm−1, μ′

s to 10 cm−1, τ to 0 ns and Cmax to 1014 photons. The aforementioned
optical properties are commonly encountered in FDOT problems; they are notably in
agreement with in vivo values of breast tissue (Cheong et al., 1990).

From this first reconstruction example, it can be seen how the use of higher order
moments improve the reconstruction quality. Using only the 0th order moments – the
m0’s in short – results in a poor separability of tumour #2 and #3. Now let us compare
the cases K = 0 and K = 1. When the m1’s are added to the m0’s, the presence of
tumour #1 is exhibited. In parallel, a better separation of the tumours #2 and #3 is
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Figure 3. Reconstruction profiles along the z-axis, through tumor #2 and #3
(first row) and through tumor #3 (second row). The dashed lines indicate the
ground truth concentration profiles. In the first column Cmax is set to 1014, in
the second to 1010 and in the third to 106. Moments are used up to order 0 (blue
solid line), 1 (green marked with �), 2 (black marked with �) and 3 (magenta
marked with ◦ ). Here, μa = 0.1 cm−1, μ′

s = 10 cm−1.

observed. The detectability of tumour #1 as well as the separability between tumour
#2 and #3 are further enhanced when the m2’s are adjoined to the m0’s and the
m1’s (consider the case K = 2). However, the difference between the reconstruction
for K = 2 and K = 3 can hardly be told. In this example, it can be concluded that
higher order moments provide extra information in terms of reconstruction quality up
to order 2.

5.1. Influence of the signal-to-noise ratio

On figure 3, reconstructed concentration profiles along the z-axis are depicted for 3
maximum numbers of detected photons. The profiles through tumour #1 and through
tumour #2 and #3 are represented for Cmax = 1014 photons, Cmax = 1010 photons,
and Cmax = 106 photons.

We have identified the number of detected photons – equivalently the SNR – to
be the most critical parameter in terms of reconstruction quality. As shown on the
reconstruction profiles of figure 3, the benefit of using higher order can vary from very
significant to null depending on the number of photons that can be detected. When
Cmax = 106 photons, no benefit in using higher order moments was observed whatever
the optical properties of the medium and the fluorescence lifetime. Benefits of using
higher order only appears for Cmax larger 108 detected photons. Experimentally
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Figure 4. Sensitivity and separability along the z-axis for varying optical
properties. In the first column Cmax is set to 1010, in the second to 108 and
in the third to 106. Moments are used up to order 0 (blue solid line), 1 (green
marked with �), 2 (black marked with �) and 3 (magenta marked with ◦ ).

speaking this conclusion is of the highest importance since such level of detection may
hardly be reached.

5.2. Influence of the optical properties of the medium

In this part we assess the influence of the optical properties on the reconstruction
quality. In terms of optical properties, we have previously identified the wave number
γ� = (3μaμ

′
s)

1/2 to be the driving parameter when the lifetime is zero (refer to Part I).
Hence, the reconstruction quality for a varying γ� is evaluated. Small γ� represent low
absorbing and diffusing media while large γ� represent highly absorbing and diffusing
media. The smallest γ� is obtained with μa = 0.01 cm−1 and μ′

s = 1 cm−1. The
largest γ� is obtained with μa = 0.5 cm−1 and μ′

s = 20 cm−1.
To summarize the reconstruction quality for different wave numbers γ�, we focus

on the z-axis separability and detectability. The z-axis separability is the ability to
separate two tumours along the z-axis. It has been calculated from the reconstructed
concentrations of tumour # 2 and #3. The z-axis separability is defined as the
difference between the peak and valley reconstructed concentrations as specified on
figure 3. The z-axis detectability is defined as the reconstructed concentration of the
tumour #1. On figure 4, the z-axis separability and detectability are plotted with
respect to γ� for three maximum numbers of detected photons.

It can be seen that the parameter γ� impacts the reconstruction quality as
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Figure 5. Reconstruction profiles along the z-axis, through tumour #2 and
#3, for three fluorescence lifetimes. The dashed line indicate the ground truth
concentration profile. In the first column τ = 0 ns, in the second τ = 2 ns, and
in the τ = 5 ns. Cmax is set to 1010 (top row) and to 108 (bottom row). Here
again, μa = 0.1 cm−1, μ′

s = 10 cm−1. Moments are used up to order 0 (blue solid
line), 1 (green marked with �), 2 (black marked with �) and 3 (magenta marked
with ◦ ).

predicted. For a given SNR, the z-axis separation and detection are better within
a medium of large γ� than within a medium of small γ�.

5.3. Influence of the fluorescence lifetime of the markers

In this last part, the influence of the fluorescence lifetime with respect to the
reconstruction quality is evaluated. We have predicted the benefit of using higher
order moments to be decreasing when increasing fluorescence lifetimes are considered.
To verify this prediction, reconstructions profiles along tumour #2 and #3 are plotted
on figure 5 for the three cases τ = 0 ns, τ = 2 ns, and τ = 5 ns (left, middle, and right
columns). The maximum number of detected photons has been set to Cmax = 1010

and Cmax = 108 (top and bottom rows).
The degrading effect of the lifetime is observed on reconstructions for which Cmax

is set to 108 photons. Indeed, it can be observed on the bottom row of figure 5 that
the reconstruction can be improved by addition of the m1’s when τ = 0 ns while the
benefit provided by the m1’s is severely limited when τ is set to 5 ns. Moreover, we
have verified (results not shown) that the degradation due to the lifetime is amplified
for media with large mean speed of detected photons v� = 2c(μa)

1/2/(3nμ′
s)

1/2, c
being the speed of light in vacuum. These two points are in agreement with the
predictions of the first paper of this series. However, when Cmax = 1010 photons, the
quality of the reconstructions remains about the same, even for a lifetime as long as
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5 ns photons.
To understand these observations, let us get back to the first part of this work in

which it was observed that the fluorescence first order moment consists of a desirable
marker dependant component and an undesirable marker free component. The marker
free component was shown to get larger and larger for increasing fluorescence lifetime.
Therefore, when the fluorescence lifetime is too large, the marker free component
overwhelms the marker dependent component. This explains why the reconstruction
quality decreases with increasing fluorescence lifetime. Nevertheless, the marker
dependent component may remain significant with respect to the measurement signal –
even if it is much lower than the marker free one – provided that the measurement can
be performed accurately enough. It can be thought the accuracy of the measurement
is large enough for Cmax = 1010 photons to avoid the degrading effects of the marker
lifetime.

6. Conclusion

In this paper, 3-D reconstructions of the markers concentration are performed from
the moments of synthetic measurements up to different orders. The reconstruction
methodology we used is based on the classical Tikhonov regularization implemented
via SVD, together with an original procedure for choosing the regularization
parameter. This methodology guarantees the reconstructions to be rigorously
comparable and may be profitable in other contexts – for instance the optimization of
the optode arrangement or the evaluation of the influence of the the forward model.

The main result of the present study is to show that higher order moments are
only beneficial when the SNR of the measurements is large enough. Specifically, we
observe that higher order moments start being profitable when more than 108 photons
can be detected. Bellow this limit, the higher order moments do not improve the
reconstruction quality. Therefore, using only the 0th order moments is sufficient. This
result is not surprising in the sense that the higher order moments were previously
identified to be strongly correlated and corrupted by noise in the first part of this work.
However, the value of the limit is surprisingly high and can be hardly reached in some
experimental situations. As far as the absorption reconstruction in DOT is concerned,
the 108 photons limit can be reached within tractable integration times provided that
the medium is not too thick and/or absorbing. However, as far as FDOT is concerned,
the number of detected photons is much lower due to losses mainly related with the
small absorption cross section of the fluorescence markers but also with the photons
conversion (quantum yield). Typically, the amplitude of fluorescence signals are about
104 times smaller than their diffuse counterparts. Moreover, if the rate of detected
photons would reach a too low level – typically some tens of photon counts per second
for a cooled photomultiplier tube, then the electronic noise could no longer be neglected
and the limit of 108 photons should be raised.
The optical properties of the medium and the fluorescence lifetime of the marker
are found to have a much lower impact on the reconstruction quality. However, this
confirms the conclusions of the first part concerning the influence of the parameter γ�

when the lifetime is zero and of the parameters v� when the lifetimes is non-zero.
More conclusively, the moment method turns out to be dramatically limited

by the presence of intrinsic photon noise on the time-resolved measurements. This
drawback could prevent its application to FDOT for which the number of detected
photons – and thus the SNR – is quite low. Alternative features such as Laplace
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transform (Gao et al., 2006), full width at half maximum, peak value, time at peak
value (Riley et al., 2007) or number of photons within time windows (Grosenick et al.,
2005) have been proposed. Further comparative studies still have to be engaged to
determine if such features could overcome the limitations identified in this study.
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