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Sparse Approximations

for Quaternionic Signals

Quentin Barthélemy, Anthony Larue and Jérôme I. Mars

Abstract. In this paper, we introduce a new processing procedure for
quaternionic signals through consideration of the well-known orthog-
onal matching pursuit (OMP), which provides sparse approximation.
Due to quaternions noncommutativity, two quaternionic extensions are
presented: the right-multiplication quaternionic OMP, that can be used
to process right-multiplication linear combinations of quaternionic sig-
nals, and the left-multiplication quaternionic OMP, that can be used
to process left-multiplication linear combinations. As validation, these
quaternionic OMP are applied to simulated data. Deconvolution is car-
ried out and presented here with a new spikegram that is designed for
visualization of quaternionic coefficients, and finally these are compared
to multivariate OMP.

Keywords. Quaternionic signal processing, sparse approximation, or-
thogonal matching pursuit.

1. Introduction

In signal processing, some tools have been recently extended to the quaternion
space H. For example, we can cite quaternionic correlation for vector images
[13], quaternionic SVD (SVDQ) for vector-sensor array [10], quaternionic
wavelet transform (QWT) for images [5], quaternionic adaptive filtering [16],
quaternionic independent component analysis [18], and blind extraction of
quaternionic sources [9].

For the sparsity domain, sparse approximation algorithms [17] are given
for real or complex signals. These have not been applied to quaternionic
signals. Considering orthogonal matching pursuit (OMP) [14], we present
two extensions to quaternions termed quaternionic OMP (Q-OMP). Due
to quaternions noncommutativity, two models have to be considered: the
right-multiplication model solved by Q-OMPr and the left-multiplication one
solved by Q-OMPl.
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In this paper, we first consider sparse approximation and the OMP
algorithm in Section 2. We then present the right-multiplication and the
left-multiplication linear models for quaternionic signals in Section 3. The
quaternionic extensions Q-OMPr and Q-OMPl are detailed in Section 4. In
Section 5, we specify our work for the shift-invariant case, and we introduce
a new visualization tool for quaternionic sparse decompositions. Finally, in
Section 6, new algorithms are applied to deconvolute simulation data, and
then compared to multivariate OMP (M-OMP).

2. Sparse Approximation

The sparse approximation principle and the OMP algorithm are presented in
this section, with processing of only complex signals.

2.1. Principle and existing algorithms

Considering a signal y ∈ C
N of N samples and a dictionary Φ ∈ C

N×M of

M atoms {φm}Mm=1
, the decomposition of the signal y is carried out on the

dictionary Φ such that:

y = Φx+ ǫ , (2.1)

assuming x ∈ C
M are the coding coefficients and ǫ ∈ C

N the residual error.
The dictionary is normalized, which means that its columns (atoms) are
normalized, so that coefficients x reflect the energy of each atom in the signal.
Moreover, the dictionary is said to be redundant when M > N .

One way to formalize the decomposition under the sparsity constraint
is:

minx ‖ y − Φx ‖2
2
s.t. ‖x‖

0
≤ K , (2.2)

where K≪M is a constant and ‖x‖
0
the ℓ0 pseudo-norm that is defined as

the number of nonzero elements of vector x. This formulation is composed
of a data-fitting term and a term of sparsification, to obtain the sparsest
vector x. Pursuit algorithms [17] tackle sequentially (2.2) increasing K iter-
atively, although unfortunately this optimization is nonconvex: that means
the obtained solution can get stuck in a local minimum. Nevertheless, these
algorithms are fast when searching very few coefficients. Among the multiple
ℓ0-Pursuit algorithms, we can cite the well-known matching pursuit (MP)
[11], its orthogonal version, OMP [14] and multivariate OMP (M-OMP) [3]
for treating multivariate signals. Note that another way consists of relaxing
the sparsification term from an ℓ0 norm to an ℓ1 norm, which gives a convex
optimization problem [17].

2.2. Review of Orthogonal Matching Pursuit

We present the step-by-step OMP that is introduced in [14] with complex sig-
nals. Given a redundant dictionary Φ, OMP produces a sparse approximation
of a signal y (Algorithm 1).

After an initialization (step 1), OMP selects at the current iteration
k the atom φm that produces the absolute strongest decrease in the mean
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square error (MSE)
∥

∥ǫk−1
∥

∥

2

2
. Denoting ǫk−1 = xmφm + ǫk, and using the

complex gradient operator [4], we have:

∂
∥

∥ ǫk−1
∥

∥

2

2

∂x ∗
m

= φm
H ǫk−1 =

〈

ǫk−1, φm
〉

, (2.3)

with (.)∗ denoting the conjugate operator and with (.)H denoting the conju-
gate transpose operator. Consequently, it is equivalent to selecting the atom
that is the most correlated with the residue. The scalar products between
the residue ǫk−1 and atoms φm are computed (step 4). The selection (step
6) searches the maximum of their absolute values to determine the optimal
atom φmk , denoted dk. An active dictionary Dk ∈ C

N×k is formed, which
collects all of the selected atoms (step 7). Coding coefficients xk are computed
via the orthogonal projection of y on Dk (step 8). This is often carried out
recursively by different methods using the current correlation value Ck

mk : QR
factorization [7], Cholesky factorization [6], or block matrix inversion [14].
The obtained coefficients vector xk = [xm1 ; xm2 ... xmk ] is reduced to its ac-
tive (i.e. nonzero) coefficients. In the following, [ ; ] will denote the vertical
concatenation, and [ , ] the horizontal one.

Different stopping criteria (step 11) can be used: a threshold on k for
the number of iterations, a threshold on the relative root MSE (rRMSE)
∥

∥ǫk
∥

∥

2
/ ‖y‖

2
, or a threshold on the decrease in the rRMSE. At the end, the

OMP provides a K-sparse approximation of y:

ŷK =

K
∑

k=1

xmk φmk . (2.4)

Algorithm 1 : x = OMP (y,Φ)

1: initialization : k = 1, ǫ0=y, dictionary D0=∅

2: repeat

3: for m← 1,M do

4: Scalar Products : Ck
m ←

〈

ǫk−1, φm
〉

5: end for

6: Selection : mk ← arg maxm
∣

∣ Ck
m

∣

∣

7: Active Dictionary : Dk ←
[

Dk−1, φmk

]

8: Active Coefficients : xk ← arg minx
∥

∥ y −Dkx
∥

∥

2

2

9: Residue : ǫk ← y −Dkxk

10: k ← k + 1
11: until stopping criterion

Used thereafter, M-OMP [3] deals with the multivariate signals acquired
simultaneously.
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3. Quaternionic linear models

After a short introduction to quaternions, two linear models are investigated
as a function of the variables order.

3.1. Quaternions

The quaternionic space, denoted as H, is an extension of the complex space
C using three imaginary parts [8]. A quaternion q ∈ H is defined as:

q = qa + qbi+ qcj+ qdk , (3.1)

with qa, qb, qc, qd ∈ R and with the imaginary units defined as:

ij = k, jk = i, ki = j and ijk = i2 = j2 = k2 = −1 . (3.2)

The quaternionic space is characterized by its noncommutativity: generally
q1q2 6= q2q1. The scalar part is S(q) = qa, and the vectorial part is V(q) =
qbi + qcj + qdk. If its scalar part is null, a quaternion is said to be pure and
full otherwise. The conjugate q ∗ is defined as: q ∗ = S(q)−V(q) and we have
(q1q2)

∗ = q ∗

2 q
∗

1 . The modulus is defined as: |q| = √qq∗, and the inverse is:

q−1 = q∗/ |q|2.
Due to the noncommutativity of quaternions, two linear models are

investigated: right-multiplication model and the left-multiplication one.

3.2. Right-multiplication linear model

The right-multiplication linear model is the natural quaternionic extension
of the linear model (2.1). For the quaternionic signal y ∈ H

N of N samples

and the dictionary Φ ∈ H
N×M of M atoms {φm}Mm=1

, the decomposition of
the signal y is carried out on the dictionary Φ such that:

y =
M
∑

m=1

φm xm + ǫ , (3.3)

assuming xm ∈ H are the coding coefficients and ǫ ∈ H
N the residual error.

This right-multiplication model is used in different real-world applications,
such as wind forecasting and colored images denoising [16], and in blind
source extraction of EEG mixtures [9].

Now considering quaternionic vectors q1, q2 ∈ H
N , we define the scalar

product as: 〈q1, q2〉 = q H
2 q1 ∈ H. The associated ℓ2 norm is denoted by ‖.‖

2
.

Note that an alternative definition can be chosen: 〈q1, q2〉 = qH1 q2, which is
only the conjugate of the previous one. 1

The sparse approximation problem for this right-multiplication model
is thus the simple quaternionic extension of Eq. (2.2):

minx ‖ y − Φx ‖2
2
s.t. ‖x‖

0
≤ K . (3.4)

1Note also that the scalar product in RN×4 : 〈q1, q2〉 = S(qH
1
q2) ∈ R, which is often used

for quaternionic processings, is not considered here.
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3.3. Left-multiplication linear model

For this left-multiplication model, the different variables have to be trans-
posed: the studied signal is horizontal. The quaternionic signal y ∈ H

1×N of

N samples, and the dictionary Φ ∈ H
M×N of M atoms {φm}Mm=1

are stud-
ied. The decomposition of the signal y is carried out on the dictionary Φ such
that:

y = x Φ+ ǫ (3.5)

=

M
∑

m=1

xm φm + ǫ , (3.6)

assuming x ∈ H
1×M are the coding coefficients and ǫ ∈ H

1×N the residual
error. This left-multiplication model is used for example for colored images
denoising with a quaternion polynomial wavelet packet [1].

For this model, the scalar product is defined as: 〈q1, q2〉 = q1q
H
2 ∈

H, and the associated ℓ2 norm is denoted by ‖.‖
2
. The quaternionic sparse

approximation problem for this left-multiplication model is written as:

minx ‖ y − x Φ ‖2
2
s.t. ‖x‖

0
≤ K . (3.7)

4. Quaternionic Orthogonal Matching Pursuits

In this section, the two algorithms solving the sparse approximation problems
(3.4) and (3.7) are presented. As mentioned above, different implementations
of the OMP projection step exist. In the following, we have chosen to extend
the block matrix inversion method [14]. In these two cases, the dictionary is
normalized, i.e. each atom φm is normalized. Owing to noncommutativity,
the variables order is now crucial in the algorithms description.

4.1. Right-multiplication Q-OMP

The right-multiplication Q-OMP, abbreviated in Q-OMPr with r for right,
solves the problem (3.4) and is described in Algorithm 2. This algorithm
has been briefly introduced in [2]. As Eq. (2.3) of Algorithm 1, the scalar
product

〈

ǫk−1, φm
〉

= φHmǫ
k−1 (step 4) remains the expression to maximize

to select the optimal atom (see Appendix 8.1). It is now the quaternionic
scalar product defined for right-multiplication in Section 3.2.

Coefficients xk (step 8) are calculated by orthogonal projection of y on
the active dictionary Dk ∈ H

N×k:

xk = arg minx
∥

∥ y −Dkx
∥

∥

2

2
(4.1)

=
(

(Dk)H Dk
)−1

(Dk)Hy . (4.2)

To compute it, the recursive procedure [14] is extended to quaternions and
with the right-multiplication. Foremost, Ak is defined as the Gram matrix of
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the active dictionary Dk−1:

Ak = (Dk−1)H Dk−1 =













〈d1, d1〉 〈d2, d1〉 . . . 〈dk−1, d1〉
〈d1, d2〉 〈d2, d2〉 . . . 〈dk−1, d2〉

...
...

. . .
...

〈d1, dk−1〉 〈d2, dk−1〉 . . . 〈dk−1, dk−1〉













.

(4.3)

Remark that diagonal is equal to 1 since dictionary is normalized. At iteration
k, the recursive procedure for the orthogonal projection is computed in seven
stages:

1: vk = (Dk−1)H dk = [ 〈dk, d1〉 ; 〈dk, d2〉 ... 〈dk, dk−1〉 ] ,
2: bk = A−1

k vk ,

3: β = 1/(‖dk‖22 − vHk bk) = 1/(1− vHk bk) ,
4: αk = Ck

mk · β .
To provide the orthogonal projection, coefficients xmκ (κ = 1..k−1) of vector
xk are corrected at each iteration. An added superscript (to coefficients xmκ)
denotes the iteration, and the update is:

5: xkmκ = xk−1
mκ − bkαk , for κ = 1 .. k−1 ,

6: xk
mk = αk .

The Gram matrix update is given by:

Ak+1 =

[

Ak vk

vHk 1

]

(4.4)

and using the block matrix inversion formula, we obtain its left-inverse:

7: A−1

k+1
=

[

A−1

k + βbkb
H
k −βbk

−βbHk β

]

. (4.5)

For the first iteration, the procedure is reduced to: x1
m1 = C1

m1 and A1 = 1.

As Algorithm 1, and with the described modifications, the Q-OMPr
provides a K-sparse approximation of y:

ŷK =

K
∑

k=1

φmk xmk . (4.6)

4.2. Left-multiplication Q-OMP

The left-multiplication Q-OMP, abbreviated in Q-OMPl with l for left, solves
the problem (3.7) and is described in Algorithm 3. As Eq. (2.3), the scalar
product

〈

ǫk−1, φm
〉

= ǫk−1φHm (step 4) remains the expression to maximize
to select the optimal atom (see Appendix 8.2). It is now the quaternionic
scalar product defined for left-multiplication in Section 3.3.
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Algorithm 2 : x = Q-OMPr (y,Φ)

1: initialization : k = 1, ǫ0=y, dictionary D0=∅

2: repeat

3: for m← 1,M do

4: Scalar Products : Ck
m ←

〈

ǫk−1, φm
〉

= φHm ǫk−1

5: end for

6: Selection : mk ← arg maxm
∣

∣ Ck
m

∣

∣

7: Active Dictionary : Dk ←
[

Dk−1, φmk

]

8: Active Coefficients : xk ← arg minx
∥

∥ y −Dkx
∥

∥

2

2

9: Residue : ǫk ← y −Dkxk

10: k ← k + 1
11: until stopping criterion

Coefficients xk (step 8) are calculated by orthogonal projection of y on
the active dictionary Dk ∈ H

k×N :

xk = arg minx
∥

∥ y − x Dk
∥

∥

2

2
(4.7)

= y (Dk)H
(

Dk (Dk)H
)−1

. (4.8)

To compute it, the recursive procedure [14] is extended to quaternions and
with the left-multiplication. Foremost, Ak is defined as the Gram matrix of
the active dictionary Dk−1:

Ak = Dk−1 (Dk−1)H =













〈d1, d1〉 〈d1, d2〉 . . . 〈d1, dk−1〉
〈d2, d1〉 〈d2, d2〉 . . . 〈d2, dk−1〉

...
...

. . .
...

〈dk−1, d1〉 〈dk−1, d2〉 . . . 〈dk−1, dk−1〉













.

(4.9)
At iteration k, the recursive procedure for the orthogonal projection is com-
puted in seven stages:

1: vk = Dk−1 dHk = [ 〈d1, dk〉 ; 〈d2, dk〉 ... 〈dk−1, dk〉 ] ,
2: bk = vHk A

−1

k ,

3: β = 1/(1− bkvk) ,
4: αk = Ck

mk · β∗ .
To provide the orthogonal projection, coefficients xmκ (κ = 1..k−1) of vector
xk are corrected at each iteration. An added superscript (to coefficients xmκ)
denotes the iteration, and the update is:

5: xkmκ = xk−1
mκ − αkbk , for κ = 1 .. k − 1 ,

6: xk
mk = αk .

The Gram matrix update is given by:

Ak+1 =

[

Ak vk

vHk 1

]

(4.10)
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and using the block matrix inversion formula, we obtain its right-inverse:

7: A−1

k+1
=

[

A−1

k + βbHk bk −βbHk
−βbk β

]

. (4.11)

In the same way, for the first iteration, the procedure is reduced to: x1
m1 =

C1
m1 and A1 = 1.

With the described modifications, the Q-OMPl provides a K-sparse
approximation of y:

ŷK =
K
∑

k=1

xmk φmk . (4.12)

Algorithm 3 : x = Q-OMPl (y,Φ)

1: initialization : k = 1, ǫ0=y, dictionary D0=∅

2: repeat

3: for m← 1,M do

4: Scalar Products : Ck
m ←

〈

ǫk−1, φm
〉

= ǫk−1 φHm
5: end for

6: Selection : mk ← arg maxm
∣

∣ Ck
m

∣

∣

7: Active Dictionary : Dk ←
[

Dk−1;φmk

]

8: Actuve Coefficients : xk ← arg minx
∥

∥ y − x Dk
∥

∥

2

2

9: Residue : ǫk ← y − xk Dk

10: k ← k + 1
11: until stopping criterion

5. The shift-invariant case and the spikegram

In this section, we focus on the shift-invariant case, and a new spikegram for
quaternionic decompositions is introduced.

5.1. The shift-invariant case

In the shift-invariant case, we want to sparsely code the signal y as a sum of
a few short structures, named kernels, that are characterized independently
of their positions. This is usually applied to time series data, and this model
avoids the block effects in the analysis of largely periodic signals, and provides
a compact kernel dictionary [15].

The L shiftable kernels of the compact dictionary Ψ are replicated at
all of the positions, to provide the M atoms of the dictionary Φ. The N
samples of the signal y, the residue ǫ, and the atoms φm are indexed 2 by

t. The kernels {ψl}Ll=1
can have different lengths. The kernel ψl(t) is shifted

in τ samples to generate the atom ψl(t − τ): zero-padding is carried out to

2Note that a(t) and a(t− t0) do not represent samples, but the signal a and its translation
of t0 samples.
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have N samples. The subset σl collects the active translations τ of the kernel
ψl(t). For the few kernels that generate all of the atoms, Eq. (2.1) becomes:

y(t) =

M
∑

m=1

φm(t) xm + ǫ(t) =

L
∑

l=1

∑

τ∈σl

ψl(t− τ) xl,τ + ǫ(t) . (5.1)

To sum up, in the shift-invariant case, the signal y is approximated as a
weighted sum of a few shiftable kernels ψl.

5.2. Q-OMP extensions

The Q-OMP algorithms are now specified for the shift-invariant case.
For the Q-OMPr, the scalar product between the residue ǫk−1 and

each atom φm (step 4) is now replaced by the correlation with each ker-
nel ψl. Quaternionic correlation has been introduced in [13]. In the right-
multiplication case, the non-circular quaternionic correlation Γ ∈ H

N1+N2−1

between quaternionic signals q1(t) ∈ H
N1 and q2(t) ∈ H

N2 is:

Γ {q1, q2} (τ) = 〈q1(t), q2(t− τ)〉 = qH2 (t− τ) q1(t) . (5.2)

The selection (step 6) determines the optimal atom that is now characterized
by its kernel index lk and its position τk. The orthogonal projection (step
8) gives the vector xk =

[

xl1,τ1 ; xl2,τ2 ... xlk,τk

]

. Finally, Eq. (4.6) of the
K-sparse approximation becomes:

ŷK =

K
∑

k=1

ψlk(t− τk) xlk,τk . (5.3)

For the Q-OMPl, the scalar product (step 4) is replaced by the quater-
nionic correlation defined as:

Γ {q1, q2} (τ) = 〈q1(t), q2(t− τ)〉 = q1(t− τ) qH2 (t) . (5.4)

In the same way, Equation (4.12) of the K-sparse approximation becomes:

ŷK =
K
∑

k=1

xlk,τk ψlk(t− τk) . (5.5)

5.3. The spikegram for quaternionic decompositions

We now explain how to visualize the coefficients obtained from a shift-invariant
quaternionic decomposition. Usually, real coding coefficients xl,τ are dis-
played by a time-kernel representation called a spikegram [15]. This condenses
three indications:

• the temporal position τ (abscissa),
• the kernel index l (ordinate),
• the coefficient amplitude xl,τ (gray level of the spike).

This presentation allows an intuitive readability of the decomposition. With
complex coefficients, the coefficient modulus is used for the amplitude, and
its argument gives the angle, which is written next to the spike [3]. This
coefficient presentation provides clear visualization.
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To display quaternionic coefficients and to maintain good visualization,
each quaternionic coefficient is written such that:

xl,τ = |xl,τ | · q l,τ and q l,τ = eiθ
1

l,τ · ekθ2

l,τ · ejθ3

l,τ , (5.6)

with the coefficient modulus |xl,τ | that represents the atom energy, and q l,τ

as a unit quaternion (i.e. its modulus is equal to 1). This unit quaternion has
only 3 degrees of freedom, which we arbitrary define as the Euler angles [8].
These parameters describe in a univocal way the considered quaternion on
the unit sphere. Thereafter, we use this practical angle formalism, although
without any rotation in the processing.

Two gray shading levels are set up for the quaternionic spikegram: one
for coefficients amplitude, and the other for the parameters assimilated to
the Euler angles. The angles scale, defined from -180 to 180 in degrees, is
visually circular; a negative value just above -180 thus appears visually close
to a positive value just below 180. Finally, the quaternionic coefficients xl,τ
are displayed in this way with six indications:

• the temporal position τ (abscissa),
• the kernel index l (ordinate),
• the coefficient amplitude |xl,τ | (gray level),
• the 3 parameters θ1l,τ , θ

2
l,τ , θ

3
l,τ displayed vertically (circular gray level).

This representation is used in the following figures and it provides an intuitive
visualization of the different parameters 3.

6. Experiments on simulated data

In this section, the Q-OMPr and the Q-OMPl are illustrated on simulated
signals and compared to the M-OMP.

6.1. Denoising and deconvolution

In this denoising and deconvolution experiment, the data considered are
trivariate, rather than quadrivariate, only so as not to load down figures
and to maintain clearer reading. Filled in pure quaternions, trivariate signals
are processed using full quaternions for coding coefficients. A dictionary Ψ of
L = 6 non-orthogonal kernels is artificially built, and five coding coefficients
xl,τ are generated (with overlaps between atoms). First, the quaternionic sig-
nal y ∈ H

N is formed using Eq. (5.3), which is plotted in Fig. 1(a). The first
imaginary part yb is plotted as the solid line, the second, yc, as the dotted
line, and the third, yd, as the dashed line. Then, white Gaussian noise is
added, giving the noised signal yn that is now characterized by an SNR of 0
dB. This is shown in Fig. 1(b), maintaining the the line style convention. The
generated coefficients are plotted in Fig. 1(c), using the spikegram introduced
in Section 5.3.

Then, we deconvolute this signal yn through the dictionary Ψ using
Q-OMPr with K = 5 iterations. The denoised signal ŷn, that is obtained

3See [2] for a color version.
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Figure 1. Original (a) and noised (b) quaternionic signals
(first imaginary part yb as the solid line; the second, yc, as
the dotted line; and the third, yd, as the dashed line), and
the associated spikegram (c).

by computing the K-sparse approximation of yn, is plotted in Fig. 2(a).
The coding coefficients xl,τ are the result of the deconvolution, and they
are shown in Fig. 2(b). Comparing Fig. 1(c) and Fig. 2(b), we observe that
Q-OMPr recovers the generated coefficients well, and the approximation ŷn
(Fig. 2(a)) is close to the original signal y (Fig. 1(a)); the rRMSE is 20.1 %.
This experiment is randomly repeated 100 times, and the averaged rRMSE is
22.1%. This illustrates the Q-OMPr efficiency for denoising and deconvolution
of quaternionic signals. In Fig. 2(b), note that coefficients x6,50 and x6,100
are coded with different amplitudes, but with the similar unit quaternion q.

Q-OMPl is applied to quaternionic signals with K = 5 iterations. The
denoised signal ŷn, that is obtained by computing the K-sparse approxi-
mation of yn, is plotted in Fig. 3(a). Comparing Fig. 1(c) and Fig. 3(b),
we observe that Q-OMPl recovers the generated coefficients well, and the
rRMSE is 45.8 %. This experiment is randomly repeated 100 times, and the
averaged rRMSE is 35.4%.

M-OMP is now compared only using the trivariate case. The pure quater-
nionic signal yn is now filled in a trivariate real signal y

n
∈ R

N×3 as well as
the kernel dictionary. The M-OMP is applied with K = 5 iterations, and
this gives the denoised signal ŷ

n
that is plotted in Fig. 4(a). The rRMSE

is 81.9%, and the average over 100 experiments is 82.7%. The associated
spikegram is shown in Fig. 4(b), using the original visualization. We observe
that the strong coefficients are relatively well recovered, although the others
are not (temporal shift τ , kernel index l, and amplitude). However, although
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Figure 2. Quaternionic signal approximated by Q-OMPr
(a) and the associated spikegram (b).

Figure 3. Quaternionic signal approximated by Q-OMPl
(a) and the associated spikegram (b).

the strongest coefficients are recognized, this is not sufficient to obtain a
satisfactory approximation. Indeed, multivariate sparse approximation is not
adapted to this case, as it cannot take into account the cross-terms of the
quaternionic vectorial part.

6.2. Comparisons

The three algorithms are now compared in more general conditions. 100 full
quaternionic signals are studied, composed of N = 256 samples. As in the
previous experiment, signals are generated as a linear combination of K = 15
atoms, with coefficients randomly drawn, but without added noise. The K-
sparse approximation of signals is carried out, and the rRMSE is noted as a
function of the inner iterations k of the algorithms. This error is then averaged
over the 100 signals.
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Figure 4. Trivariate real signal ŷ
n

approximated by M-

OMP (a) and the associated spikegram (b).

Two cases are distinguished: the first where data are generated with a
right-multiplication model and results are plotted in Fig. 5; and the second
with a left-multiplication model and results are plotted in Fig. 6.

Figure 5. Averaged rRMSE of Q-OMPr, Q-OMPl and M-
OMP on right-multiplication simulated signals, as a function
of the inner iteration k.

We observe that the Q-OMPr (resp. Q-OMPl) gives better results for
signals generated with the right-multiplication model in Fig. 5 (resp. the left-
multiplication model in Fig. 6). It shows the necessity to have two sparse
approximation algorithms. The M-OMP behaves in the same way in the two
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Figure 6. Averaged rRMSE of Q-OMPr, Q-OMPl and M-
OMP on left-multiplication simulated signals, as a function
of the inner iteration k.

cases, since it is not adapted for quaternionic data.
The Q-OMPr (resp. Q-OMPl) is not exactly at zero for K = 15 in Fig. 5
(resp. Fig. 6): this is due to the nonconvexity of the ℓ0-pursuit which can get
stuck in a local minimum local when there are strong atoms overlaps.

6.3. Complexity

Firstly, algorithms Q-OMPr and Q-OMPl have the same complexities, since
variables order only change in the different computation stages. As observed
in the previous experiment, each algorithm is adapted to its multiplicative
model.

A full quaternionic signal y ∈ H
N giving a quadrivariate real signal

y ∈ R
N×4 is now considered. If the coefficients are strictly real, M-OMP and

Q-OMPr/Q-OMPl are equivalent. If not, Q-OMPr/Q-OMPl perform better
according to its multiplicative model. For the complexity, the quadrivariate
correlation only has 4 terms, whereas the quaternionic one has 16: the Q-
OMPr/Q-OMPl complexity is thus multiplied by 4.

7. Conclusion

We have presented here two sparse approximations algorithms for quater-
nionic signals. Due to the noncommutativity of quaternions, two models are
considered: the Q-OMPr is dedicated to the right-multiplication linear com-
bination of quaternionic signals, and the Q-OMPl to the left-multiplication
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one. For the validation, the Q-OMPr / Q-OMPl were applied to denose and
deconvolute simulation data, and they are compared to the M-OMP.

The potential uses of Q-OMPr / Q-OMPl include quaternionic signal
processing such as deconvolution, denoising, variable selection, dimensional-
ity reduction, dictionary learning, and all of the other classical applications
that are based on sparsity. Prospects are to study the extension of these al-
gorithms to ℓ1-optimization algorithms [17], in order to avoid local minimum
as observed in experiments.
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8. Appendix

8.1. Selection step for Q-OMPr

For the Q-OMPr, the MSE objective function is J = ‖ǫ‖2
2
= ǫHǫ, with ǫ

defined as ǫ = ǫk−1 = φx + ǫk. The derivation of J with respect to x is
computed below.
To not lengthen the paper, calculus stages are not completely detailed.

∂J

∂x
=

∂J

∂xa
+
∂J

∂xb
i+

∂J

∂xc
j+

∂J

∂xd
k

=
∂ǫH

∂xa
ǫ+ ǫH

∂ǫ

∂xa
+
∂ǫH

∂xb
ǫi+ ǫH

∂ǫ

∂xb
i+

∂ǫH

∂xc
ǫj+ ǫH

∂ǫ

∂xc
j+

∂ǫH

∂xd
ǫk+ ǫH

∂ǫ

∂xd
k .

(8.1)

Expanding all the terms of ǫ = φx+ ǫk and ǫH = x∗φH + ǫk
H
, we obtain:

∂ǫ/∂xa = φa + φbi+ φcj+ φdk = φ ∂ǫH/∂xa = φTa − φTb i− φTc j− φTd k = φH

∂ǫ/∂xb = −φb + φai+ φdj− φck ∂ǫH/∂xb = −φTb − φTa i− φTd j+ φTc k

∂ǫ/∂xc = −φc − φdi+ φaj+ φbk ∂ǫH/∂xc = −φTc + φTd i− φTa j− φTb k
∂ǫ/∂xd = −φd + φci− φbj+ φak ∂ǫH/∂xd = −φTd − φTc i+ φTb j− φTa k .
Replacing these eight terms in Eq. (8.1), we have:

∂J

∂x
= φHǫ+ ǫHφ

+(−φTb − φTa i− φTd j+ φTc k)(−ǫb + ǫai+ ǫdj− ǫck) (8.2)

+ǫH(−φa − φbi− φcj− φdk)
+(−φTc + φTd i− φTa j− φTb k)(−ǫc − ǫdi+ ǫaj+ ǫbk) (8.3)

+ǫH(−φa − φbi− φcj− φdk)
+(−φTd − φTc i+ φTb j− φTa k)(−ǫd + ǫci− ǫbj+ ǫak) (8.4)

+ǫH(−φa − φbi− φcj− φdk)
= φHǫ− 2ǫHφ+ (8.2) + (8.3) + (8.4) . (8.5)
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Expanding the three terms (8.2), (8.3) and (8.4), adding and factorizing, we
obtain:

(8.2) + (8.3) + (8.4) = φHǫ+ 2ǫHφ . (8.6)

With Eq. (8.5), we finally have:

∂J

∂x
= φHǫ− 2ǫHφ+ φHǫ+ 2ǫHφ

= 2φHǫ = 2 〈ǫ, φ〉 . (8.7)

Thus, we can conclude that the atom which produces the strongest decrease
(in absolute value) of the MSE ‖ǫ‖2

2
is the most correlated to the residue, as

in the complex case.

Remark that this quaternion derivation has been done with the sum of
componentwise gradients. It is called pseudogradient by Mandic et al. who
propose a quaternion gradient operator in [12]. Using their new derivative
rules, we obtain ∂J/∂x∗ = φHǫ − 1/2 ǫHφ. However, maximizing this ex-
pression does not give the optimal atom. It does not allow to recover known
atoms in simulated signals.

8.2. Selection step for Q-OMPl

For the Q-OMPl, the MSE objective function is J = ‖ǫ‖2
2
= ǫǫH , with ǫ

defined as ǫ = ǫk−1 = xφ + ǫk. The derivation of J with respect to x is
computed below.

∂J

∂x
=

∂J

∂xa
+
∂J

∂xb
i+

∂J

∂xc
j+

∂J

∂xd
k

=
∂ǫ

∂xa
ǫH + ǫ

∂ǫH

∂xa
+

∂ǫ

∂xb
ǫH i+ ǫ

∂ǫH

∂xb
i+

∂ǫ

∂xc
ǫH j+ ǫ

∂ǫH

∂xc
j+

∂ǫ

∂xd
ǫHk+ ǫ

∂ǫH

∂xd
k .

(8.8)

Expanding all the terms of ǫ = xφ + ǫk and ǫH = φHx∗ + ǫk
H
, the eight

terms of Eq. (8.8) become:

∂J

∂x
= φǫH + ǫφH

+(−φb + φai− φdj+ φck)(ǫ
T
b + ǫTa i− ǫTd j+ ǫTc k) (8.9)

+ǫ(φTa − φTb i− φTc j− φTd k)
+(−φc + φdi+ φaj− φbk)(ǫTc + ǫTd i+ ǫTa j− ǫTb k) (8.10)

+ǫ(φTa − φTb i− φTc j− φTd k)
+(−φd − φci+ φbj+ φak)(ǫ

T
d − ǫTc i+ ǫTb j+ ǫTa k) (8.11)

+ǫ(φTa − φTb i− φTc j− φTd k)
= φǫH + ǫφH + (8.9) + ǫφH + (8.10) + ǫφH + (8.11) + ǫφH

= φǫH + 4ǫφH + (8.9) + (8.10) + (8.11) . (8.12)
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Expanding the three terms (8.9), (8.10) and (8.11), adding and factorizing,
we obtain:

(8.9) + (8.10) + (8.11) = −φǫH − 2ǫφH . (8.13)

With Eq. (8.12), we finally have:

∂J

∂x
= φǫH + 4ǫφH − φǫH − 2ǫφH

= 2ǫφH = 2 〈ǫ, φ〉 . (8.14)

In the same way, we can conclude that the atom which produces the strongest
decrease of the MSE ‖ǫ‖2

2
is the most correlated to the residue. As for the

Q-OMPr, the quaternion gradient operator [12], which gives ∂J/∂x∗ = ǫφH−
1/2 φǫH , does not allow to select the optimal atom.
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