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Multigrain Affinity for Heterogeneous
Work Stealing

Jean-Yves Vet1, Patrick Carribault1, Albert Cohen2

1 CEA, DAM, DIF, F-91297 Arpajon, France
2 INRIA and École Normale Suṕerieure, Paris, France

Abstract. In a parallel computing context, peak performance is hard to reach
with irregular applications such as sparse linear algebra operations. It requires
dynamic adjustments to automatically balance the workload between severalpro-
cessors. The problem becomes even more complicated when an architecture con-
tains processing units with radically different computing capabilities. We present
a hierarchical scheduling scheme designed to harness several CPUsand a GPU.
It is built on a two-level work stealing mechanism tightly coupled to a software-
managed cache. We show that our approach is well suited to dynamically control
heterogeneous architectures, while taking advantage of a reduction of data trans-
fers.

Keywords: Heterogeneous Computing, Work Stealing, Software Cache, Sparse
LU Factorization, GPGPU.

1 Introduction

With the advent of the multicore era, processor architectures evolve to include more
processing units either by increasing the width of each functionnal unit (e.g., the new
AVX instruction set) or by replicating simpler cores and factoring some of their re-
sources (e.g., NVidia’s GPUs). These two directions are currently exploited in High-
Performance Computing. As of June 2011, several of the clusters within the 10 most
powerful supercomputers listed in the Top500 are heterogeneous. Therefore, harnessing
both processor architectures (CPUs and GPUs) is mandatory to reach high performance.
When scaling computations to such heterogeneous architectures, data management is
a highly sensible parameter and a key to the efficient exploitation of the computing
resources. This paper introduces a new scheduling technique coupled with a software
cache for locality optimization to exploit both CPUs and GPUs in the context of irreg-
ular numerical computations.

It is organized as follows. Section 2 introduces our motivating example. Section 3
shows the necessity of a multigrain mechanism when tasks areexecuted by hetero-
geneous processing units. Then, Section 4 describes our software cache. Performance
results are presented in Section 5. Finally, Section 6 exposes related work before con-
cluding in Section 7.
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2 Motivating Example: Sparse LU Factorization

The performance of Block LU factorization depends on careful data management and
work scheduling. The algorithm iterates over a matrixA to decompose it into a product
of a lower triangular matrixL and an upper oneU such asA = LU . Each iteration con-
sists of three interdependent steps (Figure 1a). Within each step, multiple operations
can be launched in parallel and grouped into tasks. For largematrices, the collection
of block operations at step 3 dominates computation time. This particular step runs
block multiplications that can be implemented as highly optimized Basic Linear Al-
gebra Subprograms (BLAS) such as CUBLAS for a NVIDIA GPU or the Intel Math
Kernel Libray (MKL) for CPUs. We adopt here a right-looking LU implementation
since it offers a high amount of data-parallelism in step 3.

(a) (b)

Fig. 1. (a)Data modified by each step during the first and second iteration of a sparse LU decom-
position.(b) Allocation of a sparse block matrix using super-blocks. Each super-block contains
5×5 blocks that are empty or full.

Studies reveals that computing dense LU factorization on GPUs may lead to signif-
icant speedups thanks to level-3 CUBLAS kernels [23, 8]. Stomov et al. proposed new
techniques applied to heterogeneous dense LU factorization leading to a balanced use
of a multicore CPU and a GPU [22]. They designed a new algorithm which aims at re-
ducing the amount of pivoting. Then, they empirically foundthe best static schedule to
reach good performance. This predefined scheduling performs well since the workload
is known for each iteration. The problem is less predictablewhen the matrix contains
sparse blocks, motivating the search for dynamic scheduling algorithms. Deisher et al.
implemented a dynamic load balancing scheme to take advantage of CPUs and an Intel
MIC (Many Integrated Core) architecture but it was also tailor-made for a dense LU
factorization [11].

Sparse direct solvers emerged in the past ten years for shared memory machines,
distributes memory platforms, or combination of the two (MUMPS [3], PaStiX [13],
SuperLU [20], . . . ). To the best of our knowledge, the efficient execution of sparse LU
factorization harnessing multiple CPUs and a GPU has not received much attention.
The sparseness of the matrix has a huge impact on workload distribution. Sparse blocks
may turn into dense blocks from one iteration to another. Thus, the workload of a task
may change at any time. Obviously, a static approach or a dynamic schedule based



on cost models could suffer from severe imbalance. Based on this observation, we de-
signed mechanisms to dynamically guide the cooperation between all heterogeneous
processing units. We employ a sparse LU decomposition without pivoting to evaluate
our scheduler. The goal of this paper is not to propose a new direct solver for sparse
matrices. Nonetheless, some statistical techniques couldbe used to ensure the stability
of this algorithm. For instance, the Partial Random Butterfly Transformation (PRBT)
presented by Baboulin and al., is designed to avoid pivotingin LU factorization while
getting an accuracy close to the partial pivoting solution [6].

3 Task Granularity

When a program is decomposed into tasks, the quantity of operations contained in each
task has a major effect on performance. Granularity has obviously a direct impact on
the number of tasks, but it also modifies the way processing units are harnessed. For
instance, GPUs are made of several hundreds of light cores called Stream Processors
(SP). A task would intrinsically require a high degree of parallelism to properly benefit
from that massively parallel architecture. Since a task maybe either processed by CPU
core or a GPU, it implies trade-offs on granularity.

In the following, the input matrix consists ofN2 blocks of size 192×192.N varies
from 40 to 160, hence the total number of full and empty blocksvaries from 1,600
to 25,600 (from 256 Mo to 3,775 Go if we consider dense matrices). One third of the
blocks located off-diagonal are sparse. The position of each empty block is determined
in advance for a given matrix size, so that the average performance between several
executions can be computed. Values inside dense blocks are randomly generated. We
believe that the choice of the block size is a good compromise. One the one hand, we
wish the block size as small as possible to better represent the sparsity of a matrix. For
instance, if just one value in a block is non-null, the whole block can not be mapped
as empty and computations linked to that block can not be avoided. A small block size
also permits to extract more fine-grained parallelism and thus, brings more flexibility
for the scheduler. On the other hand, we want a large enough dimension to preserve
good performance on block operations. InFigure 2a and2b, we show performance of
blocks multiplications on both GPU and CPU versus differentblock dimensions.
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In this section, we first evaluate the impact of different task granularites on CPUs
and a GPU. We present the outcome of specific experiments withthe third step of our
sparse LU implementation with a shared memory SMP machine hosting two AMD
6164HE (2x12 CPU cores) and a Nvidia Geforce GTX 470 (448 SPs). Then, we explain
our multigrain task mechanism.

3.1 Single Granularity

In this evaluation, our runtime creates 24 threads to operate 1 task producer, 22 CPU
consumers and 1 GPU consumer. Each thread is bound to a CPU core so that several
workers cannot be multiplexed on the same core. Tasks are first produced and shared
among all consumers in a round robin way (Figure 3, A1). As soon as a CPU consumer
completes all its tasks, it tries to steal work from another CPU worker (Figure 3, A2).
Similarly, when the producer reaches a synchronization barrier, it acts as a worker and
randomly steals tasks to help CPU workers instead of waiting(Figure 3, A3). Thus,
load balancing is automatically managed by work distribution and work stealing [10,
1] mechanisms. When a task is scheduled on the GPU worker (Figure 3, B1), data
are copied into device memory, computed and finally transferred back to host memory.
For some evaluations we desactivated a few consumers to adjust the runtime to pure
CPUs or pure GPU executions. Thus, pure CPU execution implies 22 workers and 1
producer using 23 cores, whereas pure GPU execution means 1 worker attached to 1
core dedicated to pilot the GPU.

Fig. 3. Scheduling with single task granularity.

Our first evaluation studies the performance of fine-grainedtask scheduling. In this
case, each task modifies only one 192× 192 matrix block. This block size is small
enough for a sparse matrix representation while associating sufficient quantity of op-
erations per task to amortize the (low) task spawning and scheduling overhead. In our
second evaluation, each task updates several matrix blocks. We call this group of blocks
asuper-block. Since multiple blocks are accessed by the same processor, we change the
way data are allocated to increase spatial locality. Thus, we allocate each super-block
independently as shown inFigure 1b. All data are allocated in page-locked mode to
prevent the Cuda runtime from managing unnecessary copies from pageable to non-
pageable memory. To determine the size of each super-block in advance, we pre-detect
which blocks will stay empty prior to launching the LU decomposition. This facilitates



data transfers to GPU memory. The execution time of this pre-detection step is negli-
gible. We use CUBLAS functions (CUDA Toolkit 4.0) in our GPU tasks; but kernels
could also be automatically generated by means of directives [12] or by automatically
parallelizing loops that can benefit form GPU execution [19]. We choose super-blocks
consisting of 5×5 blocks, because it contains (on average) sufficient full blocks to ben-
efit from their spatial locality and trigger packed transfers via the PCI-Express. It also
allows us to increase GPU occupancy by launching several kernels on enough CUDA
streams. In other words, several functions are started on different matrix blocks simul-
taneously.

Figure 4a compares the performance of the two approaches. We notice that fine
granularity enhances performance on CPUs, especially withsmaller matrices: it allows
to create more tasks, improving load balancing opportinities between workers. We ob-
serve a different behavior for the GPU worker which achievesbetter performance with
coarse-grained tasks: each task contains more data which makes data transfers more
efficient. Whereas the same amount of data is send over the PCI-Express bus, less trans-
fers are issued, resulting in reduced overhead and increased performance. In both cases
GPU performance are lower than those presented inFigure 2a. This is mainly due to
data transfers.

We can only hope that heterogeneous, multigrain task scheduling combines the ad-
vantages of both fine-grained and coarse-grained configurations. In the next section we
describe our two-level task granularity mechanism.
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Fig. 4.Sparse LU step 3, single precision, average on 10 executions for eachresult:GPU: Nvidia
Geforce GTX 470 controled by one 1 worker binded on 1 CPU core (AMD6164HE).CPUs:
consit of 23 workers binded on 23 CPU cores.(a) homogeneous(b) heterogeneous scheduling.

3.2 Multi Granularity

The challenge is twofold. The runtime part has to handle the two granularities for a
specific task, while maintaining a dynamic behavior to adjust workload between het-
erogeneous processors. It is important to notice that CPUs and GPUs are not controlled
the same way. A GPU is managed via one single system thread, while a multicore CPU
requires at least one thread per core. It commonly leads to competition between the
GPU and each CPU workers. Theoretical peak performance of a recent GPU is much
higher than the one of a CPU core released around the same period. Task consumption



is then significantly unbalanced. Several schedulers compensate this difference in pro-
cessing power by introducing cost models [7]. Unfortunately, cost models are not ideal
to handle sparse codes due to workload variations.

To better balance the workload, we virtually pack several workers to build groups
of relatively close processing power. This also brings together processors sharing the
same affinity for a particular task granularity. Thereby, wegather processing power
of two multicore CPUs into one group. This group which contains all CPU workers
competes now with the GPU worker. To integrate this new levelof scheduling into
our runtime, we definesuper-tasks as sets of tasks operating on the same super-block.
Spatial locality is maintained within a super-block, allowing the GPU worker to trigger
packed transfers through the PCI-Express bus.

A super-task is pushed in a double-ended queue (deque) when it is produced (Figure
5, A). Only one worker at a time of each group is allowed to pop a super-task. CPU
workers may dequeue super-tasks only from one end (Figure 5, B1), whereas the GPU
worker can only dequeue from the other end (Figure 5, C1). As soon as a CPU worker
picks a super-task, it breaks it down and generates smaller tasks that are shared between
CPU consumers (Figure 5, B2). Conversely, when the GPU worker picks a super-task,
all inner tasks are either launched from one function call orseveral streamed calls to
maximize SPs occupancy.

Fig. 5. Super-task scheduling.

Work stealing between CPU workers described inFigure 3 is maintained. Thus, we
obtain a two-level task scheduler. Super-task picking setsup an efficient load balancing
between heterogeneous processors, while fine-grained stealing equilibrates tasks con-
sumption between processing units of the same kind. When the task queue of a CPU
consumer becomes empty, the worker tries to steal a task in another CPU worker queue.
If this operation does not succeed, the CPU worker tries thento pick a super-task.

We now present the performance obtained by harnessing GPU and CPUs concur-
rently on the third step of our Sparse LU code. In our multi-grained version, a super-
task operates on super-blocks, whereas a task works on blocks granularity.Figure 4b
shows results of multi-grained and single-grained tasks scheduling. Multi-grained ver-
sion reaches the best performance most of the time except forrelatively small matrices
where a fine-grained decomposition is slightly better.



4 Guided Software Cache

We showed that multigrain scheduling combines advantages from both coarse-grained
and fine-grained decompositions. More specifically, like coarse-grained scheduling it
increases spatial locality. In this section we focus on temporal locality improvements.

4.1 Design and Tuning

We designed a software cache to maximize data reuse in GPU memory, minimizing
data transfers between host and device. It automatically allocates memory and triggers
transfers when data need to be accessed by the host or when alldata does not fit in
device memory. Thus, it allows us to set up a dynamic data management, alleviating
programming efforts.

The replacement policy is the key component of our software cache. To reduce data
transfers over the PCI-express interconnect, the cache maintains the most relevant data
in device memory. Each new piece of data that enters the cacheis associated with a
marker indicating its reuse potential during the whole program execution. Data linked
to low reuse potential indices are flushed and transferred back first when free space is
required. Each index can be provided either by the programmer for a better control, or
by a preliminary step that profiles the first execution.

To tune the design of our software cache, we ran tests on the third step of the sparse
LU code. From an iteration to another, the LU decomposition progresses along the
diagonal of the matrix (Figure 1a). Super-blocks close to the bottom right corner are
more used than the other ones. To symbolize this reuse potential, all super-blocks are
tagged with the markerm = i+ j wherei and j are their position indexes in the matrix.
Data can also be locked in the software cache for a given period. For instance, a block
computed during the second step can be required to update several super-blocks in the
third step. If this block is not maintained in device memory,unnecessary transfers may
me triggered. We force data to stay in the software cache by temporarily attributing a
very high reuse value.

We conducted experiments with an Nvidia GeForce GTX 470. Up to 1GB are ded-
icated to the software cache, which is about 80% of the total amount of device GDDR5
memory. The rest seems to be needed by the Cuda runtime since we were not able to
allocate a higher amount. We can clearly observe that the software cache reduces the
number of memory transfers and total transfer time, due to a better exploitation of data
locality (Figure 6a). A peak is reached with a square matrix containing 6,400 blocks
where our software cache brings up to a 207% performance improvement (Figure 6c).

In this configuration, theCT =
computation workload

transfers ratio is maximized and most

of the data can fit in device memory. Then, performance decrease with bigger matri-
ces since all data cannot be maintained into GDDR5 memory, inducing more transfers.
With small matrices, even if the cache is not fully utilized,data have a lower reuse po-
tential due to the nature of the algorithm, leading to a less impressiveCT ratio than with
a 6,400-block matrix (Figure 6b).
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Fig. 6. Sparse LU step 3, single precision, average on 10 executions for eachresult:(a) cumula-
tive time of all data transfers(b) ratio of workload to cumulative time of all transfers(c) GPU
performance with and without software cache(d) heterogeneous execution and impact of the
scheduler/cache interactions.

4.2 Interaction with Heterogeneous Scheduling

Heterogeneous scheduling and software cache performance are tightly linked. E.g., if
a CPU worker picks a super-task associated with highly reusable data, it is very likely
that last up-to-date copies reside in the device memory. Consequently, data should be
flushed from the software cache to ensure coherency. We can infer that improper super-
task picking may lead to a substantial increase of data transfers. To tackle with this
problem, we modified the super-task deque to make it aware of the cache policy. When
a super-task is created, it is also associated with a data reuse index and inserted in the
deque which is now ordered by reuse potential. The GPU workerpicks super-tasks with
the highest index (Figure 5, C1), whereas CPU workers are restricted to the one with
the lowest index (Figure 5, B1). This affinity mechanism guides super-task picking,
minimizing undesired effects on the software cache and thusmaximizing temporal lo-
cality. Now, our runtime benefits from both spatial and temporal locality thanks to the
cooperation between our software cache and our heterogeneous scheduling.

Without modifying the way super-tasks are picked by workers, our software cache
improves heterogeneous execution performance by up to 20% (Figure 6d). The sched-



uler also has a strong impact on the software cache efficiency: task scheduling guided
by cache affinity brings up to 70% performance improvement compared to the version
without software cache.

5 Integrated Performance Evaluation

We now evaluate the complete sparse LU algorithm (all steps)on two different systems.
The first one is the previous AMD platform used to gather intermediate results. The
second system is composed of two Intel Xeon E5520 (4 cores each) and an Nvidia
GeForce GTX 480.

(a) Sparse LU, step 3 only (b) Sparse LU, step 3 only
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We show that the scheduler has a strong impact on the softwarecache efficiency
(Figure 6d). Indeed, the improvement is more impressive with a task scheduling guided
by cache affinity. It brings up to 70% performance improvement compared to the ver-
sion without a software cache.Figure 7aand7b show the performance of step 3 in our
Sparse LU implementation. We notice that the performance ofpure CPUs execution is
about twice better on the first system, mainly due to a higher number of CPU cores. As
expected, pure GPU executions reveal that the code runs globally faster on a Geforce
GTX 480 compared to a Geforce GTX 470. The performance increase is not only in-
duced by a higher computation power but it is also due to a larger amount of GDDR5
memory which enhances the impact of our software cache.

It is interesting to notice that heterogeneous executions outperform the cumulative
performance of the GPU-only and CPU-only versions for largeenough matrices. This
strong result is due to the locality-aware policy of the hierarchical scheduler. Guided
by data affinity, the scheduler encourages cooperation between CPUs and GPU. Since
the GPU gets a higher affinity for particular tasks, it focuses on a smaller set of blocks,
improving data locality. CPU workers preferentially attract tasks linked to the other data
blocks, minimizing the need for coherence transfers.Figure 7cand7d show the overall
performance of our Sparse LU implementation where the GPU only contributes during
step 3.

6 Related Work

We discuss work related to task scheduling and to the management of deported data.
Quintin et al. present an hierarchical work-stealing mechanism designed to reduce

the amount of communications in a distributed environment [21]. Even if the targeted
platform is different, our multigrain scheduling presentssome similitudes. They define
groups of workers restricted to a single or a set of multicoreCPUs. Within each group, a
leader is designed to manage the workload and steal tasks with a large amount of work
from other groups. The leader can also split a coarse grainedtask into smaller tasks
to increase the amount of parallelism inside its group. The other workers perform the
classical work-stealing algorithm inside their group.

Jiménez et al. propose a predictive task scheduler [18]. It is based on past perfor-
mance history to improve load balancing between a CPU and a GPU, but data are not
handled via a software cache and transfers should be explicitly managed by the pro-
grammer. Ayguad́e et al. extend StarSs to support multiple CPUs and GPUs [5]. Task
creation is made easier for programmers since it includes a source-to-source scheme
designed to translate OpenMP-like pragmas into task definitions. It is also associated
with a runtime system which schedules tasks according to their data dependences.

Performance models are also popular. Weights are for instance attached to a directed
acyclic graph of tasks in order to adjust task affinities withprocessing units [7]. Such a
scheduling strategy can be activated in StarPU [4], a runtime system designed to harness
heterogeneous architectures within a SMP machine. It provides the programmer with
an interface to encapsulate existing functions in task abstractions named “codelets”.
Data transfers are then managed automatically by the runtime system. It globaly leads
to good performance on dense linear agebra [2]. A similar approach is adopted by an



extension of the Kaapi runtime [14, 15] to schedule tasks on GPUs and CPUs [17].
It focuses more specifically on an affinity scheme built to improve the efficiency of
heterogeneous work stealing. A task dependence graph (TDG)is partitioned and a two-
level scheduling strategy is adopted. Partitions are distributed to the different processing
units and the workload is balanced by using a locality guidedwork stealing to move
some partitions. As for StarPU, deported data are maintained in a software-managed
cache and coherency is ensured via a distributed shared memory (DSM). Unfortunately,
evictions cannot be controlled, which may lead to more data transfers depending on the
application.

The Cell BE version of the StarSs platform [9], also takes advantage of a two
level scheduler. Tasks are bundled from a TDG according to data locality. A software
managed cache is used for each Synergistic Processor Element (SPE) to reduce DMA
transfers between a local storage and the main memory. The software cache employs
a Least Recently Used policy (LRU) and spatial locality is enhanced through local-
ity hints maintained by the runtime. This solution seems convenient for programmers
since tasks are defined via pragmas, and reuse opportunitiesare adjusted runtime. On
the other hand, tasks are bundled from a partial TDG and temporal locality may be
underexploited when the whole program is considered. In addition, load balancing be-
tween heterogeneous units is less tedious with a Cell BE architecture. In CellSs, the
Power Processing Element (PPM) can directly help the SPEs bystealing tasks. In the
case of multiple CPU cores and a GPU, the need of quite different degrees of paral-
lelism and the large disparity in processing power induce stronger constraints on task
granularity.

Gelado et al. present GMAC, an asymmetric DSM designed to reduce the coherence
traffic and make data management easier to program with heterogeneous systems [16].
Pages are protected on the system side and page faults are used to eagerly transfer data.
However, the overhead of page faults may be avoided with tasklevel parallelism by
associating data with in/out information (e.g. StarPU codelets or StarSs pragmas).

7 Conclusions and Future Work

We presented mechanisms designed to harness multiple CPUs and a GPU in the context
of irregular numerical codes. Through multiple experiments on an optimized Sparse LU
implementation, we showed that multigranularity improvesheterogeneous scheduling,
increasing spatial locality and leading to a better GPU utilization. We also demonstrated
that scheduling should be guided by the software cache to amplify temporal locality,
eliminating costly data transfers more effectively. We areworking on adding multi-
GPU support, relying on a distributed shared memory mechanism such as the one used
in StarPU. We also plan to manage data dependences more accurately to exploit more
parallelism and to hide the latency of sequential parts.
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