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X Pheron, Y Ouerdane, Sébastien Girard, C Marcandella, S Delepine Lesoille,

J Bertrand, Frédéric Taillade, Erick Merliot, Y Sikali Mamdem, A Boukenter

To cite this version:
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ABSTRACT  

A new approach is proposed to monitor in situ gamma radiation influence on Brillouin optical fiber 

extensometers. Experimental results are illustrated with two fiber samples under gamma radiation up to total 

dose of about 600Gy. The Brillouin frequency shift has poor sensitivity at such radiations level, neither the 

spectral Brillouin signature nor its dependence with strain. Meanwhile, propagation losses increase under 

radiations, with an amplitude linked to fiber dopants. The target application is Nuclear Wastes Repository 

Monitoring where high doses are expected. UV radiation preliminary tests show that compaction phenomenon 

may occur at such high doses, inducing Brillouin frequency shift up to 20 MHz. 

Keywords: distributed Brillouin fiber sensor, gamma radiation, strain, radiation induced attenuation 

1) INTRODUCTION 

The nuclear industry has shown the possibilities offered by fiber optic technology for both data transfer and sensing 

applications […]. Distributed strain measurements may be used for structural integrity monitoring of the reactor 

containment buildings or nuclear waste repository. Continuously distributed fiber sensors based on Brillouin scattering 

are widely used to monitor strain and temperature of various civil engineering structures […]. The implementation of 

optical fiber sensors in radiative environments such as Nuclear Waste Repositories requires more detailed understanding 

of the influence of radiation on the optical fiber properties.  

The main effect of radiation on optical fiber is well known. The increase of optical attenuation called, Radiation Induced 

Attenuation (RIA), depends on optical fiber dopants, on radiation levels, total doses as well as dose rate. Regarding 

Brillouin scattering, published post mortem measurements showed that distributed Brillouin sensor (DBS) is gamma-rays 

tolerant up to total doses of about 100kGy in standard single mode optical fibers [1]. However, for Nuclear Waste 

Repositories, total doses may reach 10
7
Gy (corresponding to the monitoring of structures hosting high level wastes 

during a century). Given optical power densities of the pump lasers used to induce stimulated Brillouin scattering and the 

well-known photobleaching effect, it seems mandatory to perform in situ measurement of both Brillouin scattering and 

its dependence with strain and temperature. 

In this paper, we present our approach based on a special fiber coil to monitor the distributed fiber Brillouin strain 

(DFBs) dependency during the irradiation.  

2) EXPERIMENTAL PROCEDURE 
 

a) Experimental set up 

The gamma irradiations were performed at CEA-DAM facilities. A 
60

Co (~1MeV) source was used at room temperature 

with a typical dose rate of 10Gy.h
-1

. Figure 1(a) presents the experimental setup used to validate the feasibility of in situ 



measurements of Brillouin scattering strain dependency. RIA measurements were also performed at specified 

wavelengths (1310 or 1550nm) and in larger spectral range [850-1700 nm]. The uncertainties on total dose measurement 

are estimated to be within 10%. Temperature was monitored thanks to a compact temperature recorder. 

 

Figure 1. (a) Experimental set up, (b) Fiber coiled on quartz tube. 

Stimulated Brillouin scattering was measured with a BOTDA [2] commercially available instrument operating at 

1.55µm. Measurements were performed on each sample every 30 minutes with a pulse duration set to 5 ns equivalent to 

a spatial resolution of typically 50 cm. 

b) Preparation of optical fibers samples 
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Figure 2. (a) Measured Brillouin spectra along F-doped fiber coiled under different stress. (b) Maximum Brillouin 

frequency shift along the same optical fiber sample. 

We have tested two different types of single mode optical fibers samples: SMF28™ and a silica core fiber with fluorine 

doped optical cladding made by iXfiber SAS.  The tested fibers samples were about 300 meters long, this length being 

representative of Nuclear Wastes Repository cells dimensions. They were coiled on a 9cm diameter quartz tube, material 

chosen for its transparency regarding gamma radiation illustrated in Figure 1 (b). During the coiling of the fiber, various 

known masses were applied to several sections of about 20 meters [3]. The mechanical strain ε transmitted to the sample 

can be expressed by:  ε=(m*g)/(2*S*E), where m*g, S, E are respectively the weight, surface of the main section of the 

optical fiber sample and its Young’s modulus. 

Such a distribution of mechanical stress along the fiber enables investigating possible gamma influence on strain 

dependency (Cε) of Brillouin frequency shift νB: νB=Cε*ε+CT*ΔT. 

Measured DFBs before irradiation is illustrated in Figure 2 for the fluorine doped fiber. The strain coefficient associated 

with the sample is derived immediately which enabled in situ measurements during irradiation.  
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3) EXPERIMENTAL RESULTS 

a) Gamma radiation effect on Brillouin properties 
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Figure 3. a) Brillouin spectrum measured in the F-doped optical fiber before (black curve) and after (red curve) gamma 

irradiation. (b) Radiation induced attenuation as a function of total doses in the two optical fiber samples at 1.31µm. 

The Brillouin spectra and its strain dependency remained stable during the gamma irradiation up to 600Gy total doses as 

illustrated in Figure 3(a). Similar results are observed on the two different optical fiber types. For the two samples we 

retrieved Cε(SMF28)=0.049MHz.µε
-1

 and Cε(F-doped)=0.040MHz.µε
-1

 before and after irradiation. 

These experiments validate the experimental setup built for the in situ characterization of radiation effects on Brillouin 

scattering properties in silica-based optical fibers. 

In the investigated dose range, the main radiation effect regarding the DFBs performances is the reduction of the signal 

noise ratio due to RIA on the optical fiber sample. We have monitored the RIA change during the irradiation. It revealed 

different kinetics of RIA depending on the core composition fiber sample Figure 3 (b). At the wavelength 1.31µm, the 

optical losses in the F-doped optical fiber is less than 0.75dB.km
-1

 after 450Gy while radiation induced attenuation is 

about 3.5dB.km
-1

 for the germanosilicate sample. Such results agree with previous studies on the influence of core 

composition showing pure-silica core and F-doped optical fibers are the best candidates as radiation-tolerant waveguides 

[4].  

The measurements revealed the influence of the photobleaching effect [5] on the RIA level for both fibers. This effect 

confirms the good interest of in situ strain measurement of the Brillouin scattering regarding the optical power densities 

of pump laser injected in the optical fiber sample during the irradiation. 

As mentioned, the target application is Nuclear Wastes Repository Monitoring where high doses are expected: 10
7
Gy is 

the expected integrated doses to be received by sensors during the exploitation period, namely a century. 
60

Co is not 

suited to simulate such high doses. It has been shown that UV radiation can be used as an interesting hardness assurance 

tool with some advantages in terms of security and access to radiation facilities [6]. 

b) Towards high doses: experimental result under UV irradiation 

In general, high gamma dose testing requires major investment in terms of equipment and costs. In this context, we 

showed that UV radiation can be used as an interesting hardness assurance tool to compare the sensitivities of different 

fiber types, we showed this kind of experiment can reveal the high sensitivity of some doped optical fibers, with some 

advantages in terms of security and access to radiation facilities.We performed post mortem study of UV irradiation 

influence on the Brillouin frequency shift in a single mode SMF28™ and a single mode highly germanium doped fiber. 

We have shown that UV radiation may induce a significant Brillouin frequency shift change owing to a compaction 

phenomenon depending on optical fibers [7]. The photosensitive fiber shows a permanent change in the Brillouin 

frequency shift of 20MHz (Figure 4) whereas SMF28™ properties remain quite stable. 
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Figure 4. Brillouin frequency shift observed for the UV irradiated zone compared to the non irradiated zone in the highly 

Ge-doped fiber. 

CONCLUSION 

We designed and validated a new approach to perform in situ measurement of DBS radiation influence. Fiber 

samples were coiled with different strain and exposed to gamma radiation up to total dose of about 600Gy. In these 

conditions, the Brillouin frequency shift is not modified by radiations: radiation induced attenuation is the main process. 

However the amplitude of RIA depends on the fiber sample (F-doped one is better) as well as on the injected power 

level. To anticipate high gamma doses, UV radiations were performed. Post mortem Brillouin spectrum measurements 

reveal that the compaction phenomenon appears at high dose level [8] and induces a shift of the Brillouin frequency as 

large as 20 MHz. Further investigations will be performed including UV exposure and high gamma dose irradiation 

representative of the environment associated to Nuclear Wastes Repository. 
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