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The penetration of magnetic flux fronts in the optimally-doped iron-based superconductor
Ba(Fe1−xCox)2As2 (x = 0.07 ± 0.005) is studied by means of magneto-optical imaging and Bit-
ter decoration. The higher-order analysis of roughening and growth of the magnetic flux front re-
veals anomalous scaling properties, indicative of non-Gaussian correlations of the disorder potential.
While higher-order spatial correlation functions reveal multi-fractal behavior for the roughening, the
usual Kardar-Parisi-Zhang growth exponent is found. Both exponents are found to be independent
of temperature. The scaling behavior is manifestly different from that found for other modes of
flux penetration, such as that mediated by avalanches, suggesting that multi-scaling is a powerful
tool for the characterization of roughened interfaces. We propose a scenario for vortex penetration
based on two-dimensional percolation and cluster aggregation for an inhomogeneously disordered
superconductor.

PACS numbers: 74.25.Wx,68.35.Ct,64.60.al,74.25.Op

I. INTRODUCTION

Vortex line pinning and the ensuing irreversible mag-
netic properties of type-II superconductors have been
studied for many years. These are usually described in
terms of the Bean model and its generalizations.1–7 While
the Bean model accounts for global magnetic properties
such as magnetization hysteresis loops and macroscopic
flux distributions, it does not describe the local fluctu-
ations of vortex densities nv = 〈B〉λL

/Φ0 in time and
space,8,9 nor the roughness of the magnetic flux penetra-
tion front. Here 〈B〉λL

is the coarse-grained flux density,
averaged over a distance of the order of the penetration
depth λL, and Φ0 = h/2e is the flux quantum. Due to
the wide range of phenomena in which front growth and
roughening occur, such as fluid flow in porous media,10
propagation of the ignition front in burning paper,8,11 or
the advancement of a rice pile,12–16 and the many analo-
gies between these different phenomena, the subject has
raised a huge amount of interest over the last 25 years.

The analysis of local variations δh of the magnetic
flux front height h(x) is commonly performed using the
height-height correlation function18

C2 (x, t) =
〈

[δh (x′, τ)− δh (x′ + x, τ + t)]
2
〉
x′,τ

(1)

where δh (x, t) = h (x, t) − 〈h (x, t)〉x corresponds to
the local deviation from the average front position, and
〈...〉x′,τ denotes averaging over the spatial coordinate as

well as time. In our case, time steps correspond to incre-
ments in the applied magnetic field Ha.

The quantity (1) enables one to simultaneously deter-
mine both the roughness exponent α and the growth ex-
ponent β by fitting the respective evolution

C(x, 0) ∝ xα (x� lsat) (2)
C(0, t) ∝ tβ (t� tsat). (3)

The saturation length lsat is the distance over which the
front shape influences the height at a given site. The
saturation time tsat is the time scale beyond which the
influence of the previous evolution of the front is lost.

Theoretical models predict different scaling properties
of a roughened interface (i.e. different scaling expo-
nents), depending on its (non)equilibrium state, the type
of disorder to which it is subjected, and on its relax-
ational dynamics.17 Usually, one has a competition be-
tween two antagonistic mechanisms, such as the elasticity
of the interface, which tends to smooth it, and its interac-
tion with a disorder potential, responsible for roughening.
A powerful theoretical approach to kinetic roughening is
represented by the so-called Kardar-Parisi-Zhang (KPZ)
model19 which describes the temporal evolution of the
height variable h(x, t),

∂h

∂t
= ν∇2h+ µ(∇h)2 + η(x, h; t) + F. (4)

Here ν is an effective surface tension; µ quantifies the
importance of lateral growth and vanishes for zero ve-
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locity, and F is an external force. The disorder term
η(x, h; t) has a Gaussian distribution with zero mean,
and 〈η(x, t)η(x′, t′)〉 = 2Dδ(x − x′)δ(t − t′). Eq. (4)
well describes diverse phenomena of kinetic roughening
such as ballistic deposition or Eden models19 but also the
advancement of flux fronts in type II superconductors.8
This is due to the growth of the front height being per-
pendicular to the front itself, since the Lorentz force on
the flux vortices reads FL = j × B. The KPZ model
predicts well-defined roughness and growth exponents,
α = 1

2 and β = 1
3 . In parallel, however, a wide variety

of exponents has been reported in other systems, includ-
ing wetting, imbibition, percolation, bacteria invasion,
and so forth.20,21 Among different approaches to account
for such phenomena, Barabási et al. proposed to apply
the concept of multifractality to interface roughness.22–24
Multifractality has been associated with a power-law dis-
tribution of the noise amplitude η, that accounts for rare
events in the roughening or growing process. It is also
relevant for the roughening of linear polymers on perco-
lation clusters.25–27 Alternatively, a multifractal formal-
ism may be useful if different length scales compete in
the growth process, or if depinning occurs at preferential
sites. In those cases, rare events such as avalanches may
drive the kinetic properties.28,29

Regarding magnetic flux fronts in superconductors,
Surdeanu et al.8 were the first to study different models
to account for the roughening of the interface between the
mixed state and Meissner phase in thin–film cuprate su-
perconductors. The authors8 distinguished two regimes
in roughening and growth: the short–range interaction
regime, well-described by the Directed Percolation De-
pinning (DPD) model,21 and the long–range regime, de-
scribed by a usual 1+1-KPZ equation. By mapping the
front progression through a quenched disorder potential
on the problem of percolation, the DPD model predicts
values α = 0.63 and β = 0.65. On the other hand,
Eq. (4) explicitly includes temporal fluctuations of the
disorder. DPD-like behavior was also reported for flux
penetration in Nb thin films on Si-substrates, over a nar-
row temperature window between smooth flux fronts at
high T , and an avalanche-dominated regime at low T .31
The authors31 noted that the observed scaling might be
due to KPZ behavior in the presence of spatially corre-
lated (non-Gaussian) disorder.

In this paper we characterize the penetrating flux front
in single crystals of the optimally–doped iron-based su-
perconductor Ba(Fe0.93Co0.07)2As2 using the recently de-
veloped multi-scaling approach. The roughened front
shows self-affine behavior, indicating non-Gaussian cor-
relations of the disorder potential. Strikingly, the growth
exponent is in agreement with the KPZ model. The mul-
tiscaling of the front roughness is clearly different from
that produced by either avalanche dynamics in Nb thin
films,32–34 or depinning of a ferroelectric domain wall
from a mixture of strong and weak pinning sites.35

We propose a tentative interpretation based on the
findings of Ref. 36 for Ba(Fe1−xCox)2As2. That work
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FIG. 1: (color online) Superconducting transition of two
crystals used in this study, as determined from differential
magneto-optical measurements36 performed in H = 0 with a
field modulation of ∆Ha = 1 Oe. Data are presented as the
transmittivity TH ≡ [I(T )− I(T � Tc)]/[I(T > Tc)− I(T �
Tc)], where I is the averaged luminous intensity over the sam-
ple area. TH = 1 and TH = 0 correspond to the absence
of screening and complete exclusion of magnetic flux respec-
tively.

reports that nanometer-scale inhomogeneity of the su-
perconducting properties is at the origin of the lack of
even intermediate–range vortex positional order, and of
the significant vortex density fluctuations observed on
field cooling.36 Spatial variations of superconducting pa-
rameters such as the critical temperature, Tc, or the su-
perfluid density, ns, would result in a random network
of more-or-less favorable sites, suggesting the analogy
with a percolation cluster. Independent evidence for such
nanoscale disorder in Ba(Fe1−xCox)2As2 was presented
in Ref. 37. The difference in multi-scaling of the rough-
ness and growth exponents suggests the percolation and
aggregation of different clusters (front sections) with dif-
ferent fractal dimension.

II. EXPERIMENTAL DETAILS

Optimally–doped Ba(Fe1−xCox)2As2 single crystals,
with x = 0.07 ± 0.005 and critical temperature Tc =
23.8 K, were grown using the self-flux method, as de-
scribed in Ref. 38. The crystal composition was analyzed
using a Camebax SX50 electron microprobe yielding the
Co content within 0.5% absolute accuracy. Rectangu-
lar samples were cut from different crystals using a W
wire saw (wire diameter 20 µm) and 1 µm SiC grit sus-
pended in mineral oil. In particular, sample # 1 has a
length of 994 µm, a width of 571 µm, and a thickness
of 32 µm. Its critical current density (at T = 10 K)
is jc = 2.4 × 108Am−2. Sample # 2 has a length of
835 µm, a width of 733 µm, a thickness of 27 µm, and
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FIG. 2: (color online) (a) Magneto-optical image of flux
penetration into Ba(Fe0.93Co0.07)2As2 sample # 1, taken at
Ha = 404 Oe after zero-field cooling to 10 K. (b) shows a
zoom of the sample part studied in the analysis. The red line
indicates the flux front, determined as the induction thresh-
old with B = 120 G. The green line shows the sample edge.
(c) Bean–like profile of the average flux density, as a function
of y, across the sample width. Flux density thresholds of 60
and 120 G are indicated.

jc(10 K) = 3.1 × 108Am−2. The penetration of mag-
netic flux into the selected samples was visualized by
the magneto-optical imaging (MOI) method.39,40 A fer-
rimagnetic garnet indicator film with in-plane anisotropy
is placed on top of the sample. A non-zero perpendicu-
lar component of the magnetic induction B induces an
out-of-plane rotation of the magnetization, and, thereby,
a Faraday rotation of the polarization of light traversing
the garnet. An Al mirror evaporated on the hind side
of the garnet reflects the impinging light, which is then
observed using a polarized light microscope with nearly
crossed polarizer and analyzer. Regions with nonzero
B then show up as bright when observed through the
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FIG. 3: (color online) Flux fronts determined in sample # 1
at 10 K, after zero field cooling, using an induction threshold
of 120 G. The value of the external applied field ranges from
163 (bottom) to 383 Oe (top).

analyzer. The differential magneto-optical technique36
was used to characterize the superconducting transition.
Fig. 1 shows that these are rather narrow for the material
under study, of the order of 0.5 K.

Fig. 2(a) shows the penetration of magnetic flux into
Ba(Fe0.93Co0.07)2As2 sample # 1, the rectangular outline
of which is clearly seen. We shall be interested in the flux
front within the sample, between peripheral bright re-
gions of non-zero B, and the dark central region of B = 0.
This front corresponds to the interface between the mixed
state, in which the superconductor is penetrated by vor-
tex lines, and the Meissner phase of excluded magnetic
flux. In order to avoid bias and distortions induced by
the effect of the sample corners on the shape of the flux
front, we have studied the penetration near the center
of the sample edges only. At all measurement tempera-
tures, the temperature stability was better than 10 mK;
the external field was increased in 20 Oe steps in order
to monitor the flux front progression.

The MO images are converted to maps of the mag-
netic induction by calibrating the luminous intensity I
with respect to the applied field.40 Next, the position of
the flux front is determined from a given threshold level
of the magnetic induction on the flux profiles. Using a
non-zero threshold value avoids uncontrolled variations
between experiments due to the specific luminosity and
polarization conditions under which images are acquired.
In all, 17 different threshold values between 40 and 200 G
were used. The minimum threshold value that could be
used for all applied field values was B = 120 G. We define
the height h(x) of the flux front as the distance between
the position at which the magnetic induction is maximum
at the sample boundary (y = 0), and the position of the
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5 μm(b)
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FIG. 4: (a) Bitter decoration image of flux penetration into
sample # 1, at an applied field Ha = 50 Oe (at which the
mean distance between vortex lines a0 = 0.63 µm). The field
is applied after zero-field cooling to 4.2 K. The image depicts
the untreated Scanning Electron Micrograph of a 25 µm–long
section of the region of the sample shown in Fig. 2b. The
sample edge corresponds to the bright line at the bottom. In-
dividual vortices appear as white dots. (b) ibid. An intensity
thresholding has been applied to the negative image of (a)
in order to bring out the vortex positions as well as the flux
front. The corrugation of the magnetic flux penetration front
is clearly observed.

intensity threshold, along a 1 pixel-wide strip perpendic-
ular to the sample boundary. Such a definition eliminates
the effect of possible shifts in the luminous intensity due
to over-exposure of certain strips in the camera. An ex-
ample of the progression of the flux front in sample # 1
determined by this method is shown in Fig. 3. In order
to evaluate the correlation function (1), we subtract the
mean position of the flux front 〈h(t)〉x, averaged over the
250 µm–wide central section of the sample on which the
analysis is performed.

In order to observe the flux front morphology on a
finer scale, and, notably, to investigate the occurence of
coalescing clusters, Bitter decoration41 experiments were
performed on the same samples after zero-field cooling
to 4.2 K and the application of a field of 50 Oe. Typical
results (on sample #1) are shown in Fig. 4. The image
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FIG. 5: (color online) Main panel: Two-point correlation
function of the penetrating flux front, i.e. the square-root
of the quantity of Eq. (1), calculated for the flux front at
10 K in samples # 1(red circles ) and # 2 (blue squares ).
The roughness exponent is, by definition, the slope of the lin-
ear (solid lines) regime of C(x, 0) in a log-log plot. Its value
is in very nice agreement with the KPZ model, i.e. α = 0.50.
Upper inset: Temperature independence of the roughness ex-
ponent. Lower inset: Independence of α on the value of the
induction threshold, as this ranges from 40 to 200 G. In both
insets, the dashed lines indicate α ≈ 0.5.

shows individual vortex lines as these enter the crystal
from the lower edge. Note that the intervortex distance
near the edge a0 ≡ (Φ0/ 〈B〉λL

)1/2 = 0.63 µm. Similar
images were obtained along all four sample edges.

III. ANALYSIS OF THE FLUX FRONT

The main panel of Fig. 5 shows the spatial correla-
tion function C(x, 0), describing the roughness of the flux
front penetrating from the lower edge of sample # 1 at
T = 10 K. The value of α determined from the logarith-
mic slope of C(x, 0) versus x is very close to the value
derived in the KPZ model, α = 1

2 .
18 In this respect, our

data are similar to those of Ref. 8. The constant value of
C(x, 0) for xsat >∼ 10 µm indicates that deformations of
sections of the flux front separated by more than 10 µm
are independent. The value of xsat is possibly related
to the (similar) dimensions of independently penetrating
vortex clusters, to be discussed below.

In order to ascertain the robustness of these results, we
have checked for temperature and vortex density depen-
dence. At sufficiently low flux densities the distance a0
between vortex lines exceeds λL(T ). Since λL increases
with T , the interaction between vortices also increases
with T within this B-range (for a fixed vortex density).
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FIG. 6: (color online) Higher order spatial correlation func-
tion Cq(x, t), normalized by the Gaussian ratios RG

q ,24,35 with
q varying from 2 to 19, as measured on the penetrating
flux front in Ba(Fe0.93Co0.07)2As2 sample # 1 and # 3 at
T = 10 K. (a) Sample # 1, front at lower edge, such as im-
aged in Fig. 2; (b) ibid., but only half the front length is taken
into account; (c) sample #1, front at upper edge; (d) sample
# 3. In all investigated cases, the slope depends continuously
on q and presents nontrivial scaling. The behavior is therefore
multifractal.

On the contrary, at higher vortex densities a0 < λL(T ),
and the repulsive interaction decreases with T . Hence,
vortex lines are not sensitive to the same length scales of
disorder for different T and B, so that, for non-trivial
correlations of the disorder, a continuous evolution of
α(T,B) might be expected. However, the upper inset
to Fig. 5 clearly shows that the roughness exponent does
not depend on temperature.

Investigating the dependence of the roughness expo-
nent on vortex density corresponds to probing its depen-
dence on the threshold value. The constant α as function
of threshold, displayed in the lower inset to Fig. 5, is con-
sistent with the lack of dependence on temperature, since
both imply that the front roughness is insensitive to the
strength of the vortex interaction. In other words, the
scaling properties of the flux front will depend only on
the kind of disorder and on the manner in which the front
deformations are relaxed.

We now turn to the multiscaling analysis of the data.
The method24,26,35 relies on the computation of the
higher-order two–point correlation function

Cq(x, t) = 〈[δh(x′, τ)− δh (x′ + x, τ + t)]
q〉x′,τ

1/q
. (5)

Following previous work,22 Cq should scale as Cq(x, 0) ∝
xHq , with Hq the generalized Hurst exponent. A non-
trivial q-dependent scaling is the hallmark of a non-
Gaussian probability density function (PDF) of the
disorder, leading to a self-affine (but not self-similar)
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FIG. 7: (color online) The exponent Hq as a function of the
order q for the magnetic flux front in Ba(Fe0.93Co0.07)2As2
samples # 1 (red circles) and # 2 (blue squares), evaluated
for a threshold of B = 120 G. For comparison, Hq = 1

2
for the

KPZ model is also shown (green diamonds), as is the result of
the analysis of the flux penetration observed at 6 K in the su-
perconducting Nb films of Refs. 33 and 34 (×). The decay of
Hq measured on the superconducting samples is monotonous,
without any inflection. For the Ba(Fe0.93Co0.07)2As2 samples,
Hq saturates at a lower, resolution–limited bound Hq(∞).
The evolution ofHq(∞) as function of the flux-density thresh-
old is shown in the Inset. Hq(q) compares well with Eq. (6),
with (b1, b2) = (0.2, 0.73) and (0.4, 0.66) for samples 1 and 2,
respectively. A comparison with Eq. (7) (dotted lines) yields
parameters sets (a, b, c) = (2, 26.3, 0.15), (1.2, 24, 0.28), and
(2.1, 17.6,−0.03) for samples 1, 2, and the Nb–film of Refs. 33
and 34, respectively.

interface.22 More generally, it may indicate multifrac-
tal behavior, i.e the geometry of the interface is not
simply fractal but implies many different geometries of
many different fractal dimensions.42 On the contrary, a
constant Hq = α = 0.5 is representative of KPZ be-
havior and of an interface with a Gaussian PDF (see
Ref. 23 and Fig. 7). Figure 6 shows the higher order two-
point correlation functions evaluated on the flux fronts
in sample # 1 and # 3, normalized by the factors RGq ≡
CGq (x, 0)/CG2 (x, 0),24,35 with q ranging from 2 to 20.
Here, the correlation functions CGq (x, t) are those that
would be obtained for an interface with a Gaussian PDF
of the local displacements.24,35 We note that the same
multiscaling is observed even when a subsection of the
investigated front [Fig. 6(a) and (b)] or a different edge
of the sample is considered, see Fig. 6(c). Figure 7 shows
the behavior of the exponent Hq as a function of q for the
magnetic flux fronts in our Ba(Fe0.93Co0.07)2As2 crystals.
Hq is observed to saturate to a sample–dependent value
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Hq(∞) at large q. From Figs. 6 and the exponent Hq

rendered in 7, it is clear that, for small x, the scaling
with length depends on the order q in a non-trivial man-
ner. The analysis of different sections of the same flux
fronts yields an identical Hq(q)–dependence. The Hq(q)-
evolution on the opposite side of the same sample, and
for flux fronts in the other investigated samples is similar
in character, but not identical.

The q-dependence of the Hurst exponent describing the
flux fronts in Ba(Fe0.93Co0.07)2As2 is remarkably well-
rendered by the simple toy model used in Ref. 22 to prove
the relevance of multi-scaling for the description of self-
affine fractal interfaces,22

Hq =
ln [(bq1 + bq2) /2]

q ln 1
4

. (6)

Here b1 and b2 are the scaling parameters characterizing
the self-affine interface structure parallel and perpendic-
ular to the growth direction, such as these are used in
Ref. 22 for the construction of a model interface. The ex-
perimental values, (b1, b2) = (0.2, 0.73) and (0.4, 0.66) for
samples # 1 and # 2, respectively, clearly demonstrate
the irrelevance of a Gaussian PDF for the transverse ex-
cursions of the flux front in Ba(Fe0.93Co0.07)2As2, which
would yield a constant roughness exponent 1

2 . A self-
similar interface with Gaussian PDF can be generated in
the toy model22 by using b1 = b2 = 0.5.

We have also evaluated multiscaling of growth of the
flux front height. Figure 8 shows that the temporal cor-
relation functions Cq(0, t) = Cq(0, Ha/Ḣa) are parallel
for all q, and scale with the Gaussian factors RGq (Ḣa

is the rate at which Ha is increased). The temporal
correlation functions obey the same power-law behav-
ior, Cq(0, t) ∼ t0.33. We consider this value to be in
agreement with β = 1

3 from KPZ theory. We thus find,
surprisingly, that the evolution of the flux fronts in the
Ba(Fe0.93Co0.07)2As2 samples corresponds to the diffu-
sive growth of a multi-fractal structure.

IV. DISCUSSION

A number of propositions have been made to explain
the origin of multifractality and multiscaling. A non-
Gaussian, e.g. power–law, PDF underlying the disorder
term η was introduced for the description of percolative
imbibition of paper by a fluid.30 The link between pen-
etrating flux fronts and the porous medium equation for
the imbibition by fluids was previously pointed out in
Refs. 8 and 43. However, the porous medium equation
as such, as analyzed in Ref. 43, does not lead to (multi–)
fractal behavior.

A second explanation for anomalous scal-
ing in roughening processes is the occurrence of
avalanches.13,14,29,44,45 The numerical work of Bassler
et al. showed the possible multi-fractal character of
braided vortex trajectories resulting from avalanches in
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FIG. 8: (color online) Higher-order two-point correlation
function as a function of the temporal evolution of the mag-
netic flux front in Ba(Fe0.93Co0.07)2As2 sample # 1, at T =
11 K. Data, normalized using the Gaussian factors RG

q ,24,35

are plotted as a function of the externally applied magnetic
field (as the temporal variable). For the calculation of these
curves, only field values between 197 and 393 G were taken
into account – for lower fields, flux does not penetrate, for
higher fields, complete penetration is achieved. The Cq(0, t)
show the same behavior for all q, ranging from q = 2 to 20,
and scale with the RG

q –values. The data compare well with
the KPZ prediction, Cq(0, t) ∼ t1/3(black line).

a strongly pinning superconductor.45 The effect of local
temperature variations on the nucleation and propa-
gation of dendritic vortex avalanches was investigated
experimentally by Welling et al.,32,33 who studied thin
superconducting Nb films deposited on sapphire sub-
strates of various orientations. The authors32,33 found
that, in 500 nm-thick Nb deposited on A–plane sapphire,
flux penetration at low temperature (T < 6 K) takes
place via huge compact avalanches, while at T > 6 K
it is more regular, yielding continuous flux fronts. The
latter bear a certain resemblance to those observed in
the present work. Numerical work by Aranson et al.34
suggests that avalanches in defect-free films occur at
periodic locations, while avalanches in films with edge
defects are initiated at these imperfections. With this in
mind, it was suggested34 that both avalanche–like and
more regular flux penetration in Nb/A–plane sapphire is
initiated by edge defects. In order to ascertain whether
the roughened flux fronts in Ba(Fe0.93Co0.07)2 have a
similar origin, we have analyzed the structure of the
continuous flux fronts (T > 6 K) reported in movie 8
of Ref. 46, which shows flux penetration such as that
reproduced in Fig. 9(a). To perform this analysis, we
considered a threshold of 10 % of the applied field.
The analysis of the correlation function (5) shows that
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the flux fronts in this Nb thin film show multi-scaling
behavior (Nb data in Fig. 7). The Hurst exponent starts
off with a lower value H2 = 0.3, and decreases as a near
power–law to zero as q increases. Contrary to our results
on Ba(Fe0.93Co0.07)2As2, this curve is not satisfactorily
described by Eq. (6). Moreover, the high-temperature
flux penetration as shown in Ref. 33, 34 , and 46 does
obey multi-scaling during growth, see Fig. 9(b). An
explanation for this is that even at temperatures higher
than 6 K, the “regular” flux penetration in Nb thin
films would be the result of the superposition of many
avalanches. The observed q-dependence would then be
induced by the avalanche size distribution, which follows
a power–law distribution in space and time.

Clearly, the roughening and growth of the flux front
observed in Ba(Fe0.93Co0.07)2As2 crystals is dissimilar
from the superposition of thermo-magnetic avalanche-
like instabilities as observed in the case of Nb thin
films. A more pertinent analogy may be that sug-
gested by the analysis of roughened ferroelectric do-
main walls.35 Ref. 35 reports on “mono-affine” scal-
ing of the domain-walls, with a Gaussian PDF of its
local transverse displacements, on small length scales,
both in numerical simulations as in actual experiments
on Pb(Zr0.2Ti0.8)O3. Such a mono-affine behavior cor-
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FIG. 9: (color online) (a) Flux front in 500 nm-thick Nb
thin film, deposited on A-plane sapphire, at T = 6 K and
Ha = 1.5Oe (data taken from Ref. 46 ). (b) Multi-scaling
analysis of the growth behavior of such a flux-front. Con-
trary to the case of Ba(Fe0.93Co0.07)2As2, Cq(0, t) also has a
q-dependent temporal behavior. The q–dependent correlation
function fans out at small times, i.e. small applied fields, but
shows q-independent behavior at large times.

responds to so-called “weak-collective pinning”, in which
the domain walls are only pinned by the fluctuations in
the pin density. Analysis on larger length scales showed
“multi-affine scaling” described by a non-trivial hierarchy
of higher-order scaling exponents. The crossover length
scale in the study35 was given by that on which rare
events in the form of strongly pinning defects, such as
dislocations, occur. Translated to our experiments, this
would correspond to the mono-affine (KPZ-like) growth
of individual front sections emanating from specific sec-
tions of the boundary of the superconducting crystal,
separated by sections from which flux penetration is less
likely. Such edge inhomogeneity might then be inter-
preted in terms of the local variation of superconduct-
ing properties36 and / or geometrical irregularities at the
sample edges. However, in our analysis multiscaling is
found to be the same irrespective of considering the en-
tire length of the flux front (see Fig. 2(b)) or a subsection
thereof (see Fig. 6).

A third possibility is the growth and coalescence of
front sections with different fractal geometry, arising
from different disorder realizations in distinct parts of
the Ba(Fe0.93Co0.07)2As2 crystals. Such heterogene-
ity may be expected, e.g., from the analysis of the
highly disordered vortex ensembles observed using Bit-
ter decoration.36 The interaction–energy distribution of
these ensembles could be understood only if one admits
the presence of substantial spatial heterogeneity of the
superconducting parameters, on the scale of 10 – 100 nm.
Front sections with different roughness characteristics
would then show diffusive growth, according to the KPZ
description, but form an anomalously roughened front
upon coalescence. Coalescence was considered in the nu-
merical study of linear polymers on percolation clusters
by Blavatskaa and Janke.26 They proposed that multi-
scaling could arise from the merger of two fractal struc-
tures of different dimensions, keeping their underlying
geometry in the process.26 Once a cluster is formed, its
temporal roughening is characterized by a certain growth
exponent; the cluster retains the same geometry and di-
mension during growth. This behavior could account for
both the observed temporal monoscaling growth behav-
ior and the multifractal roughening upon the collision
of two roughened structures. Indeed, Fig. 4 shows evi-
dence for percolative penetration of vortices at the very
interface of the mixed state and the Meissner state in
Ba(Fe0.93Co0.07)2As2. Vortex lines are seen to penetrate
the sample in an irregular fashion, the flux front on the
µm–scale featuring peninsula–like protrusions separated
by vortex–free areas. These features then coalesce to
generate a continuous front.

A description of both the coarse-graining of the
flux front as one goes from individual vortex-resolution
(Fig. 4) to the magneto-optical images of Fig. 2, and the
non-trivial Hq (q)-dependence of the coarse-grained flux–
front is suggested by the results of Ref.42. The author42
considered percolative growth in two dimensions, both
for random and self-avoiding walks. The q–dependence of
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the exponent α(q) describing the metric of the harmonic
measure of a two–dimensional near-critical percolation
cluster is given by

α(q) = c+
a√
bq + 1

, (7)

with a = 5
2 , b = 24, and c = 1

2 [Eq. (5) of Ref. 42]. The
harmonic measure of a percolation cluster is character-
ized by a lower dimension than the cluster itself, due to
the inaccessibility of sites situated on deep “fjords” on
the latter. Aggregation at certain sites on the percola-
tion cluster would correspond to the growth of the flux
front at specific locations due to the arrival of a vortex
line. Eq. 7 very well describes the experimental Hq(q)–
dependence of Fig. 7, including that for the flux front in
Nb thin films, for very similar parameter values. This
would imply that the flux-front in heterogeneous type-II
superconductors can be described as the hull of a near-
critical percolation network.

V. SUMMARY AND CONCLUSIONS

We have measured and analyzed magnetic flux-
penetration fronts in single crystals of the optimally–
doped iron based superconductor Ba(Fe0.93Co0.07)2As2,
over a wide range of temperatures. Analysis reveals
multi-scaling of the higher–order two-point spatial cor-
relation functions of the roughened flux front. This im-
plies that the roughness of the front cannot be described
by simple diffusive behavior, that is, by disorder with a
Gaussian probability density function. By implication,

the multi-scaling approach is a powerful tool to distin-
guish between the different properties at the origin of
interface roughening. Scaling of the flux-front roughness
does not depend on temperature or the induction thresh-
old used to define the front position, nor on macroscopic
defects that may exist in particular samples. In contrast,
a regular KPZ-like growth of the flux-front is found, ex-
cluding avalanche–like behavior as being at the origin
of the front roughening. We propose an interpretation
of our results in terms of multi–fractal roughening due
to the aggregation of vortex clusters with various frac-
tal dimensions. Such clusters could in fact be identi-
fied using Bitter decoration, which reveals the structure
of the flux front on the scale of individual vortex lines.
Once the macro cluster is formed, the front develops in
time (i.e. with increasing magnetic field) with a classi-
cal KPZ exponent. We tentatively decribe this unusual
roughening by a theory for the harmonic measure of a
two-dimensional percolation hull.42 Our results under-
score the analogy between percolation in porous media
and vortex penetration in inhomogeneous superconduc-
tors.
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