-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by HAL-CEA

HAL

archives-ouvertes

Comparison of free-streaming ELM formulae to a Vlasov
simulation
D. Moulton, W. Fundamenski, Giovanni Manfredi, Sever Adrian Hirstoaga, D.
Tskhakaya

» To cite this version:

D. Moulton, W. Fundamenski, Giovanni Manfredi, Sever Adrian Hirstoaga, D. Tskhakaya.
Comparison of free-streaming ELM formulae to a Vlasov simulation. Journal of Nu-
clear Materials, Elsevier, 2013, Proceedings of the 20th International Conference on
Plasma-Surface Interactions in Controlled Fusion Devices, 438, Supplement, pp.S633-S637.
<10.1016/j.jnucmat.2013.01.133>. <hal-00918414>

HAL Id: hal-00918414
https://hal.inria.fr /hal-00918414
Submitted on 17 Dec 2013

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche frangais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://core.ac.uk/display/52682586?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.inria.fr/hal-00918414




P1-28
Comparison of free-streaming ELM formulaeto a Vlasov simulation

D. Moulton™® W. Fundamenski®, G. Manfredi®, S. Hirstoaga® D. Tskhakaya®
%CEA, IRFM, F-13108 Saint-Paul Lez Durance, France

PImperial College of Science, Technology and Medicine, London, UK

“Institut de Physique et Chimie des Matériaux, CNRS and Université de Strasbourg, BP 43,
F-67034 Strasbourg, France

9NRIA Nancy Grand-Est and Institut de Recherche en Mathématiques Agahoge René
Descartes, F-67084 Strasbourg, France

®Association EURATOM-OAW, University of Innsbruck, A-6020 Innsbruck, Austria
Abstract

The main drawbacks of the original free-streaming equations for edge localised mode
transport in the scrape-off layer [Fundamenski, PPCF 48(2006)109] are that the plasma
potential is not accounted for and that only solutions for ion quantities are considered. In this
work, the equations are modified and augmented in order to address these two issues. The
new equations are benchmarked against (and justified by) a numerical simulation which
solves the Vlasov equation in 1d1v. When the source function due to an edge localised mode
is instantaneous, the modified free-streaming ‘impul se response’ equations agree closely with
the Vlasov simulation results. When the source has a finite duration in time, the agreement
worsens. However, in all cases the match is encouragingly good, thus justifying the

applicability of the free-streaming approach.
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1. Introduction

Edge localised mode (ELM) plasma instabilities will probably be present in future
tokamak devices employing high-confinement mode. Due to the large energies contained in
ELMs, it is important to understand the physical mechanisms which govern the duration and
area over which they spread their energy onto divertor targets. In this regard, the free-
streaming model for ELM transport in the SOL (conceived in [1]) has proven useful. It has
been successfully used to fit experimental time profiles of the ELM target power on JET and
ASDEX Upgrade [2] and on TCV [3]. It has not, however, been properly benchmarked
against a numerical kinetic simulation. Thisis an important step in understanding the validity
of the physics assumptions made in the free-streaming model and is the topic of this
contribution.

In the origina free-streaming model for ELM transport in a flux tube of open field
lines [1], al Coulomb forces are ignored. The ion distribution function f; (x, v, t) is assumed

to evolve according to the 1d force-freeVlasov equation

ofi | Ofi _

where x € [—L, L] is the 1d spatial coordinate, v is the parallel velocity, S; is the ion source
function and L is the connection length. For the initial value case where S; =0 and
filx,v,t =0) = f™t (1) has solution f/R = f™(x —vt,v,t). Considering an initial
Gaussian density profile n;(x,t = 0) = nyexp(—x2/202) and an initial velocity distribution

that is Maxwellian with temperature T, this gives

- (x — vt)? 1 v?
IR — £ty _ pt v, t) = ngex (— exp| ———]1, 2
f;, f;, ( ) 0CXp 20_2 mvTio p 21772~i0 ( )

where vr;o = +/To/m; istheinitial ion thermal speed (typicaly, the actual values used for T,

and n, are those associated with the pedestal region, since that is where the ELM originates).
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Note that this initial value case is identical to the case of an impulse source in time: S; =
§(t)fi™*. Therefore, /R is called the free-streaming ‘impulse response’ ion distribution
function. Furthermore, since (1) is linear, the response to an arbitrary source can be found by

convolving that source with /%, i.e. f; = f/® = S;.

In the interest of finding expressions for experimentally measurable quantities,
velocity moments of /% are taken. For the zeroth moment (i.e. the ion density) this gives an
analytic expression (see equation (4)). Higher moments, however, must be calculated
numerically. If analytic expressions are required for these higher moments, then the limit
o — 0 can be assumed (it will be shown in section 4 that this assumption has little effect on
the solution at temporal and spatial coordinates of interest). Thise — 0 limit correspondsto a
Dirac delta function for the initial density, i.e. n;(x,t = 0) = v2mny,08(x), so that equation
(2) gives
[l o =nogo8(x — vt) %exp(—vz/Zv%io). (3)

i

IR
,0-0

Taking velocity moments of f; now Yyields equations for measurable quantities (such as

theion energy flux density on the targets), as previously given in [1] and [4].

As recognised in [1], the primary drawback of the approach described above is that
the role of the electric potential has been ignored. Furthermore, expressions have thus far
only been derived for ion quantities and not for electron quantities. In this paper, these two
omissions will be accounted for in modified free-streaming equations, justified on the basis of

anumerical Vlasov simulation. That simulation is now discussed.
2. Kinetic ssimulation observations

The code, used for al the simulations presented in this paper, solves the collisionless

1d1v Vlasov equation for eectrons and ions, with the electric potential calculated from the



Poisson equation. It is described in detail in [4]. The particular simulation analysed in this
section is the one presented in section 4.1 of [4]. To alow comparison with the impulse
response free-streaming equations, there was no electron or ion source in this initial value
simulation. The initial ion and electron densities were set equa: n;(x,t = 0) = n,(x,t =
0) = ngexp(—x%/202), with ¢ = 0.1L. The ion and electron velocity distribution functions
were initially Maxwellian with equal ion and electron temperatures. T,, = T;yp = Ty. AS a
result, for both ions and electrons, the initial total number of particles was N, = v2rmn,o, the
initial parallel energy was Ey = 1/2 NyT, and theinitial gyro-energy was E, , = N,yT,. Note
that, in fact, Ny has units of particles/unit area, while E}o, and E,, have units of energy/unit
area. The area here is perpendicular to x and al quantities in this 1d model are an average
over this area. Note also that there was no interaction between parallel and gyro-motion and
the temperature associated with gyration was assumed to remain constant for all time and
space, a avalue T,. The mass ratio and ion charge were hydrogenic: M = m;/m, = 1836,
Z =1, and the boundary conditions at the wals were f;(x =+L) =f,(x = L) =
¢(x = £L) = 0. The actua values of T,, n, and L are only important in so far as they set the
ratio 1 = Apo/L, where Apo = \/eoTo/e?n, is the initid Debye length at peak density. A
value of 2 = 10~3 was used here (Note that although this value of 1 is ~103 times larger
than for readistic ELM parameters, the solution remained amost unchanged for smaller

values[4]).

Consider now the transfer of parallel energy from electrons to ions. Figure 1a shows
the total paralel energy in the ions and electrons as a function of time for the ssimulation
described above (normalised to Ejo). By time t = 0.167,, the electrons donate 71% of their

initial parallel energy to theions (here, T4, = L/cy, iSthe losstime at the initial sound speed,

Cso = VrioV1 + Z). Furthermore, as shown in figure 1b, this energy transfer corresponds to a



transition in the simulated parallel-integrated ion distribution function, ™t = [ fi(x, v, t) dx,
from a Maxwellian with standard deviation vy, a t = 0 to a Maxwellian with standard
deviation ¢y, a t = 0.167,, (note that in the figure 1b £ is normalised to its maximum
initial value, £;*). Finally, figure 1c shows n;/n, (as a function of x/L) when t = 0 and
when t = 0.167,,. These plots demonstrate that the bulk plasma has not moved far from its
initial position by the time the aforementioned transition has occurred (in fact, the particle

flux density to the target peaks on atimescale ~t,, aswill be shown in figure 5).

As a result of the timescale for the transition being significantly shorter than the
timescale on which the bulk plasma reaches the target, the Maxwellian with standard
deviationcy, can be assumed as an initial conditidfter the transition, there is no longer
any parallel energy available in the electrons to accelerate the ions, so that the ions will free
stream towards the targets. Thusit is expected that the free-streaming model should be ableto
account for the electric potential acting on the ions by simply substituting v,y = ¢ IN
equation (2) (or in equation (3) if ¢ —» 0 is assumed). This is a key result of this paper.
Although this substitution has been made previously in other publications [2, 3, 5], it has
never been physicaly justified by the rapid transition to a Maxwellian with standard

deviation ¢4, observed in akinetic simulation which corresponds to the free-streaming ELM.

To assess the validity of the assumption that the plasmais collisionless, the timescale
on which electrons donate energy to ions should be compared to the shortest collision time,

i.e. the electron-ion collision time, given by 7,; ~ 1.67 x 10'° x T2/*n;1z~1 (Miyamoto

1987), where T, has units of eV and n, has units of m3. For T,, = T, = 1500eV ny = 5 X

10°m3, L = 30m and hydrogen ions, the initial electron-ion collision timeis 19us, whereas
the timescale on which the electrons donate their energy to the ions is ~0.16L/cs = 9us.

Thus, we expect electron-electron collisions to alter the electron distribution function, but



only after the energy transferral has occurred. This is of little importance, since by then the
ions carry the mgjority of the paralel kinetic energy. Nevertheless, since t,; is of a similar

order to the electron-to-ion energy transferral time, we accept that electron-electron collisions may

play arolein ELM parallel transport and their effect will be investigated in a future study.

3. Modified impulse response free-streaming equations
Making the substitution vy, = ¢4, in (3) and taking appropriate integrals of f“HO

gives impulse response equations for the total ion number N/®(t) = L{;t( [ fIRdx) dv,

L/t 1

the total ion energy E/"(t) = Eff +E[f = [} .5

([ iR dx) dv + N/RT,, the ion
density n® (x, t) = [ f/¥_,dv, theion pressure p/* (x,t) = p{ + pi} = f mv? fI8 o dv +
n{RTy, the ion flux density I{R(x,t) = [vf/E ,dv, and the ion energy flux density
QIR (x,t) = Qif + f mv3fIR_  dv + T/RT,. For electrons, the same quantities can

be derived by assuming quasineutrality and using energy conservation. That is, the electron
density is assumed to move with the ion density, but electrons have only their gyro-energy
since they are assumed to immediately donate al of their parallel energy to the ions. Thus
NIR = ZN[R nlR = ZnlR TR = 71/R, EIR = NIRT,, pIR = nIRT, and QIF = T'RT,. These
electron equations are a simple but important addition to the free-streaming model, presented
here for the first time. The resulting equations, for both ions and el ectrons, are given in table

1 (notethat j € {i, e} isthe species index).

It should be recognised that the equations in table 1 were derived using f;/%_,, i.e. in

the limit ¢ — 0. Without this assumption, an analytic solution could only be derived from (2)

for the density, as follows:

(4)

2
i = jfimdv _ nyo/L exp( (x/L) )

((t/750)* + (6/L)2)V/? 2((t/150)% + (0/1))



(note that (4) corresponds to the equation in table 1 when ¢ — 0). For the other quantities,
arbitrary values of o can be accounted for by convolving the equations in table 1 with an
appropriate function representing the initial density distribution in x. For an initial Gaussian
density, the appropriate function is a normal distribution
N(0,0) = (1/V2ma)exp(—x?%/20?), which integrates to unity and therefore conserves the
number of particles after convolution. In fact, it will be shown in the next section that
accounting for finite o in this way has little effect when ¢ = 0.1L, compared to the direct

application of the equationsin table 1.

4. Comparison of impulse responsesto simulation

The modified free streaming equations are now compared to the ssmulation described
a the beginning of section 2. To begin, the normalised free-streaming impulse response
function for general o (i.e. f/® from equation (2) with v, = cs) iS compared to the
simulation. This comparison is shown in figure 2, with the free-streaming distribution
function in red and the simulated distribution function in black (both are normalised to
no/V2meg). By time t = 0.1674,, the simulation and free streaming model are seen to agree
well. Beyond this time there is no longer any paralel energy in the electrons available to
accelerate the ions, so that the ions free-stream towards the targets. This is shown by the
agreement between the free-streaming model and the simulation at times t = 0.557,, =
topeak ANd t = 1.27T¢y = tgsqu. These times correspond, respectively, to the times required
for the total target energy flux density Q(L,t) = Q;(L,t) + Q.(L,t) to reach its maximum

and to subsequently fall to 1/e times its maximum.

Figure 3 compares N; and E; according to the simulation (solid lines) and the free
streaming equations in table 1 (dotted lines). Note that these equations are unatered for

genera o. It is seen that, as a result of quasineutrality, the simulated N, and N; align almost



exactly for this Z = 1 plasma. Also, the free-streaming equation for N/® (which equals NF
when Z = 1) agrees almost perfectly with the simulation. For the energies in the ions and
electrons, the free streaming model assumes that all of the parallel energy of the electrons is
transferred to the ions as an initial condition, i.e. E;(t = 0) = 4E;, and E,(t = 0) = 2E,. In
figure 3, this assumption is seen to be violated in the initial phase of transport, while the
transition of parallel energy from electrons to ions is taking place. By time t = tgpeqk:
however, the free-streaming and simulated values for E; and E, agree well and afterwards

become increasingly well matched as time passes.

The comparisons between free-streaming values and Vlasov simulation values for n;
and p;, as functions of x/L at time t = typeqk, are shown in figure 4. The free-streaming
impulse equations for o — 0 (i.e. directly from table 1) are shown as dotted lines, while the
free-streaming values which account for ¢ = 0.1L (i.e. from equation (4) for the species
density or using numerical convolution for the species pressure) are shown as dashed lines.
Although the accounting for ¢ = 0.1L improves the fit with the simulation dightly, the effect
isminimal for this value of ¢ and the anaytic equationsin table 1 are sufficient to recover the
simulated values to a high degree of accuracy. The electron and ion densities are seen to align
almost everywhere, confirming the quasineutrality assumption (except in the sheath region by

the targets, where there is the expected drop in electron density).

The comparison for the particle and energy flux densities at the targets (as a function
of time) is shown in figure 5. Again, the agreement between free-streaming and simulated
values is excellent, and the effect of convolution in x (to account for ¢ = 0.1) issmall. This
level of agreement should be compared to the relatively poor level of agreement shown in
figure 1 of [4]. Importantly however, in that figure the free-streaming equations were used

with v, @ an initial condition for the standard deviation of the ion distribution function,



rather than c,,. In terms of divertor lifetime, the most important quantities are the energy flux
densities. It is therefore highly encouraging that such good agreement is found between the
simulation and the modified free-streaming equations for these quantities, at least for the

impulse response.

It is important to realise that the numerical simulation does resolve a sheath at the
wall, while the free-streaming equations ignore it. Thus, the excellent agreement observed for
the energy flux densities would not be obtained if the sheath was playing an important rolein
transferring energy from ions to electrons. For the impulse response simulation, the sheath
potential is so small that it has a negligible effect on the electron and ion energy flux
densities. This is because the energy transfer from electrons to ions occurs on a timescae
shorter than the time on which the bulk plasma reaches the target. Thus, by the time the
majority of electrons reach the wall, they no longer have sufficient parallel energy to create a

significant sheath potential. This topic will be investigated further in future work.

Finally, consider the timescales on which particles and energy reach the target. The
free-streaming equations predict that the particle flux density peaks at t = t4,/+/2, while the
total energy flux density pesksat t = tgpeqar = 0.55675 and subsequently reaches 1/e times

itsmaximumwhent = torqy = 1.247.

5. Effect of atime-distributed source

The effect of a time-distributed source in the Vlasov equation, mimicking the flow of
particles and energy into the SOL due to an ELM, is now assessed. The source used was as

follows:

= ( = > 1 ( i ) for0<t<
—€X - ex — or <T

S; (x,v,t) = Tsrc P 202 mvﬂ'o P 2”72"1'0 src (5)
0 otherwise,



i.e. a constant source in time starting at t = 0, with duration 74, and with the same total
number of particles and energy as there were in the initial-value case. The impulse responses
QIR(L,t) and Q!R(L,t) from table 1 can be convolved with this uniform source function to

yield the following free-streaming equation for the energy flux densities:

t'=t

000 _gfwy (o ZS_/Llajrti?exp (-2 ())- bj\/gwf< 750 >l ()

NoCsoTp  MoCsoTp re 2\t V2t

t’=c,
where a, = 0 and b, = Z for electrons, whilea; = (1+ Z)/2 and b; = (3 + Z)/2 for ions.
Also, for both ions and electrons, c = 0 when 0 < t < 15 and c =t — ty, When t > 7.
Note that accounting for finite ¢ by numerically convolving with a normal distribution in x

has very little effect on equation (6) when o = 0.1L.

Figure 6 shows the electron, ion and total energy flux densities to the target according
to the Vlasov simulation (solid lines) and according to equation (6) (dotted lines), for three
different source durations of tg,.. = 0.337,, Tsc = 0.6674, and 7, = 1.657,. The free-
streaming solution differs from the simulation most strongly for the t,,.. = 0.667, Case,
when the source duration is similar to typeqr for the impulse response. For al source
durations, however, the agreement between the analytic free-streaming expressions and the
simulations is reasonable, especialy given the former’s ease of application compared to
solving the Vlasov equation numerically. This is particularly true of the total energy flux

density (shown in black), which is the most important quantity in terms of divertor lifetime.
6. Conclusions

The free-streaming equations for ion ELM transport with the substitution vy;, — ¢,
and the new free-streaming equations for electron ELM transport, have been shown to agree
well with equivalent solutions from a Vlasov simulation, particularly for the impulse

response (initial value) case. This important validation adds credence to a model which has
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aready been successfully fitted to existing experimental ELM power loading data [2,3] and
justifies its future applicability for predicting the duration of ELM power loading on ITER.
The following questions remain, however, and will be the focus of future work. What is the
effect of aradially varying connection length on the time profile of the power to the target?
Do the predictions made by the free-streaming model agree with the experimentally observed
Z-dependence of ELM power loading? What is the effect of different impurity concentrations
on the duration of the ELM power load? What sets the transfer time required for electrons to
donate their parallel energy to the ions and at what point will this transfer time become long
enough that the free-streaming equations break down? What effect do collisions and/or a pre-
existing background plasma have on the validity of the free-streaming model? Finally, and
most importantly, what will set the duration of the ELM power load on ITER? The results
presented here show that the free-streaming model is a physically relevant and easily

applicable tool that hopefully can be used to answer these questions.
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Figure and table captions

Table 1: Modified free-streaming equations for the total number of particles, total energy,
density, pressure, particle flux density and energy flux density. Each quantity is given for

ions (j = i) and electrons (j = e).

Figure 1: (a) Tota parallel energy in the ions and electrons as a function of time according to
the Vlasov simulation. (b) The parallel-integrated distribution functions when t = 0 and
when t = 0.16t,, according to the smulation (solid lines). Shown for comparison is the
dotted line, which is a Maxwellian with standard deviation cg,. (C) Density profiles when
t =0 andwhent = 0.1674,. All figures only shown for positive x only due to symmetry of

the solutions about x = 0.

Figure 2: Comparison of Vlasov simulation (black) and free-streaming (red) normalised ion
distribution functions, f;/(no/v2mcs), for the initial value case at four different times. At

each time, the contour levels (shown in boxes) are the same for simulated and free-streaming

plots.

Figure 3: Comparison between the Vlasov simulation (solid lines) and free-streaming
equations (dotted lines) for the total number of particles and total energy as a function of time

for theinitial value case. Electron values arein red, ion values are in blue.

Figure 4. Comparison between the Vlasov smulation and free-streaming model for the
density and pressure profilesin space at time t = tgp,qqx- The same colours and line styles are

used as for figure 3, with the additional dashed lines accounting for o = 0.1L.
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Figure 5: Comparison between the Vlasov simulation and free-streaming model for the
particle and energy flux densities at the target as a function of time. The same colours and

line style are used as for figure 4.

Figure 6: Comparison between the Vlasov simulation and free-streaming equation (5) for the
energy flux densities at the target as a function of time, due to a uniform ELM source of
duration tg,... Plots are shown for three different values of 7,.. Electron values are in red,
ions values in blue and total valuesin black. Solid lines are simulated values and dotted lines

are from the free-streaming equation.
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Figure 5
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Figure 6
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