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Abstract—Energy consumption of highly reliable real-time
embedded systems is a significant concern. Static energy con-
sumption tends to become more important than dynamic energy
consumption. This paper aims to propose a new off-line schedul-
ing algorithm to put as much as possible processors in low-
power states instead of idling. In these states, energy consumption
is reduced, enhancing the battery life-time of mission critical
systems. However, no instruction can be executed and a transition
delay is required to come back to the active state. Activating
deeper low-power states requires to produce larger idle periods.
As the processor usage is constant for a given task set, this
objective implies reducing the number of idle periods. Our
proposal is to modelize the processors idle time as an additional
task. Then we formalize the problem as a linear equation system
with the objective of reducing the number of preemptions (or
executions) of this additional task. Simulations show that our
algorithm is more energy efficient than existing algorithms.

I. INTRODUCTION

Embedded systems tend to have a limited power supply

usually provided by batteries. Therefore minimizing the power

consumption is an important concern to increase the autonomy

of the embedded electronics. For example, power consumption

is a major concern in the design of Unmanned Aerial Vehicles,

which must also perform real-time processing. Fulfilling both

constraints in a reliable way is still challenging. In such real-

time systems, many devices can consume power. This work

concentrates on the consumption of processors.

The energy consumption can be divided into two categories:

dynamic consumption and static consumption, the former

being caused by the activity of the processor while the later

(mainly due to leakage currents) cannot change when the

processor is active, no matter the activity. Note that thermal

considerations on energy consumption are out of the scope

of this work. Solutions to save energy exist at both hardware

and software level. DPM (Dynamic Power Management) and

DVFS (Dynamic Voltage and Frequency Scaling) are the

two main software solutions. DPM aims to reduce the static

consumption by putting system components in low-power

states where energy consumption is reduced but no instruction

can be executed. A transition delay is required to get the

system back to the active state. DVFS deals with dynamic

consumption and tries to execute tasks at lower frequencies

(and therefore lower supply voltage).

Dynamic consumption used to be more important than

static consumption. Therefore, most of the research works

were dedicated to design approaches based on DVFS. Existing

algorithms rarely try to reduce the static consumption. They

mainly use DPM only when DVFS is no longer efficient

(e.g. [10], [6]). However, static consumption becomes more

important than dynamic consumption, one reason being the

higher density of chips or the smaller supply voltage [11]. We

compared the DPM solution introduced in this paper and a

DVFS solution using a specific processor. The results showed

that DPM can already be more efficient than DVFS, especially

when the number of available frequencies is limited. The effi-

cient use of DPM is therefore becoming an important issue, in

particular in real-time embedded systems. However, only few

publications address the management of static consumption

on multiprocessor systems. And the existing solutions are

not efficient enough, they produce shorter idle periods than

possible.

This paper explores the problem of maximizing the use

of low-power states on symmetric multiprocessor embedded

real-time systems in order to save energy when scheduling

tasks. On hard real-time systems, deadlines must be respected,

thus low-power states should be used with care in order for

processors to be ready when the system needs them. Transition

delays required to come back from a low-power state to the

running state must be taken into account.

The contribution of this paper is to propose an off-line

scheduling algorithm that reduces static consumption. While

guaranteeing the schedulability of the task set, the objective of

the algorithm is to increase the duration of the idle periods by

merging them when possible. The processor usage being con-

stant for a given task set, the time processors are expected to be

idle remains identical whatever the scheduler used. Therefore

the objective can also be expressed as the minimization of the

number of idle periods. Contrary to current algorithms, it does

not use priority assignment to schedule tasks. It formalizes the

problem using linear programming such that the constraint

(satisfying deadlines) and the objective (generating larger idle

periods) of the scheduling algorithm can be met.

The remainder of this paper is as follows. Section II

describes the main solutions found in the literature, then

section III defines the processor and task models used in



this paper while section IV details our algorithm. Sections V

presents the experimental results and section VI concludes.

II. RELATED WORK

One of the first approaches to use DPM on hard real-time

systems was proposed by Lee et al. [12] for tasks with dynamic

or static priority on a uniprocessor system. Their goal was

to extend the duration of the idle periods of the processor.

When the processor is idle, it delays task executions even

when tasks are ready and start executing tasks just in time

to prevent a deadline miss. Jejurikar et al. [10] and Chen

and Kuo [8] improved the solution by increasing the duration

of the procrastination period (i.e. the time spent delaying a

task execution). Zhu et al. [20] proposed another improvement

when tasks do not use all their worst case execution time.

However, these last three solutions all use DPM on top on

DVFS. Indeed, their main common objective is to decrease

the dynamic consumption which is modelized as a function of

the running frequency such as Pdyn ≈ fα (with α between

2 and 3) ([19], [2], [7]). Thus Pdyn being a convex and

increasing function of the processor frequency, there is a

critical frequency fcrit such that running at a frequency lower

than fcrit is not efficient compared to DPM. Therefore many

algorithms using both DPM and DVFS, like [10] or [8], only

use DPM when DVFS schedules tasks at f < fcrit.

On multiprocessor systems, when energy consumption is

not a concern, no optimal scheduling algorithm exists for par-

titioned scheduling (i.e. where tasks are bounded to a specific

processor) and only few exist for global scheduling (i.e. where

migration is allowed). These optimal global algorithms are

mainly based on fair scheduling like PFair [3]. However, par-

titioned scheduling is more widespread than global scheduling

because it is equivalent to uniprocessor scheduling when tasks

have been assigned to processors.

Energy-aware scheduling algorithms mainly use partitioned

scheduling. For periodic task systems, Chen et al. [6] first par-

tition tasks and then use power-aware uniprocessor scheduling

algorithms to decrease both static and dynamic consumptions.

Seo et al. [17] and Haung et al. [9] also use partitioned

scheduling. Their algorithms first partition tasks off-line, then

allow task migration on-line. Indeed, tasks can finish earlier

than expected and the idea is to migrate them to create larger

idle periods. However, these algorithms are on-line and they do

not have a global overview of the duration of all idle periods

on one hyper-period.

Bhatti et al. [4] used global scheduling with DPM. The

goal of their algorithm, AsDPM, is to use as few processors

as possible, letting the others asleep. When one task or more

are ready to be scheduled, AsDPM always keeps one pro-

cessor busy and activates the other ones only when required.

However, the algorithm is not optimal and can activate more

processors than needed because it cannot anticipate all future

job executions.

All these algorithms use DVFS or DPM and base their

scheduling decisions on task priority assignment. It activates

the higher priority task as soon as it becomes ready. This

approach can be suitable for DVFS but it prevents the creation

of large idle periods and thus an effective use of DPM. Among

the other approaches that does not use priority assignment, one

was proposed by Lemerre et al. [13]. They use linear program-

ming to compute off-line a valid schedule. The advantage of

this approach is to be able to add scheduling objectives in the

linear equation system. For example Megel et al. [14] used it

with the objective of decreasing the number of preemptions

for optimal multiprocessor global scheduling.

III. MODEL

This section introduces the notations used in the remainder

of this paper.

A. Processors

The system has m identical processors (with m > 1). Global

scheduling is adopted, i.e. tasks and jobs can migrate from one

processor to another. We make the optimistic assumption that

task preemptions and migrations have no effect on energy con-

sumption. This assumption shall be relaxed in future works.

To use DPM, we assume processors have at least one low-

power state. In a low-power state, a processor cannot execute

any instruction and its energy consumption is reduced. When

the system decides to wake up a processor, the processor takes

a certain amount of time to come back to the nominal state

and it cannot execute any instruction while waking up. We

assume that the consumption used while waking up is equal

to the consumption in the nominal state.

When the system has to choose a low-power state, it must

be aware of the duration of the idle interval which must be

greater than the transition delay required to wake up. In the

literature the minimal length of an idle period to use a low-

power is called the Break-Even time (BET).

B. Tasks

We consider a set Γ of n independent, preemptible and

periodic tasks. Each task τ releases jobs periodically every

period T and has a worst case execution time C. Tasks have

implicit deadlines, i.e. deadlines are equal to periods. The task

set hyper-period is named H and is the least common multiple

of all periods of tasks in Γ. Task utilization u is the ratio C
T

and the task set global utilization is the sum of all utilizations:

U =
∑n−1

i=0
ui. The job set JΓ contains all jobs of Γ scheduled

during the hyper-period H .

The situation where global utilization is equal to the number

of processors is trivial, all processors are always active. More

generally, a task set with U ∈ N is schedulable such as

U processors are always active while the others are always

sleeping, therefore generating no transition delay. Thus we

assume global utilization U is such as:

m− 1 < U < m (1)

And if m − x − 1 < U < m − x, set m = m − x and let

the x last processors always asleep (x ∈ N
∗, x < m).

We adopt the representation from [13] and [14] where the

hyper-period is divided in intervals, an interval being delimited



Fig. 1. An example of 2 tasks with periods of 4 and 12 respectively
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by two task releases. I is the set of intervals and |Ik| is the

duration of the kth interval. A job can be present on several

intervals, and we note wj,k the weight of job j on interval k.

The weight of a job on an interval is defined as the fraction

of processor required to execute job j on interval k. Jk is the

subset of JΓ that contains all active jobs in interval k. Ej is

the set of intervals on which job j can run. It must contain

at least one interval. The example task set in figure 1 has two

tasks and four jobs (jobs 1 to 3 from τ1 and job 4 from τ2).

In this example, E4 is {1, 2, 3} and J1 is {1, 4}.

Verifying the schedulability of the task set can be expressed

as a linear problem from which the weights of all jobs on every

interval can be obtained using a linear solver. For the task set

to be schedulable, the following equations must hold [13]:

∀k,
∑

j∈Jk

wj,k ≤ m (2)

∀k, ∀j, 0 ≤ wj,k ≤ 1 (3)

∀j,
∑

k∈Ej

wj,k × |Ik| = j.c (4)

Where j.c is the worst case execution time of job j.

The first inequality means that the utilization on an interval

cannot exceed the number of processors. The second inequality

forbids the duration of a job on an interval to be negative or

to exceed the length of the interval. And the third equation

guarantees that all jobs are completely executed.

Solving the linear program given by equations (2), (3)

and (4) gives the weight of all jobs on every interval thus

a complete and valid schedule. This schedule however does

not optimize the energy consumption. Our goal is to add

constraints and objectives to generate large idle periods to put

the processor in low-power states. This is the contribution of

this work in the next section.

IV. ALGORITHM

This section introduces the detailed algorithm used to obtain

the weights of jobs in a hyper-period such that it generates

large idle periods. The name of the algorithm is LPDPM, as

in Linear Programming DPM.

A. Motivation

We assume that processors can switch to a low-power state

on every idle period (i.e. BET = 0) and that tasks always

use their worst case execution time. Thus, regardless of the

scheduler used, the processors utilization is constant over a

Fig. 2. Global-EDF schedule

hyper-period. Thus to evaluate the DPM power efficiency of

a scheduling algorithm, the number of idle periods generated

can be used, the less the better as: 1) the number of wake

up transitions from a low-power state (and therefore of the

associated penalties) is reduced and 2) the duration of idle

periods increases allowing the use of deeper low-power states.

Depending on the length of the idle period, the most efficient

low-power state fulfilling the transition delay can be selected.

Figure 2 pictures the schedule on a two processors system

of a task set composed of three tasks (with WCET and period

of (3,8), (6, 10) and (4,16)) with Global-EDF. This example

demonstrates that classical schedulers like Global-EDF are

not suitable for DPM. They generate more idle periods than

necessary.

B. Approach

During a hyper-period, one or more idle periods are gener-

ated and one or more processors switch to a low-power state.

The objective is to have as few idle periods as possible. To

address this problem, we choose to modelize the idle time with

an additional task τ ′. τ ′ is a periodic task with a period equals

to H and a utilization equals to m−U . τ ′ thus only has one

job in a hyper-period. Note that this operation is feasible only

because m− 1 < U < m as the utilization of τ ′ must be less

than 1. The new task set has a global utilization of m and is

therefore schedulable.

Getting as few idle periods as possible is now equivalent

to decreasing the number of preemptions of τ ′ inside the

hyper-period. This objective should now be added to the linear

equation system.

However, it should be noted that τ ′ does not represent

the actual idle time when tasks are executed. Indeed, tasks

usually do not use all their worst case execution time. Thus,

at run-time, processors can be idle while not executing τ ′ and

multiple processors can be idle simultaneously. Modelizing the

expected idle time with τ ′ is just a way to help generating

a schedule with guaranteed idle periods in the worst case

scenario.

C. Objectives

As stated in the last section, the hyper-period is divided into

multiple intervals. An interval in which the weight of τ ′ is 1

is called an idle interval. And an interval in which the weight

of τ ′ is 0 is called a busy interval.

In order to generate as few preemptions as possible, an

interval should be either an idle or a busy interval and similar

intervals (busy or idle) should be consecutive. Say differently,

the weight of τ ′ on every interval should be either 1 or 0, and

similar intervals where the weight of τ ′ is identical should



be consecutive. Intervals where the weight of τ ′ is strictly

between 0 and 1 are the less attractive because they include

a preemption. To simplify, the weight of τ ′ on interval k is

written wk. The objectives can be summarized as:

• wk should be either 1 or 0

• Intervals where wk = 1 should be consecutive

• Intervals where wk = 0 should be consecutive

However, it may be unavoidable to generate non-busy/idle

intervals, that is where the weight of τ ′ would be neither 1

nor 0.

D. Formalization

Objectives should now be written as linear equations in

order to use them in our linear equation system. As defined

in the last paragraph, the first objective is to obtain as many

intervals as possible where the weight of τ ′ is one, that is

idle intervals. In terms of linear programming, expressing this

constraint requires adding a new variable to express the non-

available floor function. Let fk be a binary variable such that:

fk =

{

1 if wk = 1

0 else
(5)

This equation can be linearized as:

wk + fk ≥ 1 (6)

Such that minimizing fk forces wk to be equal to 1. The

objective is therefore to minimize the sum of all fk in order

to obtain a maximum number of idle intervals, that is with wk

equal to 1.

The second objective is to obtain periods where wk is zero,

that is busy intervals. Like fk, let ek be a binary variable such

that:

wk − ek ≤ 0 (7)

And having for objective to minimize the sum of all ek will

increase the number of busy intervals.

The next goal is to make idle or busy intervals consecutive.

Let fck and eck be two binary variables such that:

fck =

{

1 if fk = 1 and fk+1 = 0

0 else
(8)

eck =

{

1 if ek = 1 and ek+1 = 0

0 else
(9)

Those two equations can be modelized as:



















fk − fk+1 − fck ≤ 0

−fk + fck ≤ 0

fk+1 + fck ≤ 1

−fck ≤ 0

(10)

Fig. 3. LPDPM schedule



















ek − ek+1 − eck ≤ 0

−ek + eck ≤ 0

ek+1 + eck ≤ 1

−eck ≤ 0

(11)

Minimizing the sum of all fck and the sum of all eck is then

going to make idle or busy intervals consecutives. Therefore,

the final objective is (subject to equation (2), (3), (4), (6), (7),

(10) and (11)):

Minimize
∑

k

fk + ek + fck + eck (12)

E. Scheduling inside an interval

Resolving the linear system gives a weight for each task

on every interval such that the number of idle periods is

minimized. It outputs a solution that satisfies the linear system

which however may not be the optimal solution. To schedule

tasks inside intervals, EDZL [18] or IZL [14] can be used.

Unfortunately, as explained previously, the solver can gen-

erate intervals where the weight of τ ′ is neither 1 nor 0 (non-

idle/busy intervals). Those intervals where 0 < wk < 1 are the

only intervals where the on-line scheduler should be careful

not to generate additional idle periods if possible. In particular,

an additional idle period should be merged with a previous

idle period to save transition delays. To solve this problem,

we choose to schedule τ ′ at the beginning or at the end of the

interval to stick the execution of τ ′ in the current interval to

the one in the previous or next interval.

Moreover, to share the load between processors, the pro-

cessor executing τ ′ can be changed when τ ′ is preempted. It

does not increase the number of idle periods and could be an

interesting way, in a future work, to handle thermal impact of

our solution on the energy consumption.

Figure 3 pictures the schedule of the task set from subsec-

tion IV-B with LPDPM. Where Global-EDF was generating 9

short idle periods, LPDPM creates 2 much larger idle periods.

V. EVALUATION

In order to compare our solution with existing algorithms,

we conducted a simulation-based experimental study using the

energy information of the STM32L boards, which are based

on the ARM Cortex-M3 processor [1]. It has four low-power

states described in table I. Using a simulator, we generated

random task sets and scheduled them on two hyper-periods

with several schedulers. This simulation was conducted with

4 processors and each task set has 10 tasks. Task utilizations

are computed randomly between 0.01 and 0.99 with a uniform



Fig. 4. Mean number of idle periods
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distribution using the well-known UUniFast algorithm from

Bini et Buttazzo [5]. The period of each task is also chosen

randomly between 10 and 100.

2000 task sets were generated for each global utilization.

Then, each task set was scheduled by the following schedulers:

RUN [16], U-EDF [15] and LPDPM. RUN and U-EDF are

two optimal multiprocessor scheduling algorithms aiming to

reduce the number of preemptions and migrations. The imple-

mentation of LPDPM uses IBM ILOG CPLEX to solve the

linear problem. We limited the solving time to 60 seconds and

we rejected the task set when a solution was not found.

TABLE I
STM32L LOW-POWER STATES

Mode Current consumption Transition delay

Run 7.8 mA

Sleep 2.3 mA 0.1

Low power run 25 µA 0.4

Stop 3.1 µA 0.8

Standby 1.55 µA 5

The mean number of idle periods is plotted on figure 4 for

each global utilization. Figure 5 gives the repartition of the

idle periods lengths for each scheduler. Those figures illustrate

the fact that LPDPM generates less and larger idle periods.

For example, all idle periods created by the other algorithms

have a length less then 120 while LPDPM can generate idle

periods with a length up to 240. Note that the ordinate is

plotted on a logarithmic scale in figure 5. Figure 6 gives

the relative consumption of other schedulers, the consumption

of LPDPM being always one. The consumption is computed

based on the values from table I. LPDPM is always more

energy efficient and the difference is of course reduced when

the global utilization increases.

Finally, figure 7 pictures the number of preemptions for

each scheduler. Even if RUN and U-EDF are two algorithms

Fig. 5. Distribution of idle periods lengths
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Fig. 6. Relative consumption (LPDPM = 1)
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specifically designed to reduce the number of preemptions,

LPDPM behaves as well as U-EDF and only less than 1.5

worse than RUN. This makes LPDPM viable. Improving the

linear problem to decrease the number of preemptions of the

regular tasks is left for future works.

VI. CONCLUSION

In this paper we introduced LPDPM, an off-line power-

aware scheduling algorithm for multiprocessor real-time sys-

tems. It focuses only on static energy consumption. The

algorithm tries to increase the duration of the idle periods such

that deeper low-power states can be activated. It introduces

an additional task accounting for the time where processors

are expected to be idle. It then decreases the number of

preemptions of this task.

Contrary to other DVFS or DPM algorithms, LPDPM uses

an off-line approach. Another difference is that LPDPM does



Fig. 7. Mean number of preemptions
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not consist in mapping task to priorities in order to schedule

the system. It assigns weights to tasks on intervals where each

interval is delimited by two task releases. Linear programming

is used to get all the weights. With this approach, constraints

and objectives can be formally expressed. The constraint is to

meet deadlines. The objective is to decrease the number of

preemptions of the idle task. Simulations show that LPDPM

significantly decreases the number of idle periods and is

therefore more energy efficient than existing algorithms.

The objective of LPDPM is to minimize the number of idle

periods. And then, based on the length of the idle period,

a low-power state can be selected. Thus the linear equation

system does not depend on the processors used. However,

the assumption that minimizing the number of idle periods

is always more energy efficient can be false with some

processors. Therefore, we plan to relax this assumption in

future works.

At run-time, if the actual execution time of tasks is lower

than their WCET, the duration of idle periods increases. It

could potentially allow the use of deeper low-power states.

Therefore, an on-line algorithm should be able to use the

unused computation time to increase the length of existing idle

periods, following the same idea as Seo et al. [17]. At present,

LPDPM only works for periodic tasks with implicit deadlines.

We plan to extend our approach to schedule sporadic tasks

with constrained deadlines.

Energy consumption depends on the temperature. Using

LPDPM, the idle processor used for each new idle period can

be changed to share the load and decrease the temperature of

processors. But future works should modelize thermal impacts

on energy consumption such that LPDPM could generate

thermal-aware schedules.
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