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émanant des établissements d’enseignement et de
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Chapter 1

General Introduction

Most of the earth’s crust corresponds to water in contact with air: oceans, lakes and
rivers. Therefore, this interface plays a major role in the mass, momentum an heat
transfers within the atmosphere. On small scales, mass and heat transfer is mediated by
turbulence, specially by wave breaking [1; 8]. When waves break, they drive air allowing
exchanges of oxygen and carbon dioxide, which are crucial for aquatic life. On larger
scales, the amounts of gas exchanged in this process have significant effects on weather
and, perhaps, on climate1.

In natural environments, turbulence is also related with subsurface currents, with
the influence of bottom topography and with the interaction with solid structures or
boundaries. One of these situations –in which turbulence is not created at the surface–
is illustrated in figure 1.1–top: it is a picture of a vortex detached from the rear of a
boat traveling in otherwise calm water. But aside the vortex, one may also notice: (i)
in the bottom–right corner, closer to the boat, there are some very irregular deformation
zones separated by irregular lines. They are characteristic of upwelling and downwelling
motion, produced here by the rapid motion of the boat’s impellers. (ii) On the left of the
vortex, there are some gravity waves produced by the natural motion of the boat, which
seem to be perturbed by the vortex indeed. These different features are typical surface
expressions of a turbulent flow.

This picture also recall another particularity of the air–water interface, very well stated
by D. H. Peregrine when he wrote about his fascination of fluid mechanics [7]:

Our perception of the world is dominated by our vision. The commonest fluids,
air and water, are transparent, so we most readily see the interface between
them. The air–water interfaces of clouds, and rain, of streams, rivers, lakes
and the seas are vital elements in most of the natural scenes we enjoy.

Beyond this poetic view of the air–water interface, it comes a more concrete question:
What is the relation between the deformation visible on the surface, and the turbulence

1It is very difficult to state the contribution of turbulence in such a global and slowly evolving variable
as climate. It is because much different physico-chemical processes are involved. However, turbulence
has undeniable influence on some of them, for instance: on the air-water fluxes of carbon dioxide (see
[4; 11]); on aquatic life (both because water aeration and nutrients’ transport); and on the fraction of
reflected solar radiation (dependent on the air–water interface roughness; see [2]).

7



1. General introduction

Mean Flow

Boat

Figure 1.1: Surface manifestations of turbulence. Top: detachment of a vortex at the rear
of a boat in a calm river (Saint–Martin channel in Paris). Picture taken from the boat.
Bottom: rotten wood (+ some foam) is advected by the current of Saone river. Picture
taken from the Pont de la Feuillée in Lyon. White bars on the right correspond to a very
rough estimates of 1 meter.

which is beneath? Indeed, this question motivates active research in oceanography [3; 10;
12]. Nowadays satellites provide frequent, global and well resolved observations of surface
variables, although the equally relevant sub-surface turbulence is much more elusive.

Turbulence plays a major role in another oceanic–environmental subject: It strongly
affect the transport of nutrients and pollutants [8]. This is illustrated by figure 1.1–
bottom: a picture of the Saone river taken after a period on intense rains and winds.
It resulted in an increased water flux (in the direction indicated by the arrow), carrying
important amounts of rotten wood. In this particular situation, one can observe that
wood (together with some foam) is very concentrated in a particular region of the flow,
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that may be related with a stronger vorticity2. The transport of organic matter by flows
and turbulence is relevant to aquatic life, as it rules the concentration and distribution
of nutrients for zones irrigated by a river, for instance. On the other hand, long–term–
persistent inorganic matter is also transported by fluid flows. Indeed, winds and large
scale oceanic currents induce an enormous cumulation of plastic litters [9], with ecological
consequences not completely evaluated –but already not encouraging–. Therefore, more
knowledge about the physical processes involved on turbulent transport of floating parti-
cles is desirable in order to develop strategies to deal with such pollution.

The goal of this manuscript is to present our experimental study on surface mani-
festations of a turbulent flow.3 In particular it concerns (i) the statistics of the surface
deformation, produced by turbulent motion, (ii) the effect of turbulence on externally
excited surface waves, and (iii) the dynamics of particles floating on the surface of a
turbulent flow. It is organized as follows:

In the next chapter we develop some connections between sound and free surface
flows: one may think the air–water interface (or any other interface) as an elastic sheet
that experience expansions and compressions as a consequence of fluid motion. Thus, the
interface is compressible even if the underlying fluid is incompressible.

Still is chapter 2, we then give a proper introduction to turbulence, as it is the context
of this thesis. Particular attention is given to the relation between turbulence and free
surface flows.

In chapter three, we present the experimental setup that makes this study possible.
After giving the physical parameters involved in the experiment, we discuss the dynamical
regimes to be expected on the light of dimensionless numbers. Finally we present the
measurement techniques, applied in order to access the velocity field and the deformation
of the surface.

The first chapter devoted to experimental results is chapter 4, in which we discuss the
different regimes available to our setup, together with their main properties.

In chapter 5, we focus on the possibility of wave generation by a turbulent flow, where
the velocity field is primarily horizontal. There is a prediction of spontaneous generation
of sound by turbulent motion [5; 6], which by analogy was extended to horizontal flows
in shallow water. Therefore it is pertinent to ask the question about the possibility to
observe such a wave generation in our finite depth experimental configuration. With
this question in mind, we study in detail the surface deformation that is produced as a
consequence of the turbulent motion in our experiment.

A strongly related problem is addressed in chapter 6. It concerns the influence of
turbulence on wave propagation. Here again the problem was first considered in the
acoustical context, with the question about how sound propagates in heterogeneous media.
Thus, this time we mechanically excite monochromatic waves on the surface of our liquid,
and we study how these waves are affected by the turbulent background.

Then, in chapter 7 we focus our attention on the dynamics of particles floating on the

2The picture make little justice to such dynamical process, contrary to direct observation where the
concentration on vortices appeared clearly. A representative movie is available upon request.

3I borrow this sentence from the title of an article by M. S. Longuet–Higgins (JFM, 1996), although
it does not have a direct connexion with this manuscript.
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1. General introduction

free surface of a turbulent flow. As light particles are constrained to rest at the surface of
the fluid, they experience the motions of the surface as an effective compressibility. After
observing and characterizing the consequences of compressibility on particles, we discuss
the possible sources of them.

Finally, in last chapter we give a summary of our results, together with some general
conclusions. Then, future research directions are proposed.
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Chapter 2

Turbulence and free surface flows

In this chapter we give a more precise introduction to turbulent flows with free surface.
We start by developing an analogy between free surface flows and compressible flows
(section 2.1). As the analogy has no need of turbulence concepts, we keep those ones to
subsequents sections.

In section 2.2, we give the set of equations valid for incompressible viscous fluids, and
we recall the ideas of classical–homogeneous–isotropic turbulence for three dimensional
flows. This context represent the basis for any turbulence theory, although some of they
assumptions have to be removed when considering particular applications. Therefore, in
section 2.3 we move to turbulence in two dimensional flows as –in principle– it is more
pertinent to our experiments. However, the limitations of their concepts are addressed.

Then, we return to free surface flows. After giving the mathematical formulation
(Navier Stokes equations + boundary conditions), we consider a qualitative description
of the phenomenology observed in turbulent flows with free surface. Finally, we consider
some attempts of giving quantitative predictions for turbulent free surface flows, in the
sense of the well known counterparts of classical turbulence.

2.1 The compressible free surface of an

incompressible fluid flow

As it will be shown by different experimental results, one can understand the phenomenol-
ogy of a free–surface–turbulent–flow as an effective compressibility on its surface, even
if the fluid under study is incompressible. In this situation, it is tempting to develop
some analogies with compressible flows. To do so, we consider now some features of
compressible fluids.

2.1.1 Sound

Sound is perhaps the most clear manifestation of compressibility. It consist in pressure
variations that propagate through a medium with a speed c. For liquids and gases, one can
actually derive the wave equation [1; 32] from both the momentum conservation equation

11



2. Turbulence and free surface flows

(Euler equation):
Du

Dt
=

∂u

∂t
+ (u · ∇)u = −∇p

ρ
, (2.1)

and mass conservation equation

Dρ

Dt
+ ρ∇ · u =

∂ρ

∂t
+ ∇(ρu) = 0, (2.2)

where u = (u1, u2, u3) is the velocity, D/Dt = ∂/∂t + u · ∇ is the material derivative, p is
the pressure and ρ the fluid density. From last equation (the expression on the left), one
can see that any change in fluid density (and consequently on its volume) is compensated
by the term ∇ · u. Thus, this term can be understood as the fluid compressibility.

We consider a small perturbation (u, ρ, p) from the state of zero velocity and homo-
geneous density ρ0 and pressure p0. For irrotational flows, one has u = ∇φ, with φ the
so-called velocity potential. The linearized version of equation (2.1) gives a relation be-
tween the pressure and the potential ρ0∂φ/∂t = p0 − p and the linearized version of (2.2)
connects density to the potential ∂ρ/∂t + ρ0∇2φ = 0.

By assuming a relation between changes of pressure and density [32] that links them
by a dependence p = p(ρ), and linearizing pressure around ρ = ρ0, it can be obtained
that ∂p/∂t = p′(ρ0)∂ρ/∂t. The natural consequence of this relation is an equation for φ,

∂2φ

∂t2
= c2∇2φ, (2.3)

that is in fact the well known wave equation. Here c2 = ∂p/∂ρ|ρ0
is the velocity of wave

propagation, or sound velocity. This general expression already gives useful information:
for a given variation of pressure, the smaller is the variation of density (i.e. small com-
pressibility), the larger is the sound velocity. From thermodynamic arguments on the
other hand [32], one has c2 = γhRT for perfect gases, where R is the gas constant, T
is temperature and γh the ratio of specific heats, close to 1.4 for air at typical pressure
and temperature conditions. Therefore, sound velocity depends only on the equilibrium
conditions of the system: all perturbations travel with the same velocity c. In other
words, sound waves are non–dispersive, in opposition (for instance) to gravity waves in
the surface of a fluid, where a dependence on the wave-number explicitly appears.

In our construction, we neglected the contribution of gravity a priori. This is be-
cause it appears to be unimportant for wavelengths smaller than c2/g [32], corresponding
approximately to 12 km in air, and 200 km in water. These wavelengths justify the
approximation, as they are much larger that ordinary sound waves.

As sound velocity is characteristic of the medium and usually constant, it is useful to
consider motion velocities in comparison to sound velocity, by defining the Mach number

M =
U

c
,

where U is the velocity of the corresponding motion in the medium. Sound velocity is
given by the compressibility of the medium, thus, the more U approaches c, the more
important are the effect of compressibility in the motion. When U ≪ c, on the contrary,
compressibility effects are negligible.
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The compressible free surface of an incompressible fluid flow

2.1.2 A formal analogy in incompressible fluids: sound waves

in shallow water

For all practical situations water can be assumed as incompressible, given the enormous
value of sound velocity on it1. In spite of this, one can establish a formal analogy with
sound in the shallow water limit. It holds when the height of the fluid h(x, y, t) is very
small in comparison to a characteristic wavelength λ.

Under this condition, the total vertical acceleration of the surface (Du3/Dt) is negli-
gible compared to gravity [1]. Thus the Euler equations become

Du1

Dt
=

∂u1

∂t
+ u1

∂u1

∂x
+ u2

∂u1

∂y
+ u3

∂u1

∂z
= −1

ρ

∂p

∂x
, (2.4)

Du2

Dt
=

∂u2

∂t
+ u1

∂u2

∂x
+ u2

∂u2

∂y
+ u3

∂u2

∂z
= −1

ρ

∂p

∂y
(2.5)

and

p = p0 + ρg(h − z), (2.6)

from which we can state that the r. h. s. terms on (2.4) and (2.5) do not depend on z:

Du1

Dt
= −g

∂h

∂x
,

Du2

Dt
= −g

∂h

∂y
. (2.7)

Therefore, the rate of change of u1 and u2 following fluid particles is also independent on
z. In other words the initial dependence is conserved in time.

An usual hypothesis to derive shallow water equations is to consider u1 and u2 as being
initially independent of z. Thus, the terms ∂u1/∂z and ∂u2/∂z become zero. Equations
(2.7) reduce to:

∂u⊥

∂t
+ (u⊥ · ∇⊥)u⊥ = −g∇⊥h, (2.8)

with u⊥ = (u1, u2) and ∇⊥ = (∂/∂x, ∂/∂y).
On the other hand, one has incompressibility

∇ · u = 0, (2.9)

that can be integrated over the height

0 =

∫ h

0

{

∂u1

∂x
+

∂u2

∂y
+

∂u3

∂z

}

dz

=
∂

∂x

∫ h

0

u1dz + u1
∂h

∂x
+

∂

∂y

∫ h

0

u2dz + u2
∂h

∂y
+ u3

∣

∣

∣

∣

h

,

where we took into account that h = h(x, y) on the limits of the integral, and we assumed
a flat bottom where velocities vanish. We can complement this equation by noticing that

1Sound velocity in water is c ∼ 1400 m/s and c = 340 m/s in air [32].
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2. Turbulence and free surface flows

u3|h is given by the so-called kinematic boundary condition, valid on the free surface (to
be considered in section 2.4),

∂h

∂t
+ u1

∂h

∂x
+ u2

∂h

∂y
= u3,

to obtain
∂

∂x

∫ h

0

u1dz +
∂

∂y

∫ h

0

u2dz +
∂h

∂t
= ∇⊥ ·

∫ h

0

u⊥dz +
∂h

∂t
= 0. (2.10)

As we assumed earlier that u1 and u2 are independent of z, we obtain

∂h

∂t
+ ∇⊥(hu⊥) = 0. (2.11)

Equations (2.8) and (2.11) are the shallow water equations. They can be rewritten by
considering variables integrated over the fluid depth, p̃ = ρgh2/2 and ρ̃ = ρh [30], as:

∂u⊥

∂t
+ (u⊥ · ∇⊥)u⊥ = −∇⊥p̃

ρ̃
(2.12)

and
∂ρ̃

∂t
+ ∇⊥(ρ̃u⊥) = 0. (2.13)

They have the very same structure of equations (2.1) and (2.2), although we are
restricted here to the plane (x, y). Sound waves carried by the pressure p̃ propagate in the
bidimensional plane producing variations of the density ρ̃. Expansions and compressions
of ρ̃ can only represent variations of the local height h.

Another remarkable property of waves in shallow water is its propagation velocity. As
for sound waves that are governed for equivalent equations, we expect to observe non-
dispersive waves here again. This is indeed the case as c2 = ∂p̃/∂ρ̃ = gρ̃/ρ = gh. For a
fluid layer of 0.5 cm thickness, the sound velocity is 22 cm/s, much smaller than sound
speed in water. The Mach number U/

√
gh in this context is called the Froude number2,

which is usually not small.
As for sound, complex phenomena are expected when M is or order 1. Over reflexion

of waves when they encounter a shear layer seems possible both for sound [36; 46] and for
shallow water [21]. In shallow water it was indeed observed experimentally [22], although
it appears to be difficult to keep the shallow water limit and other instabilities make
difficult the interpretation of results.

2.1.3 More analogies in incompressible fluids: Free surface
flows

Shallow water equations hold for very specific conditions, not always easily reached in
experiments. However, mass conservation generally holds and it allows to discuss more
analogies with sound, although a true relation does not really exist. To discuss those
informal analogies is indeed the aim of this section and, to some extent, of this thesis.

2In what follows (starting from section 2.4), we rather use a definition of the Froude number related
to U2/gh, as it comes more naturally from free surface boundary conditions.

14



The compressible free surface of an incompressible fluid flow

2.1.3.1 Surface deformation at the free surface

Although shallow water equations (2.8) and (2.11) were obtained under suitable approx-
imations (and with the assumption of an inviscid fluid), equation (2.10) is more general.
It comes from the integration of incompressibility condition, subjected to the kinematic
boundary condition. Thus it holds for liquids of any depth, regardless of fluid viscosity
and the presence of surface tension. By considering the mean velocity over the height
u = (

∫ h

0
u dz)/h, one can express equation (2.10) as,

∇⊥ · u⊥ = −1

h

(

∂h

∂t
+ (u⊥ · ∇⊥)h

)

. (2.14)

Because of vertical integration, only horizontal compressibility has a meaning. Thus it
could be relevant to our experiment, where the flow is expected to be primarily horizontal.
As for shallow water, the more general equation (2.14) indicates the connection between
height fluctuations and horizontal compression/expansion. The spatiotemporal evolution
of h depends on the stabilizing influence of gravity and surface tension.

One way to evaluate the effects of compressibility is by looking the dynamics of floating
objects.

Some years ago, it was observed [19; 33] that particles cluster in the presence of
standing waves induced by the Faraday instability. It was argued that the mechanism
responsible for clustering was surface tension, coupled to the spatial modulation of wave
amplitudes. One can interpret the argument as follows: Standing waves are steeper at
nodes than at antinodes. On the other hand, as the motion is periodic, capillary forces
can only depend on the absolute value of local steepness [33]. Consequently, the force is
inhomogeneous and its spatial distribution is defined by the wave pattern. At the same
time, it rules the long–time motion of particles. Few comments can be made at this point:

• The analysis is valid only for stationary wave patterns, in which long–time effects
could be observed. That makes the particularity of the mechanism. Indeed, it also
appears to be dependent on particles filling fraction [47].

• It seems clear, anyway, that an heterogenous force induce an effective compressibility
on particles. However, as the force is fixed by the wave pattern, there is no restitution
mechanism allowing the complete analogy with sound.

A related, statistical analysis was proposed by Herterich & Hasselmann in the eighties
[27], developed in the oceanographical context. They generalize the concept of Stokes
drift3 to a random field of gravity waves. Again, a long–time effect of this drift is an
horizontal diffusion of tracers, that can explain clustering of matter at some scales.

Perhaps the common point of these two examples is that they correspond to long–
time effects produced by waves. This is relevant to floating objects, as clustering can be
induced on them. Also, as we are dealing with waves, both examples can be considered
using a potential theory.

3Stokes drift is experienced by fluid parcels close to the surface –and by any other floating object–
under the presence of traveling waves: after one period, the fluid parcel experience a slight spacial variation
compared to its original position. It follows the direction of the traveling wave, an it can represent an
important source of (slow) motion.
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2. Turbulence and free surface flows

2.1.3.2 Downward and upward flows

Cressman and Goldburg [12] considered a very natural relation that holds for incompress-
ible flows:

∇⊥ · u⊥ = −∂u3

∂z
, (2.15)

which is valid in the whole fluid volume, in particular on the surface. This expression
links two–dimensional compressibility to vertical velocity gradients.

For shallow flows with motion principally in two dimensions, vertical velocity gradients
are produced as a secondary motion, as noticed, for instance, by Kamp [28]. Indeed, he
gives estimates for the horizontal divergence and associate positive values to upward flows
(together with negative values to downward flows).

Again, the compressibility effect can be revealed by floating particles: as upward
and downward motion encounter the free surface, it generate hills and subduction zones
(see the features on the right–bottom in figure 1.1–top). Floating particles, which are
constrained to rest on the free surface, travel over expansion and compression zones, thus
experience clustering.

In opposition to wavy motions described in the previous section, here the source of
compressibility is fundamentally rotational. Indeed Kamp suggested –again for shallow
flows– that upward flows are concentrated in vorticity dominated regions of the primary
flow [28].

2.1.3.3 The effect of object’s inertia

The dynamics of several interacting particles attracts a lot of attention nowadays, because
of its intrinsic industrial and ecological interest: Fuel drops in cars injectors; transport of
pollutants in air and water; cloud’s formation, etc. The related phenomena of preferential
concentration was considered since the sixties, as notices in [39].

One way to understand preferential concentration is to consider the relation between
particle’s velocity vp and the surrounding velocity u [35; 4] :

∇ · vp = (β − 1)τs∇[(u · ∇)u], (2.16)

where β = 3ρf/(ρf + 2ρp) comes from the mismatch between the fluid density ρf and
the particle density ρp. For a particle radius a and kinematic viscosity ν, the Stokes time
τs = a2/(3νβ) represents a characteristic time over which the flow velocity u is filtered
by the particle. In [35], this equation originally comes from an asymptotic analysis for
small particle inertia. As it could be expected, perfect match of densities, or a particle
radius equal to zero, imply ∇ · vp = 0, although particle’s velocity is certainly undefined
in the last case. In more realistic cases, however, there exists some density mismatch and
a nonzero Stokes time, and this is at the origin of preferential concentration in turbulent
flows [38; 39; 24].

Equation (2.16) differs from (2.14) and (2.15), in the sense that it primarily concern
particles, but also the underlying flow. Equations (2.14) and (2.15) only concern the flow.
They concern particles only if particles are there.
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Classical turbulence in three dimensions

Although these considerations do not need turbulence a priori to be relevant, they
have all been developed in that context [27; 12; 35; 4; 38; 24]. Therefore, now we consider
turbulence in more detail.

2.2 Classical Turbulence in three dimensions

For incompressible Newtonian fluids in three dimensions, one has the incompressibility
condition

∇ · u = 0, (2.17)

with u = (u1, u2, u3) the fluid velocity in the Eulerian description. It results from mass
conservation equation (2.2) when the fluid has a constant, homogeneous density.

Next we have the Navier-Stokes (NS) equation:

ρ

(

∂u

∂t
+ (u · ∇)u

)

= −∇p + µ∇2u + f , (2.18)

where p is the pressure, µ = ρν is the dynamic viscosity and ν is the kinematic viscosity.
f represents an external force. In particular, f may include gravity. However, as gravity
is a conservative force, it can be included in the so-called dynamic pressure pd = p + ρgz
(with g the gravity acceleration) replacing the usual pressure term.

2.2.1 Dimensionless Navier Stokes equation

In order to gain some intuition about the physical parameters involved in equation (2.18),
it is necessary to work with dimensionless variables. We first exclude external forcing
in order to do a general description. Let us rewrite the physical variables in this way:
r = L0r̃, in which r has the usual dimensions of length. We have introduced here L0:
the typical length scale of the problem. Thus r̃ is a dimensionless variable associated
to distances and (to the inverse of) gradients. Now we will proceed in the same way
with the other variables: u = U0ũ, with U0 the typical velocity scale of the problem.
t = L0/U0t̃ and p = ρU2

0 p̃. When there is an external forcing, it usually imposes L0 and
U0 (the example of our experiment is given in section 3.2). If we now apply this change
of variables to equation (2.18), we get:

∂ũ

∂t̃
+ (ũ · ∇̃) ũ = −∇̃p̃ +

ν

U0L0

∇̃2ũ, (2.19)

in which every term is dimensionless. In particular, a dimensionless group –the Reynolds
number– appears naturally:

Re =
U0L0

ν
, (2.20)

in which all the dimensional information of the flow is contained.
A more concrete presentation of Re is postponed to section 3.2, after giving concrete

values to U0, L0 and ν in connection to our experiment. However, at this stage we can
notice:
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2. Turbulence and free surface flows

• The Reynolds number can be seen as the ratio between two time scales Re = τν/τu

where τν is the one associated with viscous dissipation, and τu the one associated
with advection. Thus, when the viscous time is small compared to the advection
time (small Re), viscosity controls the dynamics. When the advection time is smaller
(large Re), advection controls the dynamics. The case of Re ≫ 1, implies strong
separation of time scales (and length scales).

• The competition between time scales can be also interpreted in reference to the
Navier Stokes equation, recalling that advection comes from the nonlinear term
(u · ∇)u and viscosity from the linear one ν∇2u. Thus, for viscosity dominated
flows, nonlinearity does not play significant role. On the contrary, when Re is large,
nonlinearity is the key in the motion and energy transfers.

2.2.2 Scaling laws in fully developed turbulence

We are now in position to briefly discuss the ideas about the inertial range of turbulence.
Although these ideas come from Kolmogorov and his paper of 1941 (usually referred as
K41), we chose to closely follow the development carried out by Phillips [44], published
in a special issue celebrating the 50 years of K41.

Let us start from the equation for the energy, as obtained from (2.18) [23],

d

dt

〈

1

2
u2

〉

= −ν〈|∇ × u|2〉, (2.21)

where u = |u| and brackets denote the average over the whole flow domain. In the inviscid
case, this is a conservation equation. The Navier Stokes equation, on the other hand, is
dissipative because of the viscosity ν. We can, however, develop the analysis in terms of
scales (wave–numbers), as proposed by Phillips [44]. Here,

〈

1

2
u2

〉

=

∫ ∞

0

E(k)dk,

and
∂E(k)

∂t
= −∂ε(k)

∂k
− 2νk2E(k), (2.22)

with E(k) the turbulent energy spectrum, k the norm of k in the wave number space
(we assume isotropy) and ε(k) the spectral flux through wave–number k. Their units are
[E(k)] = L3/T 2, [k] = L−1 and [ε(k)] = L2/T 3, respectively.

We are now interested in the inertial range of turbulence. As we already saw, for high
Re, there is a strong separation between the scale L0 –at which energy is supplied to the
system– and the scale of dissipation lD. By definition, the inertial range is far enough from
both L0 and lD. Consequently, the intermediate scale k−1 is not much affected by distant
wave numbers but only by closer ones, which enter into play because of nonlinearity. Also,
the timescale associated to that scale, say tk = u−1

k · k−1 is much larger than dissipative
ones. Therefore, we expect the scales in the inertial range to be statistically stationary,
thus ∂E(k)/∂t ≈ 0.
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Two dimensional turbulence

As, from equation (2.22) one can see that dissipation becomes relevant only at large
k, therefore the term proportional to k2 is negligible in the inertial range and ε appears
to be scale–independent. However, one can find its value by integration:

ε0 = 2ν

∫ ∞

0

k2E(k)dk,

with ε0 the rate at which energy is dissipated in the system. It has dimensions [ε0] =
L2T−3 and it could be related both to the energy injection scale L0 ∼ U3

0 /ε0 and to the
one of dissipation lD ∼ u3

D/ε0. For the dissipative scale lD, however, the term with ν
is the only important in the r.h.s. of equation (2.22) and it is comparable to the l.h.s.
term. Thus, dimensionally we obtain lD ∼ (ν3/ε0)

1/4 that can be expressed in terms of
the Reynolds number in a way that shows clearly the scale separation for large Re,

lD ∼ Re−3/4L0. (2.23)

For the inertial range, following the first similarity hypothesis of Kolmogorov, we
consider as relevant dimensional parameters are ε0, ν, k and E(k). By evoking the
Buckingham Π-Theorem for these parameters –with dimensions L and T– we find two
dimensionless numbers: Π1 = E(k)/ε

−2/3
0 k5/3 and Π2 = klD with Π1 = F (Π2). From

equation (2.23), however, one can see that for large Re, klD = Π2 → 0, making this
dimensionless parameter dynamically irrelevant [5]. Thus Π1 is constant (= A) and we
end up with the celebrated Kolmogorov spectrum

E(k) = A ε
2/3
0 k−5/3. (2.24)

2.3 Two dimensional turbulence

Two dimensional (2D) turbulence concerns flows which can be readily described by only
two components. To some extent it was inspired by the geophysical interest of oceans and
atmosphere, as they horizontal4 extensions are much larger than the vertical one. Thus
the dynamics could be expected to be well described by horizontal components. Also –at
the beginning– 2D turbulence was inspired by the enormous gain in computing time when
performing numerical simulations.

It appears that these two motivations deserve more discussion nowadays: 2D models
of the ocean are capable to explain some of its important features, but an important
part of the ocean-atmosphere energy transfer comes from vertical fluxes of mass and
momentum; concerning computational time, it always help to ignore one component to
perform computations, but the price of loosing important physics is too high in some
contexts. Moreover, in real situations (particularly in experiments), it is much more
difficult to get a truly 2D flow than a 3D one.

However, since the first developments of the 2D turbulence theory, it becomes clear
that, compared to classical turbulence, 2D turbulence has remarkable properties, in par-
ticular the absence of vortex stretching. Indeed it exhibits the phenomenon called dual
cascades:. It can be argued that the energy (〈u2〉/2, with u the velocity) goes from

4In this context, horizontal means perpendicular to the local gravity.
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2. Turbulence and free surface flows

the forcing wavenumber kF to lower wavenumber (larger scales), although the so-called
enstrophy (〈Ω2〉/2, with Ω = (∇ × u)|z the vertical vorticity) goes from kF to larger
wavenumbers (smaller scales). In these conditions, there are two scalings for the energy
spectrum, depending on the wavenumber:

E(k) ∼ k−5/3 for k < kF and E(k) ∼ k−3 for k > kF . (2.25)

These unique properties of 2D turbulence made it a fundamental subject of scientific
research.

A fact that also contributed to the standing of 2D turbulence, is that some physical
mechanisms naturally enhance bidimensionality, when starting from an isotropic initial
state. To date, there are three known mechanisms that produce this effect: (i) strong
uniform magnetic fields [51]; (ii) density stratification [34; 42], and (iii) global rotation
[37].

Moreover, these three mechanisms appear naturally when dealing with the fluid dy-
namics in geophysical and astrophysical contexts.

Because of its intrinsic relevance and its unusual properties, there were many efforts to
perform experimental realizations of two dimensional turbulent flows [10; 26; 34; 52], some
of them succeeding in the observation of one or both parts of the spectrum. However, as
experimental realizations always involve the third component, care was taken to avoid 3D
motion, by adding one of the previously mentioned mechanisms.

On the contrary, the focus on two dimensional turbulence, discouraged the consider-
ation of more realistic quasi bidimensional turbulent flows until recently. Consequently,
a statistical study of height fluctuations in connection to coherent vortices is limited to
turbulent soap films [26] and liquid metal experiments [16].

2.4 Fluids with a free surface

Equations (2.17) and (2.18) hold in the bulk of the fluid and correspond to the conservation
of mass and momentum, respectively. But they represent only the half of the history
for free–surface flows. For fluids with a free surface, specific boundary conditions must
be respected. These conditions were presented, for instance, by Tsai & Yue [53] or by
Sarpkaya [48] and are summarized here. For simplicity, we restrict ourselves to the case
where the influence of the upper fluid can be neglected. Therefore we can refer the
interface simply as a free surface5.

For free surface flows, there is no mass flux across the surface. Thus, any fluid element
at the surface stays at the surface. If we define F (x, y, z, t) = z − η(x, y, t), with (x, y, z)
the spatial coordinates, and η(x, y, t) the position of the interface (which varies both in
space and time), this condition means

DF

Dt
= 0, (2.26)

5Despite our experiment corresponds to the –more general– case of two immiscible fluids separated
by an interface, the influence of the upper fluid can be neglected because: (a) the high contrast in the
density and viscosity of the fluids, and; (b) there is no forcing applied to the upper fluid.
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Fluids with a free surface

or its equivalent:
∂η

∂t
+ u1

∂η

∂x
+ u2

∂η

∂y
= u3, (2.27)

which is known as kinematic boundary condition.
We consider now the dynamic boundary conditions: continuity on tangential velocities;

and continuity of tangential and normal stresses. However, for the case considered here:
with only one dynamically relevant fluid and no gradients of surface tension (a point
considered in detail by Sarpkaya [48]), the only relevant condition is the one on normal
stresses, also known as the pressure condition:

T · n = (γκ + p0)n on z = η(x, y, t), (2.28)

were γ is the surface tension coefficient, κ the local curvature, p0 the atmospheric pressure,
n the vector normal to the interface, and T the stress tensor. T = pI − µE, in which E

has the elements Eij =
(

∂vi

∂xj
+

∂vj

∂xi

)

.

Equation (2.28) can be written as p − p0 = µ(n ·E) · n + γκ, allowing us to interpret
the Young-Laplace law ∆p = γκ as the particular case of inviscid or stationary fluids.

2.4.1 Dimensionless pressure condition [7; 49]

To be consistent with the dimensionless expression of the Navier Stokes equation (2.18),
we have to write the boundary condition in terms of the dynamic pressure introduced
together with equation (2.18). Thus,

pd − ρgz = µ(n · E) · n + γκ + p0.

Now we use exactly the same change of variables introduced to write the dimensionless
Navier Stokes equation (2.19). To recall it: r = L0r̃, u = U0ũ, t = L0/U0t̃ and p = ρU2

0 p̃,
with U0 and L0 the typical velocity and length scales of the problem. We perform the
transformation first in the dynamic pressure, in the same way as for usual pressure pd =
ρU2

0 p̃d, thus,

p̃d = p̃ +
gL0

U2
0

z̃,

and the complete equation reads

p̃d −
gL0

U2
0

z̃ =
ν

U0L0

n · Ẽ · n +
γ

ρU2
0 L0

κ̃ + p̃0,

taking into account that E has dimensions of velocity over length (or frequency), that n
is an unitary vector with no dimensions, and that κ has dimensions of an inverse length.
Therefore, together with the Reynolds number (2.20), here we should define two more
dimensionless groups: the Froude number

Fr =
U2

0

gL0
, (2.29)

and the Weber number
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2. Turbulence and free surface flows

We =
U2

0 L0ρ

γ
. (2.30)

In this way, we can alternatively write the dimensionless pressure condition as

p̃d −
1

Fr
z̃ =

1

Re
n · Ẽ · n +

1

We
κ̃ + p̃0 on z̃ = η̃(x̃, ỹ, t̃). (2.31)

The Froude number can be seen as the ratio between kinetic and potential energy, or
even as the ratio between the flow velocity and the group velocity of gravity waves. Small
Froude number implies that the restoring effect of gravity is strong and the surface is
nearly flat. However, by considering analogies between the Froude and the Mach number
(i.e. between hydrodynamics and acoustics), wave generation can be expected at Fr or
M numbers as small as 0.05 [45]. On the other hand, as noticed in [6], for Fr ∼ O(1),
potential and kinetic energies are comparable on the surface, and one can expect rich
deformation dynamics. Finally, when Fr → ∞, gravity has no more influence on the
surface, because kinetic energy is too high.

The Weber number on the other hand, gives account of the restoring action of cap-
illarity. It represents kinetic energy over cohesion energy (as discussed, for instance, by
Clanet in the context of water-bells produced from jets [8]). For We → 0, the accom-
panying term in equation (2.31) dominates over those of Re and Fr. Thus, one gets
Young-Laplace equation, characteristic of static equilibrium. For small –but non zero–
We, wave-like behavior could be expected, as it will be apparent in equation (2.43). This
should be the case until We ∼ O(1), where both kinetic and cohesive energies balance [6].
For large We, cohesive energy becomes very important and a deformed surface can break
into droplets. Finally, for We → ∞, surface tension has no more influence on the surface,
compared with the kinetic energy of the flow.

As it can be seen, a large variety of surface features can be observed, and it will
be the subject, in particular, of chapters 5 and 6. A qualitative classification of this
phenomenology will be given below, in section 2.5.1.

2.4.2 Linear waves on the free surface [1; 50]

Now we focus our attention on the simplest solutions for free surface flows. After stating
some hypothesis, we will study the evolution of a very small perturbation, that can be
described by linearized equations. This is called the linear theory for water waves. We
will see then, that even these very simple computations will allow us to obtain important
conclusions. Indeed, some of these results are the basis of the wave turbulence theory to
be studied later.

The linear theory of water waves was developed in the context of inviscid (ν = 0) and
irrotational (∇× u = 0) fluid motion. The first assumption is generally valid, as long as
one is concerned with wavelengths larger than few centimeters. When dissipation is taken
into account (Lamb [29]), it produces an exponential decay in wave amplitudes with a
factor −2νk2, thus having considerable impact only at large wave-numbers.

In the turbulence context on the other hand, the second assumption can be hardly ac-
ceptable. Nevertheless, as the most general free surface problem could include turbulence
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Fluids with a free surface

and waves, it is better to keep this hypothesis for the moment, and to study the classical
results of the theory.

For inviscid fluids (where ν = 0), Navier Stokes equation (2.18) becomes Euler equa-
tion. By considering that (u · ∇)u = (∇× u) × u + ∇(u2/2), and defining the vorticity
ω = (∇× u), Euler equation reads

∂u

∂t
+ (ω × u) = −∇

(

p

ρ
+

1

2
u2 + gz

)

. (2.32)

We have the incompressibility condition (2.17)

∇ · u = 0;

as noticed before, for inviscid fluids the pressure condition reduces to the Young–Laplace
law (valid on the surface)

p − p0 = γκ, (2.33)

and the kinematic boundary condition (2.27) remains unchanged.
We have to include also the boundary condition at the bottom, that follows from the

assumption of impermeable bottom: u · ∇{z + h(x, y)} at a depth z = −h(x, y). By
assuming a flat bottom, the condition simply becomes

u3 = 0 on z = −h. (2.34)

Now, when considering irrotational motion (ω = ∇ × u = 0), we can define a velocity
potential φ(x, t) such that

u = ∇φ. (2.35)

This means that the problem is reduced to find the potential solving the Laplace equation

∇2φ = 0 (2.36)

that comes from the incompressibility condition. By including the velocity potential into
the Euler equation (2.32), and writing the pressure as equation (2.33), we get a potential
version of the pressure condition at the surface:

∂φ

∂t
+

1

2
|∇φ|2 + gη =

γ

ρ
κ. (2.37)

Thus, the complete set of (nonlinear) equations are (2.36) for the bulk, (2.27) and
(2.37) at the surface and (2.34) at the bottom. Now, the linearized version of these
equation are, respectively

∇2φ = 0, in the bulk, (2.38)

∂η

∂t
=

∂φ

∂z
, on z = 0, (2.39)

∂φ

∂t
+ gη =

γ

ρ
∇2η, on z = 0 and (2.40)

∂φ

∂z
= 0 on z = −h, (2.41)
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Figure 2.1: Phase velocity cp for gravity-capillary waves in deep water, for the air-water
interface (thick line). Dashed lines are limits in which only one of the dominant processes
is considered.

in which we also considered that the surface is located, to leading order, at z = 0. Also,
we used the linearized version of the curvature radius κ = ∇2η. In general, κ is defined in
terms of the two local curvature radii R1, R2 as κ = (1/R1 +1/R2) and it could be highly
nonlinear.

We consider a simple, sinusoidal, propagative perturbation of the surface,

η = a cos(kx − ωt),

where a is the (small) amplitude of the perturbation, ω is its angular frequency (please
do not confuse with the vorticity ω), k = 2π/λ is the wavenumber and λ the wavelength.
A consistent velocity potential should have the form φ(x, y, z, t) = f(z) sin(kx−ωt), with
f satisfying both the equation f ′′ − k2f = 0 and the bottom boundary condition (2.41).
By evaluating equation (2.39) we find the explicit form of the velocity potential:

φ(x, y, z, t) =
aω cosh(kh + zh)

k sinh(kh)
sin(kx − ωt).

Finally, we evaluate (2.40) on z = 0, where the condition is valid. This give us the
so–called dispersion relation for gravity–capillary waves for water of arbitrary depth:

ω2 =

(

gk +
γ

ρ
k3

)

tanh(kh). (2.42)

From this relation, we can notice:

• ω(k) has the dimension of inverse time (frequency), and k of inverse length. Thus,
if we want to construct a velocity, a natural candidate is ω/k = cp. This is the phase
velocity for a wave of wavelength λ = 2π/k, and represent the speed at which the
crest of the wave travels. As it is presented in figure 2.1, ω varies with λ (or k):
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Turbulence at the free surface

waves with different wavelength travel with a different cp developing a dispersion of
the original wave packet. That is why equation (2.42) is called dispersion relation.
This is why in the ocean, the farther the waves were created, the more coherent
is the observed wave train, because the waves have the time to clearly isolate the
observed λ. A second velocity that is relevant for wave propagation is the group
velocity cg = ∂ω/∂k: the velocity at which the whole wave packet travels.

• If we vary k from very small values to larger ones, the relative importance of the
two terms on the parenthesis in equation (2.42) radically changes: for very small k,
gravity is the dominant restitution effect. On the contrary, for large k, capillarity
becomes more important. In the middle both effect can be relevant, and there is
a particular length–scale at which they are exactly equal. This is the so–called
capillary length lc =

√

γ/ρg, that depends only on fluid properties.

• The term tanh kh in equation (2.42) take into account the fluid depth. The most
common limit case is the one of deep water, where tanh kh = 1. It correspond
to wave–lengths much smaller than the fluid depth. The opposite limit is also
significant: the so–called shallow water limit for kh → 0. It corresponds to very
large waves compared with the fluid depth. In this case tanh kh → kh and it is
naturally accompanied with vanishing effects of surface tension (as k is small). Here,
equation (2.42) is reduced to ω =

√
ghk which is non–dispersive (cp = cg =

√
gh).

• As we did for the Navier–Stokes equation and for the boundary condition at the
surface, it could be interesting to perform the linear–waves analysis in a dimension-
less form. This is equivalent to consider the dimensionless dispersion relation, which
after introducing the dimensionless variables ω = U0L

−1
0 ω̃ and k = L−1

0 k̃ reads (in
deep water)

ω̃2 =
1

Fr
k̃ +

1

We
k̃3. (2.43)

The practical interest of this relation is not completelly clear. However, by having
in mind both forms of the dispersion relation (eqs. (2.42) and (2.43)), we can gain
insights about Fr and We numbers for wavy surfaces: small Froude number suggest
that large scale surface deformation are dominant. Small Weber number suggest
small scale deformations as the dominant ones.

2.5 Turbulence at the free surface

2.5.1 A qualitative description

For turbulence in free surface flows, we are not able to construct a simple picture on the
basis of only one dimensionless parameter (as one can do with Re for classical turbulence).
Indeed, in equation (2.31), we saw that 3 independent parameters are necessary to describe
the system.

To overcome this difficulty, one can assume that the flow is turbulent, and then focus
the attention only on the other two dimensionless parameters. This is implicit in the
extensive description of strong free surface turbulence by Brocchini & Peregrine [6], to
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2. Turbulence and free surface flows

Figure 2.2: Dimensional diagram to regrouping the vast world of free surface turbulent
flows into four different regions (see text). It is reproduced from [6]. L and q represent
characteristic length-scale and velocity, respectively. Red line present a very roughly
estimate of our experiment in this diagram. The smaller version of the diagram present
some terminology to describe the different observed deformation features.

be recalled here. Although they develop a dimensional description (in terms of a length
scale L and a velocity q), the dimensionless numbers of Froude and Weber are constantly
evoked.

Brocchini & Peregrine started their discussion by considering the most frequent fea-
tures that appear in free surface flows:

• A passive response to fluctuations in the pressure. We can interpret them as being
a direct consequence of horizontal fluid motions (where the vorticity field is perpen-
dicular to the surface). The paradigmatic example is an idealized vortex, in which
an uniform rotation results in a lower pressure at the center, deforming the free
surface. This kind of deformations are well supported by experimental observations
nowadays [54; 2; 3] (see also the vortex in figure 1.1–top).

• Water waves: They are the natural response of a fluid under perturbations of the
surface. But also, as noticed in [6], in a turbulent flow it is plausible to have
velocity fluctuations that become irrotational –in particular by the influence of the
free surface–, in which wave generation may occurs. On the other hand, as it can be
noticed from figure 2.1, the phase velocity has a minimum of around cp = 23 cm/s
at λ = 1.7 cm, for the air water interface6. It is argued (in the sense of a necessary
condition) that for velocities larger than this value, the presence of waves may be
expected.

6The values for the galinstan-acid interface to be considered experimentally, are slightly different:
min(cp)=21 cm/s at λ = 1.9 cm. This is a consequence of the two involved densities, and the different
coefficient of interfacial tension γ.
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• Flows where their streamlines are attached to the free surface. Typical examples
are fluid motions in which the vorticity field is principally parallel to the surface,
forming elongated depressions on the surface. A visual example of this are irregular
deformations in the bottom–right in figure 1.1–top.

For a more systematic description, they constructed a diagram based on typical length
and velocity scales. It is reproduced in figure 2.2. On this basis they identify four
fundamental regions:

• A region where gravity is dominant and surface tension is unimportant (Region 3).
It corresponds to small Fr and large We. This is the region where the previously
described features are generally observed.

• A region of weak turbulence7 (Region 0). Here both Fr and We are sufficiently small
to preclude significant surface deformation. However, it is noticed that such gentle
turbulence could have an effect on wave propagation.

• A region where surface tension is dominant and gravity is unimportant (Region
1). It corresponds to large Fr and small We. As gravity is not efficient as restor-
ing mechanism, capillarity rules the dynamics, resulting in rounded surfaces. Low
gravity environments should enter in this region [13; 20; 15]

• A region for very strong turbulence (Region 2), where neither Fr nor We are small
enough to stabilize the surface. Thus, essentially two-phase flow phenomenology is
observed.

Another (and the last we mention) valuable point in their discussion are the cases
delimiting the smoothness of the surface. One limit corresponds to drop ejection from
a very steep deformation (see for instance [25]). The opposite one corresponds to air
entrainment from an a very strong depression (see for instance [2]). These limits are
developed in order to estimate velocity and length scales defining the region in the center
of their diagram.

In figure 2.2, the red line represent very rough estimates for our experiment: they
are based on the forcing length scale and estimations of the velocity. This is developed
further in section 3.2. This suggest that our experiment ranges between weak turbulence
(low Fr and low We) and gravity–dominated turbulence (low Fr and large We) regimes.

2.5.2 Quantifying free surface turbulence: The continuous
spectrum

There is no much doubt about the pertinence of performing a statistical description of free
surface turbulence, in an analogous way as it is done for classical turbulence. Consider
the picture 2.3 showing a sea state created artificially in the wave tank of École Centrale
de Nantes. Two features can be noticed in particular: (i) No clear correlation can be
stablished between two points in the surface. (ii) Even if it is a single picture, there is a

7Do not confound with weak turbulence theory, the alternative name of wave turbulence theory.
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large variety of length-scales involved in the free surface motion. Similar arguments can
be developed for the time when looking to a single point in the oceanic free surface, as
noticed in [43]. The reader is encouraged to verify last sentence in his (her) next visit to
his (her) preferred coast, specially in winter time.

For classical turbulence, we discussed the existence of inertial ranges, in which non-
linearity allows the transfer of conserved quantities into scales different from the ones of
injection. Similar phenomenology is observed in the case of water waves in the turbu-
lent ocean, in the form of a continuous spectra (both in the frequency and length-scale
domains). This means that there is a flux of energy between scales (see for instance the
frequency spectrum given as an inset in figure 2.3). Since Phillips [43], there were many
attempts to describe these continuous spectra from a mathematical point of view. First on
the basis of dimensional grounds [43], and later by the development of a wave interaction
theory, as reviewed recently by Nazarenko [40], and Newell & Rumpf [41].

We will consider now dimensional arguments for the spectra of free surface turbulence.
Thus we will first define these spectra: The frequency spectrum of the surface displacement
for a fixed point η(x, t) is

Sη(ω) =
1

2π

∫ ∞

−∞

〈η(x, t)η(x, t + τ)〉e−iωτdτ, (2.44)

where 〈·〉 denotes ensemble average. This spectrum has dimensions [Sη(ω)] = L2T , where
L represents the dimension of length and T the one of time.

The instantaneous wavenumber spectrum of η(x, t) on the other hand, reads

Sη(k) =
1

2π2

∫

〈η(x, t)η(x + r, t)〉e−ik·rdr. (2.45)

This spectrum has dimensions [Sη(k)] = L4, because we are concerned by a surface, the
free surface of water.

Other dimensional quantities of interest are of course frequency [ω] = T−1 and wavenum-
ber [k] = L−1, but also gravity [g] = LT−2; the ratio between surface tension and density
[γ/ρ] = L3T−2 and the energy flux8 [ε] = L3T−3.

2.5.3 Phillips spectrum

As we see in picture 2.3, most of the water surface is continuous, even when the turbulence
is well developed. And if there is some wave breaking, it is restricted to small areas in
the surface. In this particular picture, however, we do not see any. What we actually
see are some very sharp crests representing the extreme condition in which the surface
is still attached. After, wave breaking may come into play. Phillips argued that it is
the attachment condition what governs the spectrum in the inertial range of oceanic
turbulence generated by wind.

8This energy flux ε corresponds to P/ρ where P is the –perhaps better known– rate of energy transfer
through a surface. Thus P has units of (energy)/(time · area) and gives the presented units for ε [17].
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Figure 2.3: Main: Example of a sea state created artificially in the wave tank of École
Centrale de Nantes. Inset: Frequency spectrum of the height η, measured with capacitive
probes.

In a well developed and gravity dominated turbulent ocean, one can neglect the effects
of surface tension and consider that fluid density enter as a dimensionless ratio9. Thus
the physical parameters involved in the problem are only the surface roughness length
z0, wind velocity u∗ and gravity g. As it is expected that the roughness length varies
with velocity, Phillips proposes (referring to Ellison) the scaling z0 ∼ u2

∗/g. But more
importantly, he argues that, once the inertial range is developed, it cannot depend on
velocity. This is because the limiting surface shape –in which the surface is still attached–
is given by a maximal downward acceleration equal to g. The wind velocity u∗ can only
affect the rate at which a wave reach its limiting shape.

Thus, the only possible combination of frequency and gravity giving the same dimen-
sions of the frequency spectrum reads

Sη(ω) ∼ g2ω−5. (2.46)

And based on the same kind of dimensional grounds, the wavenumber spectrum can be
obtained directly as

Sη(k) ∼ k−4, (2.47)

which is also justified as the asymptotic spectrum for a function with discontinuities in one
or more points: when discontinuities are present in a spatial signal, its Fourier spectrum

9Actually, for the interfacial problem concerning fluids of densities ρ1 and ρ2 with ρ1 > ρ2, the
dispersion relation is modifyed by changing gravity g by Ag, where A = ρ1−ρ2/ρ1 +ρ2 is a dimensionless
factor called Atwood number. Densities enter, however, together with surface tension, as in the usual
dispersion relation (2.42).
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converges to k−2. As the wavenumber spectrum of η is proportional to the squared Fourier
spectrum, the proposed spectrum follows.

At that time, some field measurements sustained the scaling of the frequency spectrum,
for instance the work of Burling (reproduced in [43]).

2.5.4 Wave turbulence theory

As we already saw, classical turbulence theory is concerned with the nonlinear transfer of
energy between scales of motion. In a somehow analogous way, wave turbulence theory
deals with the transfer of conserved quantities10 produced by the (weak) nonlinear inter-
action of waves. Thus, it is not a theory restricted to water waves, although its origin
comes from them. One of its principal advantages is that, doing perturbative analysis in
terms of a small parameter, one can explicitly compute the interaction coefficients and
derive analytical expressions for relevant quantities (wave spectra for instance). Our goal
in this section, however, is neither to give a complete description of the theory nor to
derive explicit formulas, but only to present its results concerning the equilibrium spec-
tra, again from dimensional grounds. Nowadays there are much more complete reviews
available, in particular the one of Le Bellac [31], the experimentally focused one of Falcon
[17], and the textbooks by Craik [11] and Nazarenko [40].

The most fundamental points of the theory –in my point of view– are two: (i) The
universal dependence of the spectrum on the number of interacting waves and; (ii) How
many waves interact for each particular kind of system.

We will consider the first point as a statement: The equilibrium range is shaped by
the scaling of the energy flux ε, which depends itself on the number N of waves involved
in the interaction. Thus, for the spectra of height fluctuations one has:

Sη ∼ ε
1

N−1 . (2.48)

Let us consider now the number N of interacting waves. For a nonlinear theory to
be relevant, the minimum number is 3. But in general, any system may involve a large
number of interacting waves. However, for a N -wave interacting system, the evolution of
each wave amplitude involve the amplitude of the N others (see [11] for instance). As we
are concerned by a weak amplitude limit, the larger is the number of waves, the lower is
their contribution to the wave amplitude. Thus, in the more general setting, it is usually
a 3-wave interaction process

ωk = ωk1
+ ωk2

, k = k1 + k2, (2.49)

which is dominant. However, sometimes happen that the 3-wave interaction coefficients
vanish (actually it happens when (2.49) do not hold) and the dominant nonlinearity
involves 4-wave resonances

ωk1
+ ωk2

= ωk3
+ ωk4

, k1 + k2 = k3 + k4. (2.50)

A graphical way to see when 3-wave resonances are possible (or not) is to consider the
dispersion relation of the particular system (see figure 2.4): One consider two original

10Energy in particular, but also the so-called wave action.
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Figure 2.4: Graphical representation for dispersion relations in the form ω ∼ kα. (a) For
α > 1, 3-wave resonance is allowed in the intersection of surfaces. (b) As α < 1, 3-wave
resonance is not allowed (c) For the same α < 1 as in (b), 4-wave resonance is possible.
Figure adapted from Le Bellac [31].

waves, each following the dispersion relation ω ∼ kα. Thus, 3-wave interaction is allowed
when there is an intersection between both surfaces ω ∼ kα, where the third wave can
emerge (figure 2.4a). This is possible only if α > 1. 4-wave resonances are possible
whatever is the structure of the dispersion relation (see figure 2.4c). This is why it is not
common to be faced to systems with more waves than 4.

It have to be noticed that the water wave problem in deep water is a particular one
because it involves two different dynamical regimes: one dominated by gravity and the
other dominated by capillarity. Indeed, following the graphical construction we conclude
that capillary waves (α = 3/2) present a 3-wave resonance and gravity waves (α = 1/2) a
4-wave resonance. To face this problem, the common procedure is to consider each regime
separately, developing the theory for each case. Moreover, experimental measurements
have shown agreement with this picture, in the sense that two different power laws have
been observed in the spectrum: one corresponding to gravity waves and other to capillary
waves (see [18] for instance).

Dimensional derivation of the surface level spectra [17; 14; 9] : Let us first discuss the
frequency spectrum [17; 14], because it is –typically– more accessible in experiments. As
we already notice it has dimensions [Sη(ω)] = L2T .

The part of the spectrum concerned with only gravity waves (with [g] = LT−2) exhibits
the scaling characteristic of 4-wave resonances: Sη(ω) ∼ ε1/3. As we has two dimensionless
groups: Sη(ω)ω3/ε2/3 and g3/εω3, the only combination of them respecting the scaling
for the energy flux gives

Sη(ω) ∼ ε1/3g ω−4 for gravity waves. (2.51)

For capillary waves on the other hand, the frequency spectrum Sη(ω) follow the scaling of
3-wave resonances: ε1/2. Here the dimensionless groups are γ

ρ
ω
ε

and again Sη(ω)ω3/ε2/3.
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As before, by looking a combination of these groups that involves the spectrum and the
correct scaling for the energy flux, we obtain

Sη(ω) ∼ ε1/2

(

γ

ρ

)1/6

ω−17/6 for capillary waves. (2.52)

In order to discuss the wave-number spectrum for gravity and capillary waves, we have
to notice that the bidimensional spectrum Sη(k) is somehow impractical when perform-
ing transformations –via the dispersion relation– between frequency and wave-number
domains. Because of this, and doing an implicit hypothesis of isotropy, we will consider
the one-dimensional wave-number spectrum Sη(|k|) = Sη(k), with dimensions of L3.

For both gravity waves and capillary waves, we can obtain the scalings starting from
equations (2.51) and (2.52) respectively. We perform transformations between frequency
and wave-number following the respective dispersion relation ω =

√
gk (gravity) and

ω =
√

γ/ρ k3/2 (capillarity), and we carefully included powers of g or γ/ρ in order to
maintain dimensional consistence. We obtain

Sη(k) ∼ ε1/3g−1/2 k−5/2 for gravity waves, and (2.53)

Sη(k) ∼ ε1/2

(

γ

ρ

)−3/4

k−15/4 for capillary waves. (2.54)

These predictions for the surface level spectra of gravity–capillary waves, represent a
fundamental result of the wave turbulence theory for water waves, and they demonstrate
the ability of the theory to describe spectral fluxes in wave systems. Nevertheless, as the
water wave case was formulated on a potential theory, it could be hardly appropriate to
describe turbulence–generated surface deformation in a general way.

As discussed, the related Phillips spectrum, gives a more phenomenological prediction
based on wave singularities. Thus, it has a wider scope than the Wave Turbulence pre-
dictions.

In summary, this chapter was devoted to a presentation of turbulence: first we pre-
sented classical turbulence (3D, homogeneous and isotropic) as it is the general context
of hydrodynamical turbulence. Then we moved to a description of 2D turbulence, with
a brief discussion of the experimental difficulties to reach it, in particular for free sur-
face flows. Then we focused on free surface flows, exploring its formulation, its simplest
wave-like solutions and some attempts to describe turbulent motion of free surface flows.

Next chapter concerns the experimental setup we use to study a turbulent flow with
free surface. After a presentation of the conditions offered by our setup, we will be in a
better position to place our experiment in relation to the discussed facets of turbulence.
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Chapter 3

Generation and measurements in our

Magnetohydrodynamical flow

This chapter is devoted to the description of the experimental setup that allowed us
to create a confined-free-surface turbulent flow. It also includes a discussion about the
expected characteristics of the flow, and the description of the experimental techniques
we used to perform quantitative measurements.

We will start with a global view of the experimental setup, in order to introduce the
possibilities of our Magnetohydrodynamical forcing. Next we will enter into the details
of the main elements in the setup, including the physical properties of the conducting
fluid used to perform experiments. Then we will discuss some important dimensionless
numbers relevant to our experiment.

Concerning measurement techniques, in a recent review about Magnetohydrodynami-
cal Turbulence, published in the Annual Review of Fluid Mechanics, Knaepen & Moreau
wrote [15]:

Accurate measurements in MHD flows are challenging and hardly achievable.
Most of the liquids concerned are either opaque, corrosive, or very hot. [...]

With this encouragement, we will present the techniques we retained: for velocity mea-
surements we used particle tracking velocimetry (PTV); to measure the surface elevation
we performed both punctual measurement using an inductive sensor and measurements
along a line by using an original optical method.

We will finish this chapter giving some place to a complementary experiment that
allowed us to obtain the experimental value of the interfacial tension.

3.1 Experimental setup

We perform experiments using a magnetohydrodynamical forcing to create fluid motion.
This means that instead of a mechanical excitation we induce a body force: The Lorentz
force (also known as Laplace force) FL = J×B, where J is the density of current and B
the magnetic field. In order to impose an electrical current defining J, the fluid medium
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Figure 3.1: General view of the experimental setup, and principle of the forcing.

should conduct electricity, and the more conductive it is, the more effective the forcing
will be. Similarly, the stronger the magnetic field, the stronger the forcing will be. But
as homogeneous J and B will produce an homogeneous F to be compensated by pressure
gradients, it is important to include some variability in J or B or in both.

In figure 3.1 there is a schematic representation of our experiment and the fundamental
elements that allows us to have free-surface turbulent motion. (1) corresponds to the
conducting fluid (a liquid metal in this case) in which current is able to go through. (2)
and (3) are two electrodes which are connected to the conducting fluid in a way that
promotes a homogeneous distribution of current. Beneath the fluid layer, (4) there is an
array of permanent magnets which are arranged in a heterogeneous manner, in the same
spirit as the experiments initiated by Bondarenko and collaborators [5] and pursued by
Tabeling et al.[32]. This arrangement defines the geometry of the principal component of
F , which in our configuration is in the y−direction.

It should be noticed that by using this kind of forcing, there is almost no risk of
suffering parasite mechanical vibrations, because the only motion visible in the lab is the
one of the fluid. The experimentalist is usually moving around also, but he has a strong
interest in not perturbing the experiment.

We now move on to a more detailed description of the previously mentioned elements,
as well as of the setup characteristics.

3.1.1 Container

We use a rectangular container of available volume 40×52×12 cm3, bounded by insulating
plastic walls. x and y walls are 3 cm thick. Two brass electrodes are placed at the walls
in y−direction and the use of ten perfectly impermeable connectors (also made of brass)
allows to connect the electrodes from the interior to external wires, without any risk of
leaking. At the top of the container we usually put a plexiglass plate, in order to keep the
surface of the fluid visible. The bottom wall is thin (0.8 cm), in order to minimize the
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Front Back

J3

Figure 3.2: Power supply.

distance to the magnets, while still keeping the mechanical resistance against buckling.
Beneath this layer, there is a drawer system, which allows to easily change from one array
of magnets to another.

The maximal working area is 40× 50 cm2 considering 1 centimeter to each electrode,
and it could be reduced (adding plastic blocs to x-walls) in order to get different aspect
ratios.

When placing the whole system on the table, we carefully control horizontally by
regulating its 3 supports.

3.1.2 Electrical Current

A Sorensen DHP Series Power Supply allows us to have an electrical current I between
two electrodes placed at opposite x−walls. Given the good conductivity properties of
the fluid, I could go from 0 to 600 A with less than a Volt. By dividing the electrical
current in the 10 wires connected to each electrode (see figures 3.1 and 3.2 back), we

expect a nearly homogeneous density of current ~J in the y direction. Provided the use of
a J3 connector (see figure 3.2 back), we can both remotely control the current input, and
record the temporal signal of the output current and voltage.

For an imposed electrical current of 300 A, we present the response of the circuit in
figure 3.3. We present a typical raw signal of current I recorded on an acquisition card,
as well as the corresponding frequency spectrum for both current and voltage. The black
line in figure 3.3a shows the recorded signal for one second. As it seems very fluctuating
one can ask the question about the influence of fluid motion in the electrical circuit. As
fluid motion needs both electrical current and magnetic field, we left out the magnetic
field to answer this question. In figures 3.3a, 3.4 and 3.5 we considered both cases: when
there is fluid motion (in black) and when the fluid is static (in blue), because the magnetic
field is absent.

From figure 3.3a, one can see that current signals are qualitatively identical with and
without fluid motion. Indeed, power spectral densities (PDS) of these signals show no
important content at low frequencies, as it is shown in figure 3.3b for the case in black,
when there is fluid motion. PDS for the static case show no perceptible difference (not
shown). In conclusion high frequency fluctuations come from the Power Supply and are
independent of the flow conditions. This precludes a detailed consideration of the statistics
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Figure 3.3: Example of the response of the system under imposed electrical current; and
comparison between typical experimental condition (with magnetic field and fluid motion)
and only the electrical circuit (without magnetic field and no fluid motion). (a) Signal of
electrical current without fluid motion (blue) and with fluid motion (black). (b) Power
Spectral Density of current (black) and voltage (green) signals for the case with magnets.

0 100 200 300 400 500 600
0

100

200

300

400

500

600

Iin [A]

I o
u

t
[A

]

 

 

(a)

without flow

with flow

0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Iin [A]

V
o
u

t
[V

]

 

 

(b)

without flow

with flow

Figure 3.4: Response of the system as a function of the imposed current. (a) Output
current as measured with the interface, as a function of imposed current. Imperceptible
error-bars are included. (b) Output voltage as a function of imposed current. Error-bars
are included based on standard deviation about the mean value.

of injected power, for instance.
However, as there are not many low frequency fluctuations, signals can be considered

as stationary. This feature can also be seen when considering the mean registered value
of the current

Ioutput = I =
1

T

∫ T

0

I(t)dt, (3.1)

and its standard deviation
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Figure 3.5: Power and Resistance. The electrical circuit (without flow) is compared with
typical experimental conditions (with flow), as in figure 3.4. On the left there is the
electrical Power P = I · V as a function of I2. On the right there is the Resistance
R = V/I as a function of I.

σI =

√

1

T

∫ T

0

(I(t) − I )2dt, (3.2)

where T = 300 s. This Iout is plotted in figure 3.4a, for a set of imposed currents Iin,
together with error bars computed from σI for each case. They are typically of a few
Amperes, which correspond to symbol sizes in this series. They are thus imperceptible.
A clear 1 slope is observed. Therefore, the electrical current seem a reliable parameter to
control the experiment. This will be referred later as a measure of the forcing strength.

Figure 3.4b shows the equivalent analysis for the recorded voltage signals, in which
it is apparent that voltage is generally less than 1 Volt. We can also see that standard
deviation is larger, which is not surprising as we control the current.

The electrical resistance of a linear circuit is given by the relation

R = V/I, (3.3)

in which R fluctuates in the same way as I and V do. Although some variability can be
observed in figure 3.5b, one can consider its mean value is

R = 1.4 · 10−3 Ω,

as a reference. The injected electrical power can be obtained in a similar way

P = I · V (3.4)

and it appears to fit reasonably well the expression 〈P 〉 = R · I2, as shown in 3.5a.
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Figure 3.6: Arrangement of magnets used in the experiment. Black and white correspond
to different polarities. The arrangement are called Random (left) and Regular (right).

3.1.3 Magnetic field

Beneath the container, we put a set of permanent magnets arranged in a specific way.
The arrangement is characterized by the positions, sizes and polarities of the magnets.
They define the spatial distribution of the magnetic field B, fixing the geometry of the
forcing (as J is roughly homogeneous and perpendicular to the vertical component of B).

We use strong neodynium iron magnets of two sizes: Large ones are 2 cm in diameter,
with a maximum magnetic field of 3000 Gauss (or 0.3 Tesla) at their surface. The small
ones are 0.5 cm in diameter with a maximum magnetic field of 500 Gauss.

We arranged the magnets in two ways: one regular as presented in figure 3.6–right
and the other random 3.6–left. For the regular case we fixed the positions in a hexagonal
pattern and we used only the larger magnets.

For the random array of magnets, the positions (x, y) were chosen as random variables,
respecting a balance of polarity and including the two magnet sizes, in order to reduce
the size’s spectral signature. In this way, we expect to produce a flow less dependent of
the forcing, and more appropriate to observe cascade phenomena.

However, in order to better describe the obtained flow, it is useful to get a typical
length scale for the forcing. To do so, we measure the distances between centers of the
magnets (considering only the large diameter ones), and we compute the mean value for
both arrangements:

Lm = 3.63 cm for the random array,

Lm = 3.83 cm for the regular array.

At the surface of the container, 8 mm above the surface of the magnets, the magnetic
field of a permanent magnet is measured to be of 1200 Gauss. In one case (for the
random array), we performed a careful spatial measurement of the magnitude of the
vertical component of the magnetic field (figures 3.7 and 3.8): Using a personal computer,
we controlled the position of a probe connected to a Gaussmeter LakeShore, and we
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Figure 3.7: Measured magnetic field Bz(x, y, z) for the random forcing, at three distances
from the magnets. z1 = 11 mm (left), z2 = 21 mm (middle) and z3 = 31 mm (right).
Note that the color code is different in each figure.

simultaneously recorded one scalar value of the magnetic field (Bz in this case). After
reconstruction, we ended up with a complete cartography of Bz in the plane (x, y) for a
given height z, as shown in figure 3.7, for three values of the distance from the magnet’s
surface z: z1 = 11 mm, z2 = 21 mm and z3 = 31 mm. In this way, the first plane 3.7a
corresponds to the field in the core of the flow, but still close to the bottom of the cell
(at 3 mm in distance). The second plane 3.7b is slightly above the surface of the liquid
metal, and the third plane 3.7c is still further. This shows that we are far from having a
z−homogeneous magnetic field. Instead, we have non negligible magnetic gradients.

A process of homogenization is apparent from figure 3.7: Bz evolves in z in a quite
diffusive way: the original strong horizontal gradients of the vertical magnetic field evolve
in z towards a more homogeneous (and weak) field.

To emphasize the vertical decrease of Bz (already visible from the color bars in figure
3.7), we show its representation in figure 3.8a: this time the colorbar is fixed, in order
to see that the magnitude of Bz strongly reduces as z increases. This is also visible in
the cut at y = 133 mm (figure 3.8b). Figure 3.8c shows a punctual measurement above a
magnet, in which the z dependence is fitted with an exponential

|Bz(x0, y0)| ∼ exp(−λz),

with λ = 1.28.
One would have expected, as a zero order approximation, a resulting magnetic field

being a linear superposition of independent dipoles associated to each magnet position.
Such a situation implies a decrease on z−3. Nevertheless, even for a single magnet, the
picture seems to be an over simplification. Indeed Figueroa et al. [10] measured a λ =
2.05 for a MHD experiment with electrolyte. In our experiment, this decrease could be
reenforced by a kind of collective effect on the decay process.

Moreover, by simulating a diffusive evolution1 of the magnetic field starting from its
spatial shape at the origin (figure 3.6), we accurately recover the spatial structure of Bz

as measured with the Gaussmeter at different heights (figure 3.7), and we can determine

1We considered ∂Bz/∂z = Dsim∇2Bz , where Dsim is a constant determined by comparing the simu-
lation results with the experimental measurements of figure 3.7.
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text).

an empirical diffusion coefficient Dsim. By using this coefficient, we know the shape
of Bz(x, y, z) for any forcing geometry. In particular for the regular one (not shown).
However, as we noticed, the physical origin of this phenomenon remains unclear and
deserves further consideration.

3.1.4 Conducting Fluid

The conducting fluid we use is a liquid metal known as Galinstan (or GaInSn). It is an
alloy made of 68.5% of Gallium, 21.5% of indium, 10% of Tin, which is liquid above –19o

C, and in particular at room temperature.
The density of galinstan is ρg = 6440 kg/m3; its electrical conductivity is σe = 3.46×

106 S/m; its kinematic viscosity is ν = 3.73 × 10−7 m2/s.
In contact with the air, the surface of the liquid metal oxides, drastically changing

the surface properties. Indeed a solid layer rapidly forms. To prevent this effect we cover
the surface with Hydrocloric acid (HCl) in low concentration (< 1%). As we do not want
to perturb the galinstan-acid interface by the acid-air (or acid-plexiglas) interface, the
depth of acid we put should exceed 5 cm in order to keep the acid in a deep water regime.
Usually we put as much acid as we are able to put in the cell, which is close to 10 cm in
depth.

As the density of the acid is essentially the one of water, which is 6 times lower than
the galinstan’s, the surface can be considered stress free. The interfacial tension of this
acid–galinstan interface can be measured to be 0.5 N/m (the procedure to measure it will
be described in section 3.5).
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For comparison, the properties are summarized in the table 3.1, together with the
values for other conducting fluids.

3.2 Dimensionless numbers and expected values

We have presented the characteristic magnitudes of the experiment for the given density
of current J , the magnetic field B and the length scale L. For this last one, several choices
are possible (container’s size, mean distance between magnets, or fluid depth). We also
have presented some important physical properties of our liquid metal. Now we have all
the necessary ingredients to estimate the dynamical properties of the flow.

The equations of MHD, that govern the velocity field u and the magnetic field B are,
(i) the Navier Stokes equation 2.18 with the Lorentz force

ρ

(

∂u

∂t
+ (u · ∇)u

)

= −∇pd + µ∇2u + J × B, (3.5)

and (ii) the induction equation

∂B

∂t
+ (u · ∇)B = (B · ∇)u +

1

µ0σe
∇2B, (3.6)

where µ0 = 4π · 10−7 N/A2 is the vacuum permeability (constant); and σe is the electrical
conductivity of the fluid. The induction equation is obtained from Maxwell’s equations
and Ohm’ law J = σe(E+u×B), and it show how the magnetic field can be advected by
the velocity field, depending with the parameters associated to the system (we will come
back to this).

From equation 3.5, it is possible to construct a characteristic velocity by considering
the balance between the advection and forcing terms ρ (u · ∇) u ∼ J0×B0, meaning that
the forcing is fundamentally translated into fluid motion by non-linearity. This gives the
estimate

U0 =

√

J0B0L

ρ
, (3.7)

which implicitly assumes stationarity (at least in a statistical sense), and that the forcing
dominates over dissipation (gravity does not enter into the analysis, as the mean direction
of the forcing is orthogonal).

Table 3.1: Comparison of the physical properties for different liquids and liquid metals. ρ
is the density, ν is the kinematic viscosity, γ is the surface tension and σe is the electrical
conductivity.

ρ [kg/m3] ν [m2/s] γ [N/m] σe [1/Ω m]

Galinstan 6440 3.73 × 10−7 0.5 3.46 × 106

Gallium 6080 3.24 × 10−7 0.7 3.7 × 106

Mercury 13600 1.1 × 10−7 0.4

Sodium 930 10−6 – 107

Water 1000 10−6 0.073
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If we consider L ∼ 3 cm, corresponding approximately to the magnets scale, one has

6 cm/s < U0 < 30 cm/s,

but if we take L = 50 cm (container size), the velocity will be about one order of magnitude
larger. In the following evaluations we will stay with the former.

We retained the scaling (3.7) and not the alternative, linear one: U0 = J0B0L
2/ρν,

valid for a flow dominated by viscous damping (considering this time ρν△u ∼ J0 × B0).
This is because it gives an estimate of U0 larger than 360 m/s, which is inconsistent with
a flow dominated by viscosity.

3.2.1 Hydrodynamical numbers

The first dimensionless number we consider is Reynolds number

Re =
U0L

ν
=

√

B0L3J0

ν2ρ
, (3.8)

which in our system corresponds to

5 · 103 < Re < 2.5 · 104.

The flow is turbulent in this sense.
It can be noticed that the expression Re =

√

B0L3J0/ν2ρ contains almost only fixed
parameters, with the exception of the control parameter J0 = I0/S, with S the surface
of the electrodes in contact with the fluid (also fixed). This means that we have a clear
expected growth of Re as

√
I0, valid for turbulent flows.

For a thin layer of fluid –two dimensional in first approximation–, friction at the
bottom can play an important role in the flow dynamics and energy transfer, since it acts
as a linear damping modifying the bidimensional Navier-Stokes equation. The damping is
of order ν/(Hδ), where δ is the characteristic length scale of the bottom boundary layer
and H the layer’s thickness. The flow is then quantified by Reh = (Hδ/L2)Re. As this
friction can strongly affect the energy cascade process, it has to be taken into account
when the properties of two dimensional turbulence are concerned [34].

As discussed in section 2.4, the free surface adds two extra dimensionless numbers:
Froude Fr and Weber We numbers. These numbers quantify how effective gravity and
capillarity are against surface deformation and allows a description of the resulting surface
features.

In our experiment, Froude number reads

Fr =
U2

0

gL
=

B0J0

gρ
, (3.9)

and it ranges as

0.01 < Fr < 0.36.
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Weber number, on the other hand

We =
U2

0 Lρ

γ
=

B0J0L
2

γ
. (3.10)

goes as
1.4 < We < 35

in our case.
On the light of [6] (see section 2.4), our parameter’s set (Re, Fr, We) places us between

the regimes referred to as weak turbulence (low Fr and low We) and gravity–dominated
turbulence (low Fr and large We); the latter being the most common regime found in
nature. This is consistent with qualitative observation. For low forcing one can observe
gentle surface deformation (but still visible thanks to the reflective properties of the
surface) and the development of stronger deformation when the forcing is increased. Also,
it can be recalled that our Fr numbers are compatible with the hydrodynamical analog
of wave generation by turbulence, expected at around 0.05 [28].

The quantification of the deformation features observed in the experiment is the sub-
ject of chapter 5.

We have also introduced the capillary length lc. In our case, a pertinent way to obtain
it is from the interfacial dispersion relation, as the crossover length scale for which gravity
contribution (gk (ρ1 − ρ2)/(ρ1 + ρ2)) equals capillarity contribution (γk3 /(ρ1 + ρ2)):

lc ≡
1

k
=

√

γ

(ρ1 − ρ2)g
= 3 mm. (3.11)

In other words, deformations smaller than lc deal with capillarity, and those larger than
lc are treated by gravity. For comparison, a water–air interface has lc ∼ 2.7 mm and a
mercury–air lc ∼ 1.7 mm, so all these 3 interfaces have quite comparable values. In the
frequency domain, the crossover between capillary and gravity dominated regimes occurs
for

fc =
1

2π

√

2g3/2(ρ1 − ρ2)3/2

√
γ(ρ1 + ρ2)

∼ 11 Hz.

3.2.2 Magnetohydrodynamical numbers

For conducting fluids, the magnetic field is governed by the induction equation (3.6), as
velocity is governed by the Navier-Stokes equation. Also, in an analogous way, the rele-
vance of magnetic field’s induction can be described by the so-called Magnetic Reynolds
number:

Rm =
U0L

ηm
=

τηm

τu
, (3.12)

where ηm = 1/µ0σe is the magnetic diffusivity. τηm
= L2/ηm gives account of the time

scale on which perturbations of the magnetic field diffuse. We compare it to the time scale
of advection imposed by the flow. When this ratio is large, the flow has strong action
on the magnetic field, and advection overcomes diffusivity. In the limit of Rm → ∞,
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magnetic field lines freeze with the streamlines of the flow. This limit can be found in
astrophysical flows and in the flows on the earth’s core. One effect that is characteristic
of this limit –the Dynamo effect– has been observed in laboratory experiments: In the so
called von Kármán configuration (a cylinder with two rotating coaxial impellers, one on
each side) filled with liquid sodium, one can get Rm of order 70. As the Dynamo onset
was reached, the spontaneous emergence of a magnetic field was observed, triggered by
turbulent fluctuations of the liquid metal [23; 3].

In the opposite case, for small Rm, disturbances of the magnetic field diffuse very fast
(as τηm

≪ τu), so the flow has no effect on the magnetic field. In others words, the induced
magnetic field (by the flow of conducting fluid) is negligible compared to the imposed one.
Indeed, from equations (3.5) and (3.6), one can see that in this limit (as advection terms
in (3.6) are negligible) the magnetic field is decoupled from the velocity field, although
this later is still subjected the magnetic field, by means of the Lorentz force.

This small Rm is what we get in most industrial applications and laboratory experi-
ments. It is also our case, as we get

0.01 < Rm < 0.04.

However, Rm does not tell the whole story about magnetohydrodynamics. Actually, one
can estimate the induced current by the imposed magnetic field B0 and the flow velocity
U0, which roughly opposes the imposed current J0. It gives Jind = Iind/S ∼ σeU0B0,
which gives values for Iind that can be as large as 500 A! Indeed, the induced currents are
of the same order of magnitude as the imposed one.

What happens is that in the bulk of the fluid (at least in zones where the imposed
magnetic field is intense), the electrical current is smeared out by induction into the very
thin layer in which velocity vanishes because of viscosity (where induction vanish as well).
This creates a boundary layer for the current, the so-called Hartmann boundary layer.
We can estimate the thickness of this Hartmann boundary layer as

δ =

√

νρ

σe

1

B0

= 0.22 mm. (3.13)

This means that, at least in the zones around the magnets (which have a diameter
of 2 cm), the forcing is confined into the thin Hartmann layer. So, even if in principle
the forcing was expected to be in the volume, it actually acts only in this very restricted
vertical zone.

The dimensionless number that compares the thickness δ of the Hartmann boundary,
to the height of the fluid layer h = 10 mm, is the Hartmann number

Ha =
h

δ
= 45. (3.14)

A very challenging question comes naturally: If the current is concentrated into a
thin boundary layer for zones in which B0 is intense, what happens elsewhere? Does
the current have any preference between going into the boundary layer, or completely
avoiding regions in which the magnetic field is intense? In any case, it is clear that the
interplay of J , B and U in our system is quite complex. In fact, very little is known about
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the magnetohydrodynamics for non uniform magnetic fields, despite it being a common
forcing tool nowadays.

There is a similar –but opposite– alternative to create a Lorentz force: a uniform strong
magnetic field, together with a spatially dependent distribution of current (entering in the
liquid metal by an array of punctual electrodes in the bottom of the container). It was
studied in detail by Sommeria in the eighties [31] and recently by Gallet, Herault and
collaborators [12]. For this configuration the argument given before holds: the current
is restricted to the thin Hartmann boundary layer, which is uniform in this case. As
explained before, in this case the forcing is restricted to the boundary layer on the walls
perpendicular to B, and the flow in the bulk can be treated as being free of forcing and
dissipation. However, this time it is the distribution of currents that contributes with its
complexity.

The development of similar Hartmann boundary layers was recently discussed exper-
imentally for a Taylor–Couette–like configuration by Boisson et al. [4]. There, they were
able to easily control both the intensity of current and magnetic field in order to get a
fixed Lorentz force |F0| = |J | |B|. They revealed a non trivial difference between doing
so with a strong J (and small B) or with a strong B (and small J). Plausibly the differ-
ence comes from the effect of magnetic boundary layers, which develops only for strong B.

We have stated the expected velocities for our experiment, together with its expected
surface deformation regimes. Now we present the techniques to be used in order to obtain
quantitative measurements.

3.3 Velocity measurements using particle tracking

Particle tracking is a conceptually simple technique to obtain a two dimensional velocity
field perpendicular to the plane of observation. The basic idea is to have a set of objects
moving in a plane –the particles–, and to take pictures of them for consecutive times t and
t + ∆t. Then one can find their positions at each time and reconstruct their trajectory,
by which one can estimate their velocity during the interval ∆t.

To give an illustrative example, we applied this idea to two pictures (figure 3.9) of cars,
people and a metro which are moving across a bridge2, so they are restricted to moving
in one direction each, and roughly on a single plane. We approximatively know the time
interval between both frames (chosen by hand for a standard camera: around 1 second in
this case) and the distance could be obtained by considering reference objects of the photo
and comparing them to available tabulated data, from google maps for instance. As a
result, for each object we obtain an estimation of its mean velocity, for the corresponding
interval of time: v ∼ 48 km/hr for the metro, v ∼ 44 km/hr for both cars, and v ∼ 5
km/hr for people. This is why people prefer to take the metro instead of walking (even if
the person under study walks very fast), and, as metro and car’s speeds are quite similar,
this give us some idea of why cars are still so popular in crowded cities.

This example is extremely simple, in the sense that the movement is only one-dimensional,
and especially because we can easily identify each object by its singular shape, size and

2Bir-Hakeim bridge, in Paris
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v~48 km/hr

v~44 km/hr v~44 km/hr
v~5 km/hr

Figure 3.9: The idea behind particle tracking velocimetry.

color. Usually in an experimental tracking problem we do not have those advantages and
we have to compensate them by taking very short time intervals in order to chose the
correct path followed by each object.

In our case, most of the time we used particles of 1 mm in diameter, with a density of
ρp = 2000 kg/m3, which is close to a third of the density ρg of the liquid metal, and around
twice the one of the acid. Particles are thus floating on the acid-Galinstan interface. We
acquired images of the whole cell of 2000 × 1700 pixels2 using a Dalsa camera (model
PT–41–04M60–med). This gives particles of around 4 pixels in diameter. Acquisitions
were performed at 50 Hz and stored on real time on a PC. As images include the borders
of the container, we use its dimensions to obtain coordinates in real units.

We track around 200 particles in each frame, so the filling fraction is very small. In
this regime, collision of particles are rare, and it also allows us to successfully reconstruct
trajectories instead of the limited acquisition frequency of the camera. Nevertheless, as we
will see later, we are not able to consider the evolution between two frames as a complete
picture of the velocity field.

Since that the surface of the flow is a deformable mirror, care was taken on lighting,
in order to obtain a good contrast between particles and the background (figure 3.10a).
For each snapshot, we perform high pass filtering to remove wavy intensity fluctuations
in length-scales larger than particle’s diameter (figure 3.10b). Then we compute intensity
contours of the image and identify particles as the superposition of at least 4 concentrical
circles (figure 3.10c). This procedure gives us the position pairs (x, y) within a subpixel
resolution. Moreover, for our conditions, this procedure is much more robust than simple
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1cm

a b c

Figure 3.10: Stages of particle’s detection using intensity contours: (a) is a part of a
typical snapshot; (b) is the same image after the high pass filtering stage, in which wavy
intensity fluctuations are removed; (c) shows the intensity contours of (b), from which
particles will be identified.
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Figure 3.11: Reconstruction of trajectories. (a) Idea of the multi-frame predictive tracking
algorithm (adapted from [27]): we drew already reconstructed trajectory points (in black)
and some of the points in the next frame, which are candidates to be the subsequent
trajectory point (light gray). From last two positions (circled black points) one predicts
the expected one (open circle) and then we choose the closest to it (no 2). In (b) we plot
four of the reconstructed trajectories together with its velocities, each one in a different
color.

thresholding, because of the strong intensity fluctuations of the background. Although,
it is very expensive in terms of the computation time, in particular because the program
interpolates the intensity profile when computing several contours, as we do in order to
get accurate results (see the inset in 3.10c).

From this data, we compute trajectories using a matlab–implemented multi-frame
predictive tracking algorithm (PRT) [25; 27]. This algorithm has two principal stages: It
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performs a prediction for the position of particles in a frame on the basis of the movement
of particles between the previous two frames. Then it chooses the compatible movement of
the whole set of particles by minimizing distances between predictions and real positions
found, within a given radius. The idea of the method is schematized in figure 3.11a,
in which already-found-trajectory-points are drawn in black, together with some of the
next-frame-points in light gray (which are the candidates to be the subsequent trajectory
point). From the last two positions (circled black points) one predicts the expected next
position (open circle) and then we choose the point which is closest to it (no 2, with the
arrow), and we add it as the next point in the trajectory of that particle. Under conflicts,
the algorithm stop the trajectories involved, and restarts them as new tracks. If necessary,
those trajectories could be re-connected by performing a second high dimensional tracking,
now in the position-velocity space (instead of only position’s space, as we do), as suggested
by Xu [38].

It is worth noticing that with a nearest neighbor tracking algorithm (NNT), the chosen
particle would be no 1, which is likely to be wrong. That is why a predictive algorithm
seems to be more adapted to tracking problems in fluid mechanics. At least it is the case
in our experiment, where we performed the comparison between PRT and NNT. A second
advantage of this algorithm is its lack of intrinsic velocity cutoffs, as particles are always
searched consequently to their previous movement. A detailed comparison between track-
ing methods in fluid mechanics could be found in [27]. Given the set of trajectories, one
can use a convolution kernel in order to obtain directly a filtered velocity field, instead of
performing both velocity computation and filtering separately [24].

In summary, from the several alternatives to do particle tracking, we retained the
following: The horizontal movement of particles is filmed with a single camera. Parti-
cles’ position are obtained from snapshots using an intensity’s contours technique. From
position’s data, we reconstruct trajectories using a multi-frame predictive tracking algo-
rithm, from which we compute velocities for each trajectory. As we noticed, both the
detection algorithm, and the tracking algorithm were chosen after numerous tests carried
out in our experimental data, where those algorithms revealed as the most optimal for
our conditions.

3.4 Height measurements

From simple observation of the experiment, one can see interesting features concerning
the surface deformation. This is expected because, in opposition to experiments carried
out to study two dimensional flows with a similar forcing ([19; 26] for instance), we do
not make any effort to reduce vertical motion, and consequently surface deformation is
expected to play an important role.

Now we will describe two techniques to measure the surface deformation. The first one
is by using a punctual inductive sensor, and the second one is an original optical setup
that allows to record the deformation along a line.
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Figure 3.12: Inductive sensor. (a) is a representation of the sensor’s principle (see text),
in which an induced magnetic field interacts with a conducting material. If the proximity
of the material varies, one can observe temporal signals as (b) and (c). (b) shows few
seconds of the temporal evolution of the surface height, as detected by a sensor EMD 1003
(diameter 17 mm) for two independent experiments: for the regular forcing (in red) and
for random forcing (in blue). In both cases I = 450 A. (c) shows an example of saturation
for a sensor EMD 1043 (diameter 8 mm) and a rather low imposed current I = 100A.

3.4.1 Punctual measurement with an inductive sensor

An inductive sensor is a non-intrusive sensor that measures the distance to electrically
conducting objects, typically plane rigid ones. It was developed (and is widely used
nowadays) in industrial production chains, because it allows to control distances with
high precision, and to check the presence/absence of objects without physical contact,
even through layers of non-conducting materials.

The working principle is as follows: a high frequency alternative current travels
through a coil in the main part of the sensor, generating a time varying magnetic field.
When a conducting material is approached, an eddy current is induced on it, dissipating
some of the imposed current, implying a change on the resistivity of the circuit. The
smaller is the distance between the sensor and the conducting material, the larger is the
current dissipation on the sensor circuit. Therefore one can obtain an electrical signal
proportional to that distance. An schematic representation is given in figure 3.12a.

For (fast moving) liquid metals, Falcon et al.[9] have shown that the response of the
sensor is linear with the distance, and that its sensitivity could be better than 1 V/mm.
Typical temporal traces are given in figure 3.12b for I = 450 A and for the two forcing
geometries.

Its measurement range is proportional to the diameter d of the sensor, starting at the
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end of the sensor. Thus it should be placed close to the measured sample. Also, the
measured height is the result of the implicit filtering over the area of its section, π (d/2)2.
In fact, the point in this punctual measurement could be actually huge (around 230 mm2

for a d=17 mm). The frequencial cut-off associated with the filtering length-scale could
be estimated from the dispersion relation (see equation 3.16). Because of this, there is an
equilibrium to find between the measurement range and the implicit filtering.

We have tried two sensors of sizes d1 = 8 mm (EMD 1043) and d2 = 17 mm (EMD
1003). One can see that the small sensor starts to saturate at I = 100 A (see the arrow in
figure 3.12c), which is close to the smallest forcing we used. Consequently, it is not suitable
for our requirements. On the other hand, from visual inspection one could expect height
deviations from the mean level as large as 5 mm. In order to avoid saturation at those large
deformations, we finally worked with the large sensor. In this case, λ = 17 mm = 2π/k,
corresponds to a frequency of 12 Hz: this is the upper limit at which frequencies can be
trusted. It is very close to the crossover frequency between gravity and capillary waves
(fCO = 10.9 Hz, as discussed in section 3.2), thus we cannot trust the temporal spectrum
of capillary waves as obtained with this sensor.

The principal advantages of this local measurement are: (a) It is very easy to use. It
only needs to be installed, plugged in and it is ready to measure. However, as an eventual
influence of the local magnetic field was not carried out yet, we preferred to perform a
calibration at each different measurement position. (b) It requires no post–processing,
therefore the data analysis is very fast. (c) The signal can be recorded in real time, thus
in this sense it has no practical limitation in temporal resolution. (d) It is non intrusive,
as the model we use can be placed far enough from the surface.

The drawbacks of this sensor are: (a) As it is local, it provides no information about
spatial structure of the surface deformation. However, as well resolved temporal measure-
ments can give fundamental information about a flow, this could be not a major restric-
tion. (b) Because of its working principle, this sensor performs an intrinsic spatiotemporal
filtering defined by its area. As we noticed, the model we used has a diameter of d =17
mm and filter frequencies at around 12 Hz. This is, by far, the most significant drawback
of this method.

3.4.2 Global measurements of the surface deformation

Punctual measurements of the fluid height give relevant information (see chapter 5), and
in particular with a good time resolution. However, they have some disadvantages: First,
the chosen point is somehow arbitrary, and consequently one cannot know a priori if it
is a privileged one. Nevertheless, this problem can be tackled by considering more than
one point and check whether the results are reproducible, at least in a statistical sense.
But a second, and more crucial disadvantage, is that one cannot say anything about the
spacial dependence of the height.

Specially to address the question about the spacial dependence of the height for a
free surface flow, several non-intrusive techniques have been developed in recent years. It
could be interesting to briefly mention some of them:

• Laser scanning device for measuring the surface gradient on a line: The idea is
to send a vertical laser beam from one side of the free surface (lets say from the
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bottom), and to record the deflection of the beam produced by the curvature of the
surface. By using both a position sensitive scan, and a rapidly oscillating mirror, it
is possible to scan an entire line with a very high temporal resolution. This method,
developed by Savelsberg et al. [29], was used to study the surface deformation
produced by grid turbulence in a channel of water [30].

• Free-surface synthetic Schlieren: Moisy et al. [22] developed a method that uses the
difference in refractive index between two transparent liquids sharing a common in-
terface: a deformed fluid interface can act as an irregular lens that amplifies/reduces
any image depending on the local slope of the interface.

Technically, they image a pattern of random dots, which is amplified/reduced by the
deformed interface. By computing correlations with a reference image, they obtain
the displacement field, which can be integrated to reconstruct the instantaneous
shape of the interface. This method was used to study cross-waves induced by a
vertically oscillating plate below a water-air interface [21].

• Diffusing Light Photography: This method was introduced by Wright et al. [36],
pioneering the study of capillary wave turbulence in water. The idea is to put
polystyrene particles of 1 µm and to illuminate the fluid from the bottom. As light
is scattered by particles, it diffuses through the water. In this way, the camera on
the other side will receive an amount of light that is inversely proportional to the
local depth: the larger the depth, the larger will be the loss of light by diffusion.
An important advantage of this technique is that there is no problem with caustics,
so it is not limited by large slopes (until there is no true superposition of liquid as
when waves break). More recently, this method was used to study over-reflexion of
waves [11] and capillary wave turbulence [2]. More details of the method should be
found in [35].

• Fourier transform profilometry: This method was proposed by Takeda and Mutoh
in the eighties [33]: It consist in projecting a fringe pattern over a deformed surface
(static at that time), and comparing it to an undeformed reference. The comparison
leads to a phase map from which the deformed profile can be reconstructed. More
recently, since the contributions of Cobelli and collaborators [7; 20], its applicability
was extended to rapidly evolving fluid surfaces. Then it becomes a widely used
technique in fluid mechanics [16; 13], as well as in the study of vibrating plates
or surface deformation in foams [18]. All those materials having a light-diffusing
surface. In particular, reference [7] present a reproducible protocol to turn diffusive
the fluid free-surface.

However, all those appealing techniques make use of either light transmission prop-
erties or light diffusion properties of the fluid. Liquid metals, on the other hand, are
completely opaque, so there is no transmission of light, and the diffusion of light in the
surface is very small (but not zero). So the previously mentioned techniques are not
suitable to measure the height in liquid metals.
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Figure 3.13: Geometry linking the observed displacement δhobs and the vertical displace-
ment δh, in the paraxial approximation.

3.4.3 Line measurement with single camera stereoscopic

method

In our case, we will perform a direct optical measurement of the surface deformation along
a line, by means of a simple triangulation technique.

The triangulation principle is given in figure 3.13. We consider the paraxial approx-
imation βmax ≈ H/L ≪ 1, as the distance L between the camera and the measurement
area, is much larger than the maximal measured deformation H .

In this approximation, one can consider a reference point P , lets say on the flat
interface. Then, when the interface deforms, the point in the same vertical, Q will be
perceived as being Q′. The vertical displacement PQ ≡ δh and the observed displacement
PQ′ ≡ δhobs are related by the relation

δh = δhobs/ cos α,

were α is the angle between the camera orientation direction and the horizontal (see figure
3.13). From the technical point of view, we consider the diffusive part of a laser beam
projected vertically from the top. This diffusive part traces the fluid elements that are in
the interface.

The natural extension of the punctual measurement presented until now, is to have a
spatially extended laser beam, and to use a camera to obtain the displacement along a
line defined by the direction r̂,

δh(r) = δhobs(r)/ cos α. (3.15)

To do so, we place a cylindrical lens in the path of the laser, in order to get a diffusing
line instead of a single point, together with a focusing lens (before the cylindrical one) in
order to concentrate the light at the fluid surface. This is both to reduce the line thickness
(improving the resolution of the height measurement), and to increase diffused light.

We take images of the (primarily) diffused line at 60 Hz with a high resolution Dalsa
camera that gives 2000×1700 pixels2 images. When taking pictures of a line of 40 cm, one
can get 5 pixels/mm as horizontal resolution. Vertical resolution depends on the angle α
but it is limited by the laser line thickness, which can be estimated as a half millimeter.
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a b

dc

Figure 3.14: Setup for the single camera stereoscopic method. (a) is the configuration
using two cameras and (b) is the equivalent one using a single camera. (c) is a schema 3d
and (d) a photo of the actual setup.

The vertical resolution is found to be 3 pixels/mm. It was obtained by measuring the
profile of a well calibrated stairway-shaped object3.

The angle α is typically of the order of 45 degrees (50 for the results discussed in
chapter 5). In that way we record preferentially the diffused part of the laser beam. On
the other hand, specular reflexion of the laser beam is defined by the local slope of the
fluid surface, which can be small for gentle forcing. But when the forcing is increased,
the local slope increases consequently and one starts to record strong light spots –due to
specular reflexion– in the part of the line where the normal direction matches the direction
of the camera (see figure 3.14).

Until this stage, the description was based on the use of only a single camera, which is
an standard procedure. It can be found as a commercial instrument to obtain the profile
of diffusing objects (including metallic ones) within a good precision. But, because of
the previously described limitation, this setup is not suitable for the strong deformation
regimes we are interested in. This is why we propose a simple improvement to this
technique in order to tackle the specular reflexion problem and to, consequently, be able
to measure a strongly deformed surface.

The improvement consists in considering two opposite recording views instead of one.
In that way, when the normal vector of the surface is directed into one of the record-
ing views, necessarily it will not be directed into the opposite one. Then, in the post-

3 c©Padilla inc.
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processing stage, one will be able to reconstruct all the line by discarding the saturated
parts of both simultaneous records. In practice, as the vertical deformation of the line
could be registered within a few pixels (in around 20 or 30, compared to 1700 that are
available), we decided to use a set of mirrors in order to register both views in a single pic-
ture (see figure 3.14b–d for the actual setup, and the equivalent setup using two cameras
in figure 3.14a). This trick has also the advantage of avoiding camera synchronization.
As it is actually a stereoscopic measurement and it is performed with a single camera, we
will adopt the name of single camera stereoscopic method.

As we already noticed, the vertical displacement δh(r) can be directly obtained from
the displacement of the laser line as perceived by the camera. So one has to isolate the
coordinates (x, z) of the line from the raw images, despite both strong deformations of
the line (tracing the strong deformations of the surface) and dazzles produced by specular
reflexion. This post-processing stage is composed of several straightforward computations:

1. Make both views superposable: As the optical arrangement should be perfectly sym-
metric in order to produce no distortion between both views, in practice one can
find a relative translation / rotation / elongation between them. It can be corrected
in a single transformation, and once it is found for a single image–pair, it could
be applied to the whole set performed measurements. To have both superposable
views will be important in step 3.

2. Make both views binary, by computing a local threshold: Also for step 3, it is better if
both views are binary. And as the intensity of the line can vary a lot in a single image
(see raw pictures, figure 3.15, (a) and (c)), we preferred to compute a local threshold.
This corresponds to taking thresholds in the mean value of a set of N ×N neighbors
pixels, with N the chosen value (in our case, N = 17 gives satisfactory results). In
the zones where the contrast is high, this method gives good results (around the
line for instance), but in zones with poor contrast, the threshold becomes arbitrary,
resulting in the addition of noise. Nevertheless, this noise can be filtered in a later
step (4).

3. Assemble both views into a mutually filtered one: This is the fundamental step, as
here we take advantage of having two views, in which at least one of them should
not exhibit saturation locally.

From steps 1 and 2, one has similar lines everywhere excepting saturated zones. In
that zones, one has the normal line (1 in binary code) surrounded by no information
(0) for the first picture A. For the second picture B, on the other hand, the binary
saturated image will exhibit 1 in a region larger than the line. So, when we perform
the multiplication of A and B, pixel by pixel

cij = aij ∗ bij ,

(equivalent to operation C = A. ∗ B for matrices in matlab), the resulting image C
will present no saturations, as mutual corrections are applied locally.
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Figure 3.15: Image processing for both views of the line: (a) is the left view and (b) is the
local threshold applied to it; (c) is the right view and (d) is the local threshold applied to
it; (e) is the multiplication of (b) and (d) after removing most of the features generated by
noise. In the left view (a) one can see a typical light spot produced by specular reflexion,
which is successfully removed with the complementary view (c). Nevertheless we loose
the line where the light intensity is too low in both views.

4. Remove noise: The noise carried in C (produced by the local thresholding) can
be removed by a shape analysis. This is possible because the line has a clearly
distinguishable elongated shape.

5. Return into gray scales: As a binary line only allows for a rough approximation of
the hobs(r) profile, it is better to return into the gray scale. Doing so, one can take
advantage of the more subtle intensity profile produced by the laser. Here again
we multiply pixel by pixel the resulting binary image C with both original views,
obtaining a gray scale line only in the pixels allowed by step 3.

6. Convolve with a gaussian profile to improve the detection: In gray scale, the convo-
lution with a gaussian profile allows for a better estimation of the peak’s maximum.

The advantages of this method (at least, by comparing it with inductive local mea-
surements) are the natural ones of a measurement extended in space: (a) It allows the
study of spatially varying quantities, in particular to the wavenumber spectrum of the
surface deformation. (b) As one record several points at the same time, the statistics can
be better than those of a local measurement for equivalent measurement time. (c) More
particular to our case, the technique is non intrusive. As we record the diffusion of light
at the surface, we have no need to introduce particles or other additives that could affect
fluid properties. (d) Spatial resolution (in the horizontal place) is essentially limited by
the thickness of the laser layer we use, of about half a millimeter.
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Figure 3.16: Examples of the obtained hobs(x) for sequences of images, resulting in a
spatiotemporal diagram of the surface deformation field η. (a) corresponds to the random
array and (b) for the regular one. The forcing is I = 350 A in both cases. A more detailed
study of the deformation field will be presented later in chapter 5.

Its drawbacks come both from the fact of dealing with spatially resolved measurements
and from the fact that this particular technique deals with diffusion of light in a medium
which is only slightly diffusing. They are: (a) the spatiotemporal resolution is limited
by the camera which is used. In our case we used a camera with high spatial resolution
(in the best case we can measure a line of around 2000 pixels, which is good) but with
not very high temporal acquisition frequency (60 Hz). Also, acquisition length T is also
limited by the hardware4. We observed that for acquisitions of one minute at 60 Hz, the
acquisition frequency was respected. (b) Vertical resolution of surface deformation is very
limited. It is not larger that 4 pix/mm. (c) Data analysis is very time consuming. As
most of the data analysis routines are home made, results should be controlled almost at
each step and residual errors are to be corrected in a post-processing stage. (d) Finally
the range of measurement is smaller than for inductive sensors, as for strong forcing there
is an important increase of specular reflections, reducing the contrast for the line and
making the more difficult the detection.

The drawbacks (c) and (d) can be overcome by changing the detection part in our
simple data analysis, by more sophisticated ones. For instance the one of active contours
seems promising: here one consider the image intensity as a topography –or potential well
in 2D–. Then the active contour is defined as a deformable line with given tension and
rigidity. It is initialized as a straight line and it is imposed to relax on the topography,
until the line recover the shape defined for the maxima of intensity on the image [14; 37].
However, as the implementation in our particular data is not direct, this change is kept
as a perspective for the near future.

Examples of the obtained temporal evolution of the hobs(x) profile are given in figure

4This time by the transfer/writing speeds of the hard disk on the acquisition PC, which are dependent
on the available hard disk space. Thus, we followed a given protocol to trust the imposed acquisition
frequency.
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3.16 and a more systematic analysis is postponed to chapter 5.

It is worth giving a final remark concerning the possibility of performing measurement
of the whole deformation field: it could be envisaged to develop a really stereoscopic
measurement, in the spirit of the oceanographic techniques (see Cox and Munk [8] and
also a more contemporary attempt by Benetazzo[1]). This seems reasonable, as by looking
the surface with room lighting conditions, one can clearly notice the height fluctuations.
But as the human eye is a complex optical instrument, and the implementation of such
method could imply a lot of work, we keep this proposal on the perspectives of this
thesis. Another perspective would be to try a first attempt by using the previously
introduced stereoscopic setup. Eventually, it should be possible to implement 3D particle
tracking methods with floating particles, in order to get a Lagrangian reconstruction of
the deformation field.

3.5 Measurement of the interfacial tension γ for the

acid–Galinstan interface

As we cover the liquid metal with low concentration acid to prevent oxidation, we are
in very particular experimental conditions. In this case surface tension could not be
assumed to be known5 and it should be measured. One possible way to obtain its value
is to consider the dispersion relation for waves on the interface of two fluids with infinite
depth [17]:

ω2 =
ρ1 − ρ2

ρ1 + ρ2
gk +

γ

ρ1 + ρ2
k3, (3.16)

were ω is the angular frequency, k = 2π/λ is the wavenumber, λ the wavelength, g
is gravity (which one consider 9.81 ms−2 as a reasonable approximation for the earth
surface, and in particular for our laboratory), γ is surface tension, and ρ1, ρ2 are the
densities of both fluids (ρ1 > ρ2), which could be related by the Atwood number

A =
ρ1 − ρ2

ρ1 + ρ2
.

If one has access to most of those values, either because they are known or because one
can measure them, one can obtain an unknown quantity. In our case, as we are interested
in obtaining the value of γ, we would like to know all the rest. As we said, g could be
assumed as known, together with ρ1 and ρ2. Now the challenge is to know k and ω.

A simple way to obtain both k and ω is to perform the Faraday experiment: This
means to submit a fluid to a vertical sinusoidal excitation at a given frequency f = ω/2π
and amplitude. When the control parameters are chosen in order to pass an instability
threshold –the Faraday threshold–, the system exhibit stationary waves with a temporal
periodicity that corresponds to the half of the forcing frequency, and a spatial struc-
ture that could be very complex, depending on the boundary conditions and the control
parameters.

5Even if a value can be found in wikipedia: γwiki = 0.718 N/m, there is no clear statement of the
interface under consideration.
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Figure 3.17: Faraday experiment to measure the surface tension γ for the Galinstan-acid
interface. On the left there is a typical snapshot from which one can obtain the wavelength
λ. On the right we plot (as blue points) the measured value of surface tension, as obtained
by the expression (3.17), given the frequency of waves and measured λ. The asymptotic
value 0.5 is plotted as a red dashed line.

For our purposes, we choose to work in a quasi-one-dimensional configuration, meaning
that the most relevant dynamics are well described by a single spatial coordinate x, even
if some movement is still present in the perpendicular direction y. The dimensions of the
container are 16 × 2 × 5 cm3 (see figure 3.17a). Galinstan (ρ1 = 6440 kg m−3) fills the
container until a height h1 = 2.57 cm (at rest), which corresponds to the deep water limit.
In fact tanh(kh1) > 0.99 for the whole set of frequencies used. On the top of Galinstan we
put acid (ρ2 = 1000 kg m−3) in the same way as we do for the magnetohydrodynamical
experiment. Using an electromagnetic shaker LDS (see figure 3.17a), we forced the system
at frequencies going from 15 Hz to 32 Hz. For each frequency we chose an amplitude large
enough to cross the instability threshold, but still trying to avoid nonlinear effects in the
waves. Once the subharmonic wave develops (with frequency fs = f/2), we take pictures
to measure its mean wavelength λ, or the corresponding k. Then, in figure 3.17b we plot
the expression

(ρ1 + ρ2)(−Agk + (2πfs)
2)/k3, (3.17)

which corresponds to the experimental value for γ. From the same figure, on can see that
γ takes an asymptotic value for large frequencies:

γ = 0.5 N/m. (3.18)

For low forcing frequencies, however, there is an important deviation from the asymp-
totic value. It could be interpreted as a strong influence of the container’s boundaries, as
only a few wavelengths are allowed. Then, when more wavelengths are possible, boundary
effects become negligible.
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Chapter 4

Basic flow’s properties

In this chapter we will focus on simple quantities allowing us to describe the different
regimes we studied with our setup. More precisely, we will stress the properties of the flow
in terms of the control parameters we explored: Forcing strength, controlled by varying
the intensity of current; and forcing geometry, varied by changing the distribution of
magnets.

We look to the properties of the velocity field at the surface, as measured by PTV,
and then, we will focus into the basic properties of the surface deformation. A more
detailed study of the surface deformation, in particular its relation to wave turbulence
is postponed to chapters 5 and 6. The study of more subtile effects on particles at the
Galinstan-acid interface is given in chapter 7.

But before going into the quantitative picture of the flow, it is useful to give an informal
description of the regimes we explored.

4.1 Qualitative description

Although they are inconvenient for optical quantitative measurements, the reflecting prop-
erties of the surface allow to a good qualitative observation, especially in terms of the sur-
face deformation. In this sense, and considering the imposed forcing strength and forcing
geometry, one can distinguish different surface deformation regimes.

4.1.1 Random geometry of forcing:

In general terms, random forcing has the counter-intuitive tendency to generate a highly
coherent velocity field (as we discuss later in this chapter). It corresponds to a large
scale coherent structure surrounded by smaller scale vortices (see for instance figure 4.1-
a). This coherent configuration is still time dependent, in the sense that vortices have
no fixed position, despite the number of vortices does not varies a lot. Vortices are in
continuous interaction, sometimes merging into a larger vortex (or even equally sized),
sometimes fragmenting from one to two. The rotational orientation of vortices seems to
be stationary (at least for the large scale vortex, which is easily identifiable): we do not
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observe reversals, even for large waiting times. This is confirmed by taking independent
realizations of the same experiment, giving rise to the same rotational orientation.

The origin of small-scale temporal dynamics is the impossibility to respect at the same
time the complex spatial structure –although fixed– of the Lorentz force (FL ≈ FL ŷ) in
the presence of lateral walls. This means that we do not have a base state with vortices
of a size clearly identifiable with the forcing scale, as in the case of the flow produced
by a checkerboard array of magnets (square array with alternating polarities) [8], or by
a square distribution of current [7; 1]. For low forcing, vortices are easily identifiable, as
well as their interaction. Surface deformation comes essentially from the depression at
vortex cores, and it becomes as complex as the interaction between vortices can be.

For more intense forcing, one can observe a similar large scale structure in the flow,
although the motion is faster and with more small-scale temporal fluctuations. When
vortices are clearly identifiable, surface deformation comes again from depression in vortex
cores. This time, however, one can see the development of regions with strong shear,
surrounded by zones where small scale surface deformation can be seen, recalling capillary
waves that forms in the front of steep gravity waves (see for instance Longuet-Higgins [4]).

4.1.2 Regular geometry of forcing:

As we already saw in the magnetic field description (section 3.1), magnets’ positions
for the regular forcing are in an hexagonal lattice. In spite of this, magnets’ polarities
alternate forming stripes, generating a magnetic field with almost one dimensional de-
pendence. A forcing dependent of only one coordinate is known as Kolmogorov flow.
Our forcing, however, has some departure from this dependence as near the walls, bands
are not completely equivalent. A Kolmogorov forcing gives rise to a periodic shear flow,
which is stable for very small Reynolds number [2]. In our case, we only observe this for
very short transient regimes when the forcing is switched on. Very likely because of our
departure from the one dimensional case. What we actually observe for gentle forcing,
is the presence and interaction of vortices of a well defined size, comparable to the dis-
tance between magnet’s centers. Contrary to the random forcing, here we obtain a more
uniform distribution of vortices with also more uniform sizes.

For intermediate and strong forcing regimes, vortices become difficult to observe, be-
cause of the strongly time fluctuating flow, although some apparent spacial periodicity
is reminiscent from the forcing geometry. For stronger regimes the surface deformation
seems to be larger than for the equivalent forcing with the random array, and one can
also perceive the development of small scale capillary waves close to steep waves, indeed
in a stronger manner than in the random case.

4.2 Velocity at the surface

4.2.1 Lagrangian picture

In top panels of Figure 4.1 we present a collection of trajectories obtained using the
PTV technique already described in section 3.3: They were obtained by following the
displacement of particles that are floating at the surface of the liquid metal. Thus they
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Figure 4.1: Top panels: particles’ trajectories on the surface of the flow. (a) Obtained
with the random forcing, at a forcing strength of I = 275 A. (b) Similar observation as (a),
but for the regular forcing. Bottom panels present schemas to describe how we quantify
the velocity field (c) for a Lagrangian description, and (d) for a time averaged eulerian
description (see text for more details).

trace the velocity field on that surface. The panel (a) corresponds to the flow produced
with the random array of magnets, for a current intensity of I = 275 A. Panel (b) present
the equivalent field for the regular array of magnets. In both cases we plotted trajectories
of particles within 6 seconds of acquisition, in order to keep trajectories visible. Notice
that these figures correspond to the whole experimental cell.

From these figures one can already appreciate some differences between both forcing
protocols: the random forcing produces more coherent trajectories, recalling the presence
of large vortices. On the contrary, for the regular forcing trajectories do not seems to
present any spatial structure. Bellow, we will return to a more precise spacial description
of these flows.

Due to the discrete nature of PTV measurements, it seems pertinent to introduce
some notation, as presented in Figure 4.1c, which is a schematic zoom of a small part
of the top panel’s pictures. Three segments of trajectory are presented here, recorded at
different times: the criterion for grouping these trajectories is spacial proximity rather
than temporal coincidence. This is the very same approach used in top panel’s pictures,
and implies an implicit time averaging process.
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We will index the velocity of each particle on the basis of their time and given trajec-
tory, so the velocity u l

t corresponds to the velocity in the trajectory No l at the instant t.
Of course, the number assigned to trajectories is completely arbitrary, whereas the time
is not. In this way, a Lagrangian trajectory l is composed by a collection of instantaneous
samples, measured at consecutive particle positions

u l = {u l
t1,u

l
t2, · · · ,u l

tmax
}

= {u l
t1(x(t1), y(t1)), · · · ,u l

tmax
(x(tmax), y(tmax))}.

Notice that u l
t was measured on a plane, parallel to the bottom. Thus it is unambiguously

defined by the position (x(t), y(t)), and it has only two components, as we have not
measured the vertical displacement.

We are now in position to consider the standard deviation σu of the whole set of
sampled particles’ velocities on the surface of the flow, which can be written as

σu =
1

Nt Nl

√

√

√

√

Nt
∑

t=1

Nl
∑

l=1

(u l
t − 〈u〉)2, (4.1)

where Nt is the total number of considered frames, Nl is the total number of trajectories,
and

〈u〉 =
1

Nt Nl

Nt
∑

t=1

Nl
∑

l=1

u l
t (4.2)

is the global mean. Notice that 〈u〉 ≈ 0 due the absence of fluxes though lateral walls
and the fact that we are considering the whole cell.

We show in Figure 4.2-left the dependence of the Reynolds number

Reσ = σuL/ν

on the forcing strength controlled by the intensity of imposed electrical current I. L is the
length scale defined by the magnet’s array (see section 3.1), ν is the fluid viscosity and σu is
considered as a characteristic velocity scale for experiment performed at a given intensity
of current, after the statistically steady state is reached. The red curve corresponds to
the regular forcing, the blue one to the random forcing and we also included the line with
1/2 slope in log-log scale, which corresponds to a scaling as

√
I. As discussed in section

3.2, a scaling for the velocity going as

U0 =
√

J0B0L/ρ

is expected from the balance of the Lorentz force and the advection term in the Navier-
Stokes equation. Thus we also plotted in Figure 4.2-right the ratio

σu/U0,

representing the departure of the measured velocity of particles at the surface from the
expected values.
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Figure 4.2: Influence of forcing on particles’ velocities. On the left we plotted Re = σuL/ν
as a function of the forcing strength I. σu is the standard deviation of particles’ velocities
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on

√
I represented by the black line with slope 1/2. On the right we plotted again σu,

but this time over the expected velocity U0 =
√

J0B0L/ρ introduced in section 3.2.

From Figure 4.2-left one can see that the scaling 1/2 is more or less respected for
both forcing protocols at low forcing: In the best case, for the random forcing, one could
say that the scaling is respected until I = 250 A. This can be interpreted as the regime
in which Lorentz force –that acts meanly in the plane– is efficient to inject energy in a
two-dimensional flow. On the other hand, as it can be seen from Figure 4.2-right, the
velocity σu is less than about a third of the one expected from scaling arguments, which
was clearly over-estimated. This can be due to several reasons: To construct the esti-
mate, we used the maximal magnetic field B0 whereas it is far from being homogeneous;
σu corresponds to the standard deviation, then it is a modest estimate, as some velocities
actually reach the expected value U0. Finally, it has to be recalled that we are looking
to the velocity of particles transported by the velocity field instead of the velocity field
itself, thus an effective filtering due to particles’s inertia can be argued. However, these
arguments can explain why the curves are globally lower than 1, although they do not
explain the evolution in terms of the forcing intensity, which is also expressed by the de-
parture from the 1/2 scaling for strong forcing in Figure 4.2-left. One possible explanation
is that our measurement do not take into account the vertical displacement of the sur-
face –and then the one of particles–, which may become very important for strong forcing.

4.2.2 Time averaged Eulerian picture

The global analysis in terms of σu does not take into account the spatial structure of
the flow, which seems to be non-trivial when looking the trajectories in Figure 4.1. One
possible way to take space into account is to consider instantaneous pictures of the flow.
This in not possible in our case, as we have chosen to track a limited number of particles
in order to avoid interactions between them. Thus, within our experimental conditions,
a more reliable way to consider space is to perform a temporal average of the flow. The
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schematic representation of this process is given in Figure 4.1d: We define a grid over the
measurement area, with typical side ∆ and we compute the statistics over the particles
that were at each defined cell, regardless of the time. Thus, we can compute an average
velocity, as well as the fluctuations over that value. We did that for every grid point,
given the fact that after a transient period, particles have explored almost the whole
experimental area.

We have then N cells defined by the coordinates of the regular grid (xi, yi), so we can
call vi = v(xi, yi) the set of velocities corresponding to that position. In the example
of Figure 4.1 (panels (c) and (d)), we have that v15 is composed by three instantaneous
velocities u 27

40, u 04
05 and u 48

77. For each cell, the mean value will be referred as vi and the
standard deviation as σvi

.
Typical Eulerian mean flows vi are presented in Figure 4.3: Both were constructed

from the data sets presented in the top panels of Figure 4.1: on the left we present the
flow produced by the random array of magnets and on the right the one produced by the
regular array. Forcing strength corresponds to I = 275 A in both cases. Here we used
a coarse graining length ∆ = 8 mm. A similar structure is observed independent of the
forcing strength under consideration.

Although already identifiable from the superposed trajectories in figure 4.1-a, from
Figure 4.3-left the presence of a large scale vortex is undeniable. It has a radius of around
7 cm which is larger than both the magnet’s array length scale and the layer thickness.
This vortex is surrounded by some smaller vortices until the whole cell is filled. This
large scale vortex recalls the observations by Sommeria [7] and later by Gallet et al. [1]
in the context of two-dimensional turbulence. Starting from several vortices with sizes
comparable to the typical forcing scale, these vortices experience merging events producing
larger vortices, to end up with one –or few– large scale vortices of size comparable to
the one of the container. Their large-scale vortices are observed to experience reversal
phenomena: abrupt inversions of sense of rotation happening at random time intervals.
In this way the original symmetry of the system is statistically recovered. Our case, on the
other hand, appears to be very different from the one of two dimensional turbulence: we
observe that our large scale vortex is present from the very beginning of the experiment
(or after a short time transient) and although it is not static, it is insensitive to merging
events of small vortices that happen regularly. Therefore, in our case, the sense of rotation
of the large-scale vortex is fixed and it seem to be defined by the forcing.

For the regular forcing (figure 4.3-left), one can observe some vortices and stronger
bands close to walls, suggesting also a large scale circulation. However, the spatial struc-
ture is less clear than for the random case, and a partial explanation of this will be given
next.

On the basis of both the mean flow vi and the temporal fluctuations σvi
, one can

quantify the distribution of the energy in the velocity field. For each cell one can define
the fraction of energy contained in the mean flow

ei =
vi

2

vi
2 + σ2

vi

,

going between 0 when fluctuations concentrate the energy (σ2
vi

≫ vi
2), to 1 when it is
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Figure 4.3: Time averaged Eulerian representation of the flow. Top panels present the
whole eulerian velocity field for I = 275 A. Black line correspond to x0 = 33 cm, where
surface deformation measurements where performed. U component of the averaged ve-
locity is presented on the middle and V component on the bottom. All figures on the left
correspond to random forcing, and those on the right to regular forcing.

concentrated in the mean flow (vi
2 ≫ σ2

vi
). Then one can consider the spacial average of
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this quantity

EMF

ET
= 〈ei〉 =

1

N

N
∑

i=1

ei

over the whole coarse–grained measurement area. It has the same limits as the local case,
and it gives a global comparison of the energies involved in the flow.

In Figure 4.4, we plotted EMF /ET as a function of the imposed current I (the forcing
strength), again for the two forcing geometries. As a general feature, one can appreciate
that the fraction of energy on the mean flow does not changes a lot, despite the increase
of the supplied power. However some variation is present until roughly 200 A. In this
low forcing regime, the fraction of energy in the mean flow is more important, which
is not surprising as the flow seems to be more coherent. The most remarkable feature,
however, is the important difference between both forcing protocols: For the random
forcing, around a half of the energy is in the mean flow; for the regular array on the
contrary, most of the energy corresponds to temporal fluctuations.

This result emphasizes the fundamental difference between the two considered forcing
geometries. It also gives a partial explanation of the less clear spatial structure of the
flow produced with the regular forcing (compared to the one of the random forcing): It
is just because the energy contained in the mean flow is of the same order of magnitude
of temporal fluctuations.

Finally, we focus our attention in the vorticity field, defined from the Eulerian velocity
field v, as:

ω = ∇× v. (4.3)

In particular, the vertical component of the vorticity ωz = ∂xvy − ∂yvx depends only of
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Figure 4.5: Relation between vorticity (top panels) and magnetic fields (bottom panels).
The regular forcing is on the right, and the random forcing is on the left. Both vorticity
field (on the top) correspond to a forcing of I = 300 A, the color-bar range from –10 s−1

(blue) to 10 s−1 (red).

the velocity field on the plane. Thus it can be obtained from our measurements after
taking spatial derivatives of the mean Eulerian velocity field. In figure 4.5 (a) and (b)
we present two examples of mean vertical vorticity field, as it is obtained from the time
averaged Eulerian representation of the flow (vx, vy) = (vi · x̂,vi · ŷ). Panel 4.5a presents
the random forcing and and panel 4.5b presents the regular one. Bottom panels show the
corresponding magnetic fields. Particularly when considering the regular case (compare
right panels 4.5b and 4.5d), one can observe in the vorticity a clear reminiscence of the
imposed magnetic field, which here corresponds to shear bands. For the random array
(left panels 4.5a and 4.5c), the relation is less evident but it is still present, and suggest
the distribution of magnets as a suitable explanation to the large scale vortex. It have to
be noticed that these features become visible only when considering time averaged flows:
they are not evident from an instantaneous observation of the flow.

Some authors already discussed the flow’s dependence on the forcing’s geometry in
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4. Basic flow’s properties

the context of a two layer configuration of stably stratified fluids (in which fluid motion is
produced as in our case: with permanent magnets and an homogeneous electrical current,
but using electrolites instead of liquid metals). The common conclusion is that there is
little difference when looking to statistical quantities, especially when the forcing is strong
enough [5; 6]. This would not be surprising if one considers stratified turbulent flows as
a close approximation to two dimensional turbulence, where the transfer of energy into
larger scales should smear out any signature of the forcing.

However, Williams et al. [9] pointed out that after taking long time averages of the
instantaneous velocity field, the trace of the forcing geometry becomes visible again, even
for a strongly fluctuating flow. Recently, this trace of the original forcing was explored
in more detail for unstationary flows with relatively low Reynolds number (until ∼ 300)
by Liao et al. [3]. They found that, for their experimental conditions, the symmetries
present in the forcing determine the distribution of the energy in the flow. Specifically,
they show that a square lattice of magnets (of alternating polarities) produces strongly
fluctuating kinetic energy, whereas stripes of magnets (also of alternating polarities) drive
stronger velocity gradients.

Although the resolution of our measurements do not allow such a detailed quantifica-
tion, we share the general conclusions of the referred works: there is a strong connection
between the magnetic field and the resulting two dimensional velocity field. Moreover,
our results represent an extension to [9; 3], in the sense that they are valid for much
more intense turbulent flows, and even when bidimensionality is not imposed (i. e. in the
presence of important surface deformation). Under these conditions, we no longer expect
the rough independence on forcing conditions observed also with stably stratified flows
[5; 6].

4.3 Fluctuations on the surface level

For our present purpose of giving an elementary description of the observed flows, we will
consider only one series of local elevation measurements carried out using the inductive
sensor (section 3.4). We consider here the amplitude of surface level fluctuations, as
quantified by the standard deviation (more precisions will be given in next chapter, in
particular in equation 5.4). It is presented in figure 4.6, again as a function of the intensity
of electrical current I, and for both forcing geometries.

From the figure 4.6, one can see that –in this series– fluctuations of the surface level
increase roughly linearly, with a rate of 2 ·10−3 mm/A, although it depends on the forcing
protocol. The linearity of this growth seems to be dependent of the measurement point,
as will be noticed in the next chapter. However, one observation appears to be confirmed
by all our measurements: level fluctuation are more important for the regular forcing.
This suggest, and it is not surprising, that the flow obtained with the regular forcing
is more fluctuating both in terms of kinetic energy and in terms of surface level. The
flow produced with the random forcing, on the other hand, present smaller surface level
fluctuations, as it is more coherent and have a stronger mean flow.
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Figure 4.6: Fluctuations of the height level measured on a single position. It is one of the
curves presented in 4.6. Random forcing is in blue, and the regular one in red.

4.4 Summary: different turbulent flows

In conclusion, in this chapter we emphasized the distinctive features of the flows accessible
with the experimental setup presented in the previous section. We can summarize them
as follows:

• We are able to produce two qualitatively different flows. The first one (produced
by a random forcing) is characterized by a strong mean flow that develops larger
velocities and in which, consequently, fluctuations of the surface level are relatively
small compared to the second one. The second flow (produced by a regular forcing)
is characterized by intense velocity fluctuations, as well as by large surface level
fluctuations. These features are controlled by the imposed forcing geometry defined
by the magnetic field. In both cases, the geometry of the imposed forcing is recovered
in the time averaged velocity field.

• An increase of the velocity fluctuations and of surface level fluctuations is observed
when the forcing strength is increased. There is a partial agreement with the ex-
pected growth of the velocity as

√
I. As surface deformation increases, it is accom-

panied by interesting wave-like features, as it can be seen in figure 5.1 for the regular
forcing case.

• In our experiment the Lorentz force is mainly horizontal; and the thickness of the
fluid layer is small compared with the container size (1 cm compared with 40 or
50 cm). This two conditions impose the structure of our flow: It is a flow where
horizontal motion is dominant over the vertical one. Indeed vertical velocities are
measured (locally) to be of around 10% of horizontal ones. In this sense it tempting
to consider our flow as being two-dimensional.
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4. Basic flow’s properties

However, as noticed before, we also observed rich surface deformation as a conse-
quence of the complex interplay between the horizontal force, rigid walls and bottom
effects (friction and boundary layers as a consequence). Moreover, in order to get a
fully two dimensional flow, one should constraint the flow by using density stratifi-
cation or strong uniform magnetic fields, which is out of the purpose of this study.
Indeed we are interesting in how the surface is deformed as a consequence of a bulk
turbulent flow, and this will be the subject of next chapter.
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versals of a large-scale field generated over a turbulent background. Geophysical &
Astrophysical Fluid Dynamics 106 (2012), 468–492.

[2] Kelley, D. H., and Ouellette, N. T. Using particle tracking to measure flow
instabilities in an undergraduate laboratory experiment. American Journal of Physics
79 (2011), 267.

[3] Liao, Y., Kelley, D. H., and Ouellette, N. T. Effects of forcing geometry on
two-dimensional weak turbulence. Physical Review E 86 (2012), 036306.

[4] Longuet-Higgins, M. S. Capillary rollers and bores. Journal of Fluid Mechanics
240 (1992), 659–679.

[5] Marteau, D., Cardoso, O., and Tabeling, P. Equilibrium states of two-
dimensional turbulence: An experimental study. Physical Review E 51 (1995), 5124–
5127.

[6] Ouellette, N. T., and Gollub, J. P. Dynamic topology in spatiotemporal chaos.
Physics of Fluids 20 (2008), 064104.

[7] Sommeria, J. Experimental study of the two-dimensional inverse energy cascade in
a square box. Journal of Fluid Mechanics 170 (1986), 139–168.

[8] Tabeling, P., Burkhart, S., Cardoso, O., and Willaime, H. Experimen-
tal study of freely decaying two-dimensional turbulence. Physical Review Letters 67
(1991), 3772–3775.

[9] Williams, B. S., Marteau, D., and Gollub, J. P. Mixing of a passive scalar
in magnetically forced two-dimensional turbulence. Physics of Fluids 9 (1997), 2061–
2080.

78



Chapter 5

The effect of turbulence on surface

deformation

In this chapter we will discuss our measurements of the surface deformation. After intro-
ducing the general motivations of this study (section 5.1), we present some details about
the experimental tools we used (section 5.2) focusing on their advantages and drawbacks.
Then we move to experimental results (section 5.3). At this point it is pertinent to
underline that more measurements should be performed in order to make our statistical
results undeniable. Finally we present a summary of the results together with a conjecture
explaining our results.

5.1 Introduction: Can a quasi–bidimensional

turbulent flow generate surface waves?

A couple of general observations can be recalled (from previous chapters) about the flow
we obtain by using the electromagnetic forcing:

• As the principal component of the force is horizontal, and the thickness of the fluid
layer is small, the flow is primarily bidimensional. Let us call it quasi–bidimensional.
As a consequence the dominant component of the vorticity field is the vertical one.

• Despite the dominant bidimensional motion, rich surface deformation can be recog-
nized, in particular by looking to figure 5.1.

Under this conditions, a natural question comes: Can a quasi–bidimensional turbulent
flow generate surface waves?

Indeed, this question motivate the study presented though this chapter.

5.1.1 Arguments to expect wave generation

In the context of sound waves, Lighthill considered the possibility of spontaneous gener-
ation of sound by vortical motion [9]. In analogy to this, authors as Cerda & Lund [1],
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5. Turbulence and surface deformation

or Ford and collaborators [6; 16] considered spontaneous wave generation by bidimen-
tional vortical flows in shallow water. Generation of non-dispersive waves is predicted
for small Froude numbers, and it is indeed observed in numerical simulations [16] for a
Froude number of 0.05. To our knowledge there is no generalization or these theoretical
results to dispersive waves in deep water1. Therefore it is pertinent to ask the question
about wave generation in our experiment, were the Froude number is estimated to range
between 0.01 to 0.36.

Another –cruder– argument can be given by considering that phase velocity has a
minimum at the crossover between gravity and capillarity dominated regimes (see section
2.4). It correspond to 23 cm/s at λ = 1.7 cm for the water-air interface and 21 cm/s
at λ = 1.9 cm for the Galinstan-acid interface under our consideration. The argument
behind this can be traced back to the context of waves generated by turbulent wind (see
for instance [15; 8]). In particular, Phillips [15] understand it as a resonance process
happening a these values. On the other hand, we may notice that this is also the onset
of wave resistance: faster moving objects generate waves [17].

In our experiment, the characteristic –horizontal– velocity is roughly estimated as
U0 =

√

I0B0L/S0ρ, where B0 is the fixed magnetic field, L is a characteristic length-scale
of the forcing and S0 is the area at which the electrical current I0 goes thought. As I0

is used as control parameter, it turns out that the minimum phase velocity of waves is
reached at

I0 ≈ 300 A.

This estimate seems consistent with qualitative observation of our experiment, as shown
in figure 5.1, although some variability appears as a function of the forcing parameters.

Experimental results of Savelsberg & van de Water [18; 19], on the other hand, suggest
that waves can be observed for lower mean velocities.

5.1.2 Statistical features of nonlinear waves

A classical, yet simple analysis to quantify the relevance of wave nonlinearities, is to
study the third order moment in hight level distributions: the Skewness. These ideas can
be traced back to the fifties, when Longuet-Higgins introduced a result that became a
cornerstone for the sea-waves community: when random linear waves are considered, the
surface elevation follows a gaussian distribution [10],

p(η) =
1√

2πση

exp

(

− η2

2σ2
η

)

. (5.1)

The sea surface is considered in the form η(x, t) =
∑

n cn cos (kn · x + ωnt + φn) where φn

are random phases and cn are random variables that respect the condition σ2
η =

∫

Sη(k)dk,
with Sη(k) the continuous spectrum of surface elevation.

Thus, for surface deformations that are symmetrical around the most probable value,
the distribution (5.1) is clearly symmetric. The skewness, which is the measure of the
distribution asymmetry, is zero in this case, by definition.

1Although Coste & Lund extended the theory for gentle departures from shallow water [3].
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(a) I=100A

(c) I=300A

(e) I=500A

(b) I=200A

(d) I=400A

(f ) I=600A

Figure 5.1: Photos of the experiment for increasing forcing strength, Regular forcing.

One may think this distribution as the consequence of simultaneous knowledge of the
shape of individual elements forming the surface (sinusoidal waves in this linear case) and
the statistical distribution of its amplitudes.

The linear result was extended to weakly nonlinear waves [11], in an approximation
that takes advantage of a linear formalism, although including nonlinear interaction be-
tween components. Consideration of weakly nonlinear wave profiles result in a skewness
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5. Turbulence and surface deformation

[11] as

Skewness(η) = 3kpση, (5.2)

where kp is the wavenumber of the spectral peak (remember that we are placed in the
sea-wave context), and ση is the standard standard deviation. Both quantities, kp and ση,
are always positive, and thus the skewness is positive in this context.

This estimate was confirmed later by Tayfun when he introduced its celebrated dis-
tribution [20]. Tayfun distribution is widely accepted nowadays in the oceanographical
context as it present a successful fit for the surface level distribution when nonlinear in-
teracting waves are involved. It depends only on the wave steepness kpση. In particular
it show very good agreement with wave turbulence experiments [5; 4] and large Basin
measurements [13], where peaked waves are observed.

Therefore, to consider the skewness of a hight level distribution give statistical indica-
tions about the symmetry of surface deformations. Moreover, positive skewness may be
related with the presence of nonlinear waves.

5.2 Measurement methods

In order to try a quantitative answer to the introductory question, we performed two
kinds of measurement of the fluid level:

Local measurements by using an inductive sensor:
We briefly recall the principal advantages of this local measurement (the principle

of this sensor is given in section 3.4): (a) It is very easy to use and data analysis is
straightforward. (b) It is non intrusive, as the sensor we use can be placed far enough
from the surface. (c) There is no practical limitation in temporal resolution, so we can
perform very long and well resolved measurements.

Its drawbacks, on the other hand are: (a) It provide no information about spatial
structure of the surface deformation. (b) It perform an intrinsic spatiotemporal filtering
defined by its horizontal section. As we used a model with d =17 mm, one estimates its
frequencial cutt-off at around 12 Hz (see section 3.4). This filtering is, by far, the most
significant drawback of this method.

We performed measurements using this sensor at different points and under different
conditions, which are specified in table 5.1. Each M in the table correspond to a whole
series of measurements, spanning several forcing strengths.

Measurements along a line:
In order to access the spatial structure of the surface deformation, we developed a

measurement method along a line. As for the previous case, here we recall few points.
For the detailed description of the technique see section 3.4. The advantages of the
technique are that: (a) It allows the study of spatially varying surface deformation. (b)
As one record several points at the same time, the statistics can be better than those of a
local measurement for equivalent measurement time. (c) The technique is non intrusive.
(d) Spatial resolution is limited by the thickness of the laser layer we use, of about half
a millimeter. Its drawbacks are: (a) spatiotemporal resolution is limited by the camera
which is used. In our case we used a camera with high spatial resolution but with an
acquisition frequency of just 60 Hz. Also, acquisition length T is limited by the material.
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(b) Vertical resolution of surface deformation is very limited (about 4 pix/mm). (c) Data
analysis is very time consuming. (d) Finally, the range of measurement is smaller than
for inductive sensors.

Given the advantages and drawbacks of these two techniques, whenever it is possible,
we performed both kind of measurements. When it is the case, we will discuss their results
in parallel. However, other measurements were only possible with only one of the two
methods, in particular the spatial and spatiotemporal analyses.

5.3 Experimental Results

5.3.1 General observations

5.3.1.1 Temporal, spatial and spatiotemporal evolution

The temporal evolution of the surface level at a given point x0 is shown in figure 5.2. Four
different experimental conditions are presented, showing natural changes. For instance,
fluctuations are larger and faster when the forcing is increased (in figure 5.2, compare (a)
and (c) with (b) and (d)). However, every signal show erratic motion, signature of the
underlying turbulent motion.

When we consider measurements resolved both in space and time, erratic motion
is visible again, as expected. This is accompanied with coherent motion, evoking in
particular the vortical origin of the surface deformation. This is shown in figure 5.3, where
two instantaneous profiles of the deformation field are presented. Both profiles contain a
vortex, which core is placed at different points (see the caption). As the measurement is
along a line, we cannot be sure if the profile corresponds exactly to a vortex core. However,
they were chosen as the –local– maximal depletions in the spatiotemporal diagram.

In order to consider spatiotemporal measurements, we should notice that the defor-
mation field is composed from two components:

η(x, t) = δη(x, t) + η(x), (5.3)

where δη(x, t) are fluctuations with zero mean, and η(x) are time averages over the whole
measurement period.

Table 5.1: Specifications of local series of measurements. The coordinate system is the
same as for PTV measurements (see top panels in figures 4.1 and 4.3). T is the total
acquisition time and facq. is the acquisition frequency.

Measurement x0 [cm] y0 [cm] T [min] facq. [Hz] Forcing Comments

M1 5 34 5; 40 3012 regular close to border

M2 15 23 5 3012 regular

M3 28 17 5 3012 regular

M4 24 19.5 5; 40 3012 regular

M5 12 18 5 4986 regular/random

M6 44 24 5 4986 regular/random close to border
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Figure 5.2: Examples of temporal traces of the surface level η at a fixed point (from series
M5). Forcing conditions are as follows: (a) I = 150 A, regular forcing; (b) I = 550 A,
regular forcing; (c) I = 150 A, random forcing; and (d) I = 550 A, random forcing.

The spatiotemporal evolution of δη is presented in figure 5.4. Each figure correspond
to 10 seconds and almost the whole container length Lx = 40 cm. Top panels correspond
to a forcing strength of I = 150 A, for the random forcing (a) and regular one (b). Both
panels share a common color–bar symmetric around 0. Bottom panels correspond to a
forcing strength of I = 350 A. Color–bar (again symmetric around 0) span larger values
in this case. As in the temporal traces of figure 5.2, we can see here that fluctuations
increase with the forcing as expected, and that the deformation become faster. We may
notice that the regular forcing seems to present richer dynamics than the random one.

Time averages η(x) are presented in figure 5.5. Here again random forcing is on the
left and regular one on the right. The color–code here is related to the forcing strength,
going from I = 100 A (in dark blue) to I = 400 A (in dark red). Along this chapter we
will maintain the color convention going from blue to red as the forcing is increased.

In opposition to temporal fluctuations δη, random forcing present much stronger time
averaged deformation. These features recall those from the velocity field: random forcing

84



Experimental Results

5 10 15 20 25 30
−4

−2

0

2

(a) I = 150 A

5 10 15 20 25 30
−4

−2

0

2η
[m

m
]

x [cm]

(b) I = 350 A

Figure 5.3: Examples of instantaneous profiles of the surface level η when a vortex is
present. (a) corresponds to a forcing of I = 150 A and the vortex core is placed at
x0 ∼ 24 cm. (b) corresponds to I = 350 A and the vortex core is placed at x0 ∼ 8 cm. In
both cases the forcing is regular.

is more coherent, in opposition to regular one, which is more fluctuating. It is plausible to
expect a more coherent deformation field from the more coherent velocity field. Indeed,
one may see –qualitatively– a strong correlation between the averaged deformation η(x)
and the corresponding averaged velocity profiles, presented in previous chapter (see figure
4.3, which is obtained on the same line as deformation measurements).

Therefore, as the time averaged profiles strongly depend on the forcing conditions, in
what follows, we will focus our attention only in the fluctuations δη.

5.3.1.2 Amplitude of fluctuations of the surface level

We will focus now on statistical quantities, suitable for the problem under our considera-
tion.

We consider first the standard deviation:

ση =

√

1

NC

∫

(δη)2 dΩ, (5.4)

where δη = η − η are fluctuations of the surface level; dΩ is the integration domain (just
dt for time evolving signals or dt dx for signals evolving in space and time) and NC is the
corresponding normalization constant.

The measured standard deviation is presented in figure 5.6. Colors represent the
forcing protocol: regular forcing is in red and random forcing in blue. This color notation
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Figure 5.4: Spatiotemporal evolution of the fluctuating part of the deformation field δη.
Panels on the left are for the random forcing, and those on the right for the regular one.
(a) and (b) correspond to a forcing of I = 150 A, although (c) and (d) to a stronger one
of I = 350 A.

will be respected all along this chapter. For each forcing strength (defined by the intensity
of electrical current I) we performed measurements resolved in space and time. With the
data we can get a global value for the fluctuations. However, using the same data set, we
performed a coarse–graining process on a given spatial window, in order to estimate the
error–bars shown in the figure.

One of the differences between random and regular forcing –discussed before in a
qualitative manner– is now quantified: the regular forcing produces strong temporal fluc-
tuations, growing at a rate of about 3·10−3 mm/A; on the other hand, the random forcing
develops weaker fluctuations, growing at a rate of about 2 · 10−3 mm/A.
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Figure 5.5: Time averaged part of the deformation field η. Panel on the left is for the
random forcing, and the one on the right for the regular one. Color–code evolves with
the intensity of forcing, going from a weak one (I = 50 A, in dark blue) to a stronger one
(I = 400 A, in dark red).

5.3.2 Surface level spectra

The next feature to consider when studying erratic signals, is the spectral content. Indeed,
heigh fluctuations in fluids with free–surface had shown nontrivial phenomena as power–
law spectra, in analogous way as for turbulent motion (see, for instance, chapter 2, or
Falcon et al. [5]). We are referring here to the so–called wave–turbulence theory, which
is a natural framework to compare with our experimental results.

We measured first the frequency spectrum, obtained for the regular forcing and for
several forcing strengths (as referred in the legend). Examples are presented in figure 5.7-
left. They are obtained using the inductive sensor, as it has a better temporal resolution.
We compute the Power Spectral Density (PSD) using the welch estimator. Typically we
compute the PSD using a 215 points window (acquisition frequency is 3012 Hz in most
cases) overlapped 1/4 of its length. Thus the resulting PSD was averaged at least 100
times. We used a Hamming window in each section of the signal.

What we shown in figure 5.7-left are the PSDs of the normalized surface level δη/ση,
that show a power-law dependence on the frequency from 1 or 2 Hz to 10 or 20 Hz.
We also traced a reference power-law PSD(f) ∼ f−5 that appeared to be in qualitative
agreement. We will come back to its interpretation.

To be more quantitative, we computed a linear fit in the log-log representation, thus
assuming the power-law dependence on the frequency for the range from 2 Hz to 10 Hz.
This is presented as the ω-slope in figure 5.7-right2. Error-bars were constructed over
equivalent realizations (same forcing strength and same forcing protocol).

2We preferred to use a fixed range in order to make the comparison easier. This choice pushed us
to exclude lower forcing strengths from the analysis, as the power-law dependence was not clear. The
analysis was performed for local measurements presented in table 5.1, although we excluded measurements
done close to the wall, as they present the trace of a peak identifiable with the container size, that made
the fit more questionable.
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Figure 5.6: Standard deviation (STD) of the surface level δη for spatial measurements.
Error bars are constructed on spatial deviation (the space is divided on 25 zones). See
more details on section 5.3.5.

Figure 5.8-left presents the spatial spectrum for the regular forcing. Here again we
used the welch estimate of the PSD, but as this time signals correspond to images (of 1640
pixels of horizontal length), we computed the PSD in each frame along its whole length
with no overlap. The PSD of the mean profile is subtracted in order to focus ourselves in
fluctuations. The instantaneous PSD is averaged for the whole set of frames (3600). At
low forcing there is a peak corresponding to λ ∼ 10 cm, which is larger than the expected
vortex size (this is not observed for the random forcing). However, we cannot discard a
preferred scale –selected by the forcing– of separation between vortices. For larger forc-
ing, we performed log-log fits between inverse length-scales from 0.13 cm−1 to 0.5 cm−1,
despite they are much more questionable than those for the ω–spectrum. The results are
shown in figure 5.8-right.

In a general manner, we can say that the ω-slope (fig. 5.7-right) spans values from -6
to -4, and we can already notice that a comparable range of slopes was observed for the
gravity spectrum in experiments of wave turbulence (see, for instance, Falcon et al. [5]).
k-slope on the other hand (fig. 5.8-right) spans values from -4.8 to -2.7.

Both ω-slopes and k-slopes show the tendency to increase when the forcing is in-
creased, although there is considerable difference concerning the forcing protocol: slopes
for random forcing are higher than those observed with the regular forcing.

We can recall two paradigmatic predictions for the spectrum of gravity waves (already
discussed in the introduction, section 2.5): wave turbulence theory predicts a power law
spectrum as f−4 for the frequency and as k−5/2 for wave-number. It is based on the weak
interaction of (four) nonlinear waves and it is also dependent on the injected power. A
second prediction is the one by Phillips [14], where the frequency spectrum scales as f−5
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Figure 5.7: (a) Examples of Power Spectral Densities (PSDs) of the rescaled surface level
δη(x0, t)/ση taken at position M4, roughly at the center of the container. We used the
regular forcing with strengths referred in the legend. The power law f−5 is plotted as a
reference. (b) ω-slopes obtained from the fit of the PSD between 2Hz and 10Hz; error
bars were computed over realizations taken far from container borders.
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Figure 5.8: (a) Spatial PSD computed from measurements along the line δη(x, t). Here
colors go from I = 50 A (blue) to I = 400 A (red). The power law k−4 is plotted as a
reference. (b) k-slopes obtained from the fit of the PSD between 0.13 cm−1 and 0.5 cm−1.

and wave-number in k−4. It is based on the limiting peaked shape of waves near breaking,
thus it represent a more geometric picture. However, it should be noticed that for one
dimensional measurements this spectrum should read k−3 as suggested, for instance, by
Nazarenko et al. [12].

Phillips’ prediction is not only the closest one to our experimental measurements. It
can be formulated on discontinuity arguments, whatever the orientation of the discon-
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Figure 5.9: Probability distribution functions of δη(x, t): (a) random forcing; (b) regular
forcing. Color–code is the same as in figure 5.8.

tinuity is. Therefore it is valid for discontinuities coming both from strongly nonlinear
waves, and from vortices cores, as those presented in figure 5.3. To this point, we cannot
distinguish which of the two processes originate the Phillips’ spectrum in our experiment,
although vortices seem to be more plausible candidates.

5.3.3 Asymmetry in surface level distributions

Now we consider the distribution of hight fluctuations δη, in the form of normalized
histograms or Probability Distribution Functions (PDFs). In figure 5.9 we present the
PDFs obtained from spatially–resolved measurements. PDFs for the regular forcing are on
the right and those for the random forcing on the left. As we already know the amplitude
of fluctuations ση (see figure 5.6), we traced here the normalized PDFs: the distributions
of δη/ση. By doing so, we focus on the shape of the distributions.

We can remark that distributions are asymmetric, and always concentrated through
values below the mean. This feature can be quantified by considering the third order
moment of the distribution, or skewness, which is actually a measure of the distribution
symmetry. It is defined as

Skewness(η) =

(

1

NC

∫

(δη)3dΩ

)

/

σ3
η, (5.5)

with the same notations used for equation (5.4). It is negative when the distribution
has more values under the most probable value; zero when the distribution is perfectly
symmetric (for example a gaussian); and positive when the distribution presents more
values over the most probable one.

Thus, the asymmetry of our distributions is confirmed in figure 5.10. As for the com-
putation of ση, we performed a spatial coarse–graining to get a more representative value
and the corresponding error–bars. Then, the most salient feature is that the skewness is
always negative and almost independent of the forcing. This quantification is consistent
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Figure 5.10: Skewness of δη(x, t) for spatially resolved measurements. The black line at
zero corresponds to a perfectly symmetric distribution. As in figure 5.6, error–bars are
constructed by considering spatial variability.

with our observations of the PDFs. In particular it is interesting to emphasize the almost
negligible changes in the shape of the distributions, which is why the skewness stay almost
constant. We can notice that the shape of the distributions is more than fixed: it is also
nontrivial, especially in the case of the regular forcing (figure 5.9b). Indeed, one may
think that a second maxima is developing and eventually the distribution will become
bimodal. But we check that the signals are not bistable. Another origin of this particular
shape may be found when superposing selected profiles, as we do in figure 5.11. Here we
superposed the same profiles from figure 5.3 after re–normalizing them on ση. This sug-
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Figure 5.11: Vortices from figure 5.3 rescaled by the standard deviation.
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gest the self–similar shape of depletions as another explanation for the non–trivial shape
of distributions. However, more profound analysis should be done in order to confirm this
hypothesis.

Let us return to the connection with wave–turbulence. First we should notice that
in wave–turbulence experiments [5] and in for ocean waves [13], the skewness is always
positive and increases linearly with the forcing (see equation (5.2)). Therefore, nonlinear
wave theories are in complete disagreement with our observations. However, it is still true
that a non zero skewness could be interpreted as the statistical signature of a nonlinear
process shaping the distribution. In our experiment we observe a negative skewness and
we saw the natural candidates: coherent vortices. Surface deformation of individual
coherent vortices present a natural asymmetry though values under the mean level as a
consequence of the lower pressure in vortices cores. Therefore, level depressions could have
more statistical weight due to vortices, partially explaining our observed distributions.

Vortices are natural candidates to explain both the observed Phillips’ spectrum, and
the negative asymmetry of the height distributions. Therefore, it is tempting to see these
two results as the statistical signature of vortices on the surface deformation.

5.3.4 On the possibility of wave generation

Despite the PDFs suggest vortices as the principal content in our deformation signals, the
observed spectra give no indication about its origin –let us say, if they come from vortices
or from nonlinear waves–. This is particularly true about Phillips spectrum.

On the other hand, for the arguments developed in the introduction of this chapter,
we expect some generation of waves by the turbulent flow. Therefore, it is interesting to
ask ourselves if the measured deformation respect the dispersion relation of linear waves.
It was shown that it is the case for externally excited waves: monochromatic waves (see,
for instance, next chapter); random nonlinear waves [7; 2] and in some experiments of
channel flows [18; 19].

To study that, we consider is the joint (ω, k)-spectrum. It is obtained by applying the
Fast-Fourier-Transform (FFT) to the spatiotemporal diagram δη(x, t). As for the PSD
calculations, Hamming windows is used. Despite the limited acquisition time (1 min), and
as in this analysis the temporal resolution is not crucial, we divided the original signal
in 6 shorter time windows that were overlapped in 1/4 of the period, in order to average
few times. This result in a temporal resolution of ∆f = 0.1 Hz, together with the spatial
resolution that is kept unchanged at ∆λ−1 = 0.025 cm−1.

Few examples for different forcing conditions are given in figure 5.12, where the (ω, k)-
spectrum (expressed in the non-angular variables (f, λ−1)) is plotted in logarithmic scales.
Both frequency and inverse length-scale are in linear scale. Figures on the top correspond
to moderate forcing (I = 150 A), and figures on the bottom correspond to a stronger
forcing (I = 350 A); right panels correspond to regular forcing and those on the left to the
random one. In every case we included the full dispersion relation for gravity-capillary
waves, although only gravity waves are expected in the shown region.

All figures look very similar despite the differences in forcing conditions: In all cases
the most energetic scales correspond to zero frequency (at least lower than 0.1 Hz) and
small, but not necessary zero inverse length-scale. This spectral content is clearly not
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(b) Regular forcing, I=150A
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(c) Random forcing, I=350A
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(d) Regular forcing, I=350A
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Figure 5.12: (ω, k)−spectrum obtained from computing the FFT of the spatiotemporal
diagram. It is plotted in logarithmic scale. (a) Random forcing at I = 150 A; (b) Regular
forcing at I = 150 A; (c) Random forcing at I = 350 A; (d) Regular forcing at I = 350 A.
In all cases we included the dispersion relation for gravity-capillary waves (black lines).

associated to waves and most likely to the vorticity field. However, careful observation
at frequencies larger than 1 Hz, allows us to notice that part of the spectral content
follow the dispersion relation, especially for the regular forcing. This give some indication
of the presence of waves in our flow. However, this indications should be confirmed
by complementary measurements and analysis. For instance, the data analysis of the
measurement along a line may be reformulated (see the perspectives of the technique in
section 3.4). By doing so, we could analyze stronger forcing, where the effect is expected
to increase. On the other hand, global measurements may improve the statistics and
make clearer any spectral signature of the waves.

5.3.5 Technical challenge: which measurement we trust?

We should discuss a still puzzling issue concerning height level measurements: there is a
discrepancy between local and spatially resolved measurements. It seems to come from the
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Figure 5.13: Discrepancy in measurement of ση. (a) Standard deviation of δη(x, t) mea-
sured along a line (figure 5.6). The space is divided in zones of 17 mm where fluctuations
are computed. Symbols represent the mean fluctuation amplitude and error–bars give
account of the dispersion about this value. (b) Standard deviation of δη(x0, t) measured
with the inductive sensor. Error–bars are constructed over experimental realizations. (c)
Temporal trace comparing local and spatially resolved measurements. Local signal is ac-
quired at M4: x0 = (24,19.5) cm. From spatially resolved measurement we choose a point
at xg = (25.3,20) cm. However, measurements are not simultaneous.

drawbacks of local measurements: (i) the inductive sensor we used performs averaging due
to its large size; (ii) the somehow arbitrary position on which local measurements where
taken. Now we present these discrepancies, together with a discussion of their possible
origin.

In figure 5.13, we present the amplitude of fluctuations, as quantified with the standard
deviation of the deformation field δη. Figure 5.13a is actually figure 5.6, and it is included
again for comparison. It is obtained using space resolved measurements: once we have
the deformation along the whole line, we divided it in few regions. Thus, for each region
we obtain independent values of ση, from which error–bars are obtained. This procedure
is similar to have several small sensors which perform averages over the given length scale
at different places3. If we consider the line as a whole, we get a single –and slightly larger–
value for the standard deviation. Figure 5.13b is the standard deviation obtained with
local measurements. In this case, for each forcing strength, we performed measurements
at different points (detailed in table 5.1). Symbols represent the mean value over all these
measurements; and error-bars reflect maximum and minimum values for each forcing
strength. In this way the region defined by error-bars covers the whole spanned values.

When comparing figures 5.13a and b, one may observe a significant increment on the
values of ση measured with the line (a), compared with those obtained with local mea-
surements (b). The possible reasons: (i) local measurements are performed at particular
places. (ii) Spatially resolved measurements contain the fluctuating component δη and a
temporal average η. (iii) Local measurements perform spatial average and give smooth

3Indeed, the scale we used is 17 mm: the diameter of the inductive sensor. However, the area
considered in this coarse–graining is much smaller than the one used by the sensor.
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Figure 5.14: Discrepancy in asymmetry features of the PDFs. (a) Examples of PDFs of
δη(x0, t) for long measurements (40 minutes) taken at the center of the container, using
the regular forcing. They are normalized by the corresponding standard deviation, and
compared to a gaussian (black dashed line). (b) Skewness of δη(x0, t). The black line at
zero corresponds to a perfectly symmetric distribution. Error–bars are computed using
the same procedure as for to those of the STD in figure 5.6. Colored stars correspond
to example distributions (a). (c) Skewness of δη(x, t). As in figure 5.13a, error–bars are
computed over spatial variability.

signals. From these three, we should exclude the second one, as we concentrate all our
analysis on δη. On the other hand, in figure 5.13c, we compare 10 seconds of local signal
(in black) to part of the spatially resolved signal (in blue), despite the signals are neither
simultaneous nor corresponding to the same point (see caption). We may see that blue
signal captures peaked features in a better way the than black one, suggesting the filtering
of local measurements as a very relevant one. We cannot discard the reason (i) although
it cannot be evaluated without doing a more systematic study, which is a perspective.

It should be noticed, however, that the general qualitative features of the measure-
ments remain unchanged. (1) Random forcing (in blue) produce smaller fluctuations than
the regular forcing (in red). (2) The amplitude of fluctuations grow almost linearly with
forcing, and get values of the order of a millimeter when the forcing is strong.

Now we focus on the asymmetry of the hight level distributions. In figure 5.14a, we
show examples of PDFs of normalized fluctuation amplitudes η(t)/ση obtained in long
measurements (40 minutes) with the local inductive sensor. They are obtained using
the regular forcing (at point M4) for three forcing strengths. The gaussian distribution
with standard deviation equal to 1 is also shown as a reference (black dashed line). This
three examples show some asymmetry, but they are much more symmetric than the
PDFs obtained in spatially resolved measurements (figure 5.10). The skewness of local
measurements is presented in figure 5.14b, considering all realizations (table 5.1), most
of them performed during shorter times. This figure includes the values of the examples
as stars of the corresponding color. For comparison, the skewness of spatially resolved
measurements (figure 5.10) is presented again in figure 5.14c.

Three main features appear in figure 5.14b: (i) the regular forcing (in red) show lower
skewness than the random one (in blue). (ii) There is an increase in the skewness with
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the forcing strength. It is similar for regular and random forcing, and it is seems to be
linear. (iii) As the skewness starts at negative values and increases with the forcing, there
is a forcing at which the asymmetry changes in sign. Figure 5.14c only reproduces the
first feature. Moreover, it replaces (ii) and (iii) by another, equally striking feature: the
skewness is always negative and almost constant.

The possible explanations of the discrepancy are similar to those for ση. The filtering
process performed by the inductive sensor seems a major element: it smooth the signals,
turning them more gaussian. However, this cannot explain any evolution of the skewness
through positive values. We have to notice that long measurements (as those presented
in figure 5.14a and as stars in 5.14b), do show very small skewness, and those with
poor statistics present larger values. One has to recall that high order moments –as the
skewness– are very sensitive. They can only be trusted when statistics are significant. In
this sense, the quality of statistics is expected to be less crucial in the case of ση. Finally,
the fact that we measured only at given points, could be another source of disagreement.

To conclude, we presented and discussed the elements of discrepancy between the two
methods of measurement we used. Local measurements are not precise enough to capture
the details of peaked deformations, as those concerned in our study. Thus, in most of the
quantities studied here, spatially resolved measurement give us more confidence. On the
other hand, the very limited temporal resolution of our spatially resolved measurement
make the local measurement a necessary complement. Even if some arguments were de-
veloped, discrepancies in the skewness are strong –both quantitatively and qualitatively–
and deserves further analysis.

5.4 Summary and conclussion

In summary, in this chapter we considered the surface deformation produced by a quasi–
bidimensional velocity field. By performing spatially resolved measurements, together
with local ones –better resolved in time–, we acceded to the surface deformation and its
statistics.

Fluctuations of the surface level increase when the forcing is increased. This is eval-
uated by the standard deviation ση. At strong forcing, ση exceed the millimeter, which
corresponds to the 10% of the fluid layer thickness. Largest deformation can reach the half
of the layer thickness, as it can be seen from Probability Distribution Functions (PDFs).

There are systematic differences between forcing protocols: random forcing produce
smaller fluctuations (δη) than the regular forcing, although time averaged profiles (η) are
larger. Regular forcing present opposite features. This is consistent with the picture given
by velocity fields –considered in the previous chapter–: random forcing produces a more
coherent, large–scale time averaged velocity field (more important than its fluctuations).
This induces strong average deformation profiles and smaller fluctuations. Regular forcing
presents a less important time averaged velocity field, with larger temporal fluctuations.
This is also translated into surface deformation.

When considering the spectrum of surface level fluctuations, we observe a frequency
spectrum with clear power-law dependence on the frequency. ω-slopes are qualitatively
close to -5 (quantitatively they range from -6 to -4). For the wave-number spectrum
k-slopes range approximately from -4.8 to -2.7. Strong vortices that develop local singu-
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larities, are expected to show a Phillips like spectrum (in k−3 and ω−5).
Non trivial PDFs are observed. They show important asymmetries through values

under the mode. This is quantified by the skewness of the surface level distribution,
which is negative.

As we are dealing with the deformation of free surface subjected to gravity and cap-
illarity, we discussed possible connections with wave–turbulence theory, developed in the
same context. Here, ω-slopes are consistent with measurements in wave–turbulence ex-
periments, although the asymmetry features in surface level distributions (PDFs) are
completely different. On the other hand, the frequency spectrum close to -5 and the
negative skewness corresponds to the statistical signature of surface deformation induced
by vortical motion.

Finally, when looking the joint (ω, k)-spectrum, we observe a very modest part –
although still visible– of the surface energy following the dispersion relation of gravity-
capillary waves. This give some hope about observing waves in our setup, despite it
seems necessary to perform global measurements of the deformation field in order to be
conclusive about this point.
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Chapter 6

The effect of turbulence on wave

propagation

6.1 Introduction

Fluid flows bounded by a free surface exhibit rich dynamics, from simple structures as
waves or vortices, to strongly interacting turbulent regimes (see [3], chapter 2 and/or
figure 1). Indeed, these strongly interacting regimes between structures of the same kind
allowed the development of celebrated theories during last century: fully developed hydro-
dynamic turbulence, which studied and characterized the nonlinear interaction between
eddies (vortical structures of characteristic length and velocity) [10] and later on wave tur-
bulence, which studied and characterized the nonlinear interaction between waves [7; 14].
Despite its comparable fundamental interest [2; 4], the problem of wave–eddy interac-
tion –known as Wave–Vortex interaction problem, where these two theories merge– has
received considerably less attention.

The Wave–Vortex problem is properly an interaction problem, as waves can influence
vortex dynamics1, and vortices can affect wave propagation and their structure. As it
could be expected under these circumstances, such a complex problem is far from being
completely understood. Some progress, however, can be summarized in the different facets
of the interaction:

• Generation of vorticity by waves: Wave breaking is the clearest mechanism by which
waves generate vorticity in the oceanographical setting. It happens on at least
two scales: On scales at the order of –or smaller than– the wavelength, as water
enters vertically producing a sudden perturbation, with the consequent strong shear,
horizontal vorticity and, eventually, air entrainment [11]. Wave breaking can also
induce vertical vorticity that progressively transfers energy from small scale breaking
waves to larger scale rotational motion, especially –but not exclusively– in the surf–
zone [16; 6].

1In the following we will make no distinction between vortices, vorticity and turbulence, as they are
intimately related.
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Figure 6.1: Waves and a vortex in japanese art, by Utagawa Hiroshige (∼ 1855).

• Distortion/scattering of turbulence by waves: The previous case deals with vorticity
generation from otherwise calm and perhaps irrotational fluid (at least on the start-
ing phase). In a more general situation the fluid may be already turbulent. In that
case, waves can still modify turbulence by increasing its turbulent kinetic energy.
Apart from wave breaking, other enhancing mechanism is the coupling between tur-
bulent motion and Stokes drift, which increase the turbulent kinetic energy to the
detriment of wave energy [20; 1; 19].

• Generation of waves by turbulence: As we discussed in chapter 5, this topic can be
traced back to Lighthill [13] and to the vast context of wave generation by turbulent
wind. It was considered later by Cerda & Lund [5] and by Ford [9], and more
recently in a experiment by Savelsberg & van de Water [18].

• Distortion/scattering of waves by vorticity: This problem was addressed theoreti-
cally by Phillips in the fifties [17]. He considered gravity waves (of wavenumber k,
wavelength λ, frequency ω and wave velocity cw) over a turbulent background, only
characterized by the (small) intensity of turbulent fluctuations (with typical veloc-
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Figure 6.2: Schematic representation of the validity regions of the Phillips [17] and Texeira
& Belcher [20] predictions for wave dissipation by turbulence.

ity Ut and length scale L). He found the directional distribution of the scattered
wave, together with a prediction of the associated decrease of the wave amplitude
during this process. One may model the propagation and dissipation of a wave as
η(x, t) = a0e

αx sin(kx− ωt), with a0 the initial wave amplitude and α a spatial dis-
sipation coefficient. Phillips predicted that dissipation scales as αPh ∼ ǫ2/3k4/3/g in
the limit of small wavelengths compared to the typical scales of turbulence λ ≪ L.
More recently, Teixeira & Belcher considered –also theoretically– the opposite limit
λ ≫ L and found a dissipation as αTB ∼ U2

t k2/g [20]. Both theories also as-
sumed cw ≫ Ut. We schematized them in figure 6.2, where we traced the energy
spectrum (considering U = cw + Ut) as a function of the wavenumber k, although
only for the turbulence–dominated part the spectrum is well known: it scales as
U2 ∼ ǫ2/3k−2/3, as given by Kolmogorov theory. This scaling allowed us to notice
that both predictions are actually part of the same picture, because if we extrap-
olate the Teixeira–Belcher scaling into the turbulence dominated part, we recover
the Phillips prediction.

Experimentally, the influence of a turbulent flow on waves was studied by Ölmez
& Milgram [15], and more recently –and under different conditions– by Falcón &
Fauve [8]. Qualitatively, both experiments conclude that turbulent motion enhances
wave dissipation. However, they do not access the spatial structure of the process.
In other experiments, it was shown that a simple vorticity configuration (one or two
vortices), leads to phase shifts of a surface wave that propagates over it [21; 22].
These attempts underlined the profound influence of turbulence on propagating
waves, although a more general picture of the process is still lacking.

In chapter 5 we briefly discussed the possibility of wave generation by turbulent motion.
This chapter will be devoted to another aspect of the Wave–Vortex Interaction problem:
the influence of vorticity on monochromatic waves.

Despite hydrodynamics is perhaps the most natural context for the study of the in-
teraction of waves with turbulence, it can be noticed that the problem is also relevant in
the context of wave propagation in heterogeneous media.
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6. Turbulence and waves

6.2 The Experiment: MHD flow + mechanically

induced waves

We used the very same Magnetohydrodynamical (MHD) forcing presented along this
thesis, although we only consider here the regular forcing (section 3.1). The choice is
based in our interest of studying a highly fluctuating turbulent flow, for what the regular
forcing is better suited.

We excite waves on the liquid metal surface by means of an electromagnetic shaker
controlled by a function generator. Therefore, a vertical sinusoidal vibration is applied to
the liquid surface by a cylindrical paddle with horizontal extension of 11cm. This source
of waves is placed on one corner of the working area, and measurements are performed
on the diagonal (local measurements) and along the central line (see the setup schema
in figure 6.3). We chose the vertical excitation as we expect to transfer most of the
injected energy into wave modes. Horizontal excitation, on the other hand, is expected
to transfer an important part of the energy into the velocity field. A drawback of this
choice is the limitation of excited wave amplitudes because of the small fluid depth. A
second limitation comes in general because of the formation of drops when the forcing is
too strong.

As for the study of surface deformation, we measured the fluid level along a line using
the stereoscopic detection (green line in figure 6.3), and locally by using an inductive
sensor placed at the individual positions M1, M2 or M3 in figure 6.3.

The local measurements to be considered here are performed at points M3 and M2,

M1

M2

M3

Vertical excitation

top view

side view

Surface level Measurement

wave tra
in

tu
rb

u
le

n
t !

ow

Figure 6.3: Experimental setup for study wave-vortex interaction.
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Table 6.1: Detail of local measurements. M. Point is the measurement point, with coor-
dinates (x0, y0); MHD forcing conditions are presented in terms of the imposed electrical
current, in Amperes; a Label is given in order to distinguish from cases with only waves,
only turbulence, or both.

M. Point (x0, y0) [cm] Wave conditions MHD forcing Label

M3 (28, 17) f0=7Hz {0–400}A M3W / M3WT

M3 (28, 17) no excitation {20–400}A M3T

M2 (15, 23) f0=7Hz {0–350}A M2W / M2WT

M2 (15, 23) no excitation {25–350}A M2T

Table 6.2: Scales involved in the experiment. Length scale can refer both to a wavelength
λ (for excited waves), or to another physical dimension.

Source Length scale [cm] Frequency [Hz]

Container 40 & 50 0.67 & 0.53

Fluid thickness 1 23.16

MHD forcing (mean magnets separation) 3.8 5.92

Wave excited at 5 Hz 4.7 5

Wave excited at 7 Hz 3.1 7

Wave excited at 8 Hz 2.7 8

and their details are presented in table 6.1. As we are dealing both with a MHD forcing
(producing irregular fluid motion) and with externally excited waves, sometimes we di-
rectly refer the flow produced by the MHD forcing as being turbulent, although is some
cases (at low forcing) it is just unstationary.

Finally, we include in table 6.2 some relevant length and time scales involved in the
experiment, specially those related to the forcing scale of turbulence, and those of the
externally excited waves. Frequency and length scales presented here are linked by the
dispersion relation

ω2 =

(

ρ1 − ρ2

ρ1 + ρ2
gk +

γ

ρ1 + ρ2
k3

)

tanh kh, (6.1)

considering all length scales as being a wavelength. ω is the angular frequency, k = 2π/λ
the wavenumber, g is gravity, γ is surface tension, ρ1 is the density of Galinstan, ρ2 the
one of acid and h is the fluid thickness.

6.3 Experimental results

6.3.1 Local measurements

In figure 6.4a, we present the standard deviation of height fluctuations. The four con-
sidered series presented in table 6.1 are included. We can see that there is not much
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Figure 6.4: (a) Standard deviation of height fluctuations, for measurements referred in
table 6.1. (b) Probability distribution functions for a case without turbulence (M3W, in
black) and three cases including turbulence (M3WT, in colors).

influence of waves in the global amplitude of fluctuations. This is confirmed by the PDFs
presented in figure 6.4b. Black line correspond to a case without turbulence (M3W).
With a careful observation, one can appreciate that the distribution is bimodal, which
is standard for a monochromatic sinusoidal oscillation. But it is also apparent that the
amplitude is very small compared with those excited by the turbulent flow (M3WT, in
colors) even when the forcing is not strong. Thus wave amplitude do not affect turbulent
fluctuation amplitudes. Indeed, the imposed excitations are reflected as oscillations –at
the given frequency f0– superposed into larger scale height fluctuations produced by the
MHD forcing. This can be seen in the spatiotemporal diagram in figure 6.6b.

In figure 6.5 we present the Power Spectral Densities (PSDs) of the corresponding
measurements. They are computed using the same protocol as in chapter 5. In left panels
we show the Wave + turbulence case (WT). Black lines correspond to I = 0 A, which is
the case with no turbulence (W), and then, colors go from blue to red as the strength of
the forcing is increased. Panel 6.5a is at point M3, and panel 6.5c is at point M2. Right
panels present a selection of the WT cases (in circles), together with their turbulent (T)
counterparts: the equivalent cases with no waves (thin lines of the corresponding color).
Panel 6.5b is at point M3, and panel 6.5d is at point M2.

An intrinsic dissipation of waves over distance is expected. It can be recognized by
comparing black curves in figure 6.5: we observe that the amplitude of the spectral peak
at 7 Hz, associated to the excited wave, is around 5 times higher at M3 (top panels) than
at M2 (bottom panel). M3 is closer to the wave source than M2. The quantification of
this is given below.

For the cases with wave and turbulence, we can see that wave peaks measured at
M3 persist until larger forcing than those measured at M2: from figure 6.5a one can
distinguish the wave peak even at the larger forcing considered (I = 400 A in this case).
At M2 the wave peak is no longer distinguishable from around I = 200 A (see the blue
symbols in figure 6.5d). For cases were the wave peak is perceptible, it is accompanied by
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(d) T / WT, Point M2
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Figure 6.5: Power spectral densities (PSD). Top panels corresponds to M3, and bottom
panels to M2. Figures on the left were obtained with turbulence and waves for all the
explored forcing intensities. Those on the right are few examples when wave + turbulence
(WT) is compared with the case with only turbulence (T).

the peak widening. These effects are the joint result of turbulence and dissipation over
the distance traveled by the wave.

We can also compare cases with waves + turbulence and those with only turbulence
by looking to the examples presented on right panels of figure 6.5. Solid lines (T) and
symbols (WT) match very well until the frequencies associated to the peak induced by
external excitation. Therefore one can conclude that the low frequency spectrum is the
consequence of turbulent flow. For frequencies larger than the mechanically excited one,
both spectra become different in general.

6.3.2 Spatiotemporal analysis

Although local measurements already show the effect of turbulence on wave dissipation,
those resolved in space give further information about how it occurs, and allows alternative
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Figure 6.6: Spatiotemporal evolution of η(x, t)−η(x) and the corresponding spectral rep-
resentations. The excitation is at f0 = 5 Hz alone (left panels), and the MHD forcing is at
I = 080 A (right panels). The spatiotemporal evolution is shown in top panels. Frequency
spectra –computed at each x– is on the middle. Frequency–wavenumber spectrum is on
bottom panels. It includes de dispersion relation for linear waves (black line).
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quantifications. Thus we present now the spatially resolved measurements performed in
the central line (see figure 6.3). The methodology used is similar to that presented in
chapter 5: we acquire images of a line of diffused light produced with a laser sheet, at
frame rate of 60 Hz. Then we post–process the images in order to get the evolution of the
fluid height η. After interpolation of loss points, we performed an spatiotemporal filtering
(low pass filter at 20 Hz for time, and at 2 or 5 mm in space), and we subtracted the time
averaged profile. Thus, in what follows we are concerned only with height fluctuations
η(x, t) − η(x), both produced by excited waves or by the MHD forcing.

Top panels in figure 6.6 present our typical observations. In 6.6a, there is only the
mechanically excited wave (here at f0 = 5 Hz). Although wave propagation appears very
clear, the wave pattern is not completely trivial, both because the measurement line is not
perpendicular to wave propagation, and because the wave train is not truly a plane wave.
Panel 6.6b present the deformation of the surface when there are both a wave (again at
f0 = 5 Hz) and an underling fluid motion produced by MHD forcing at I = 80 A. In this
case, the contributions to surface deformation are easy to identify: waves correspond to
oblique lines (as in top–left panel), and the big red / blue zones corresponds to larger scale
fluid motion. Interestingly, one can already notice here that waves are visible only until
around x ∼ 25 or 30 cm, as a consequence of the enhanced dissipation produced by fluid
motion. Panels in the middle present the corresponding Power Spectral Densities (PSDs),
which are computed at each spatial position. In panel 6.6c, where there are only waves,
the peak at f0 and its harmonics are the most important features, although some spatial
modulation of the peak appears with no clear origin: it could be due in part to resolution
limitations of the technique, but also to wave reflexions in walls or to the sources of spatial
variability evoked just before. On panel 6.6d, there is the PSD corresponding to the data
presented on panel 6.6b. One can see the f0–peak very clear until the mentioned x, after
which the wave contribution become of the same order of the background noise. One can
also see that low frequencies are now very important but still clearly separated from f0,
as we already noticed.

Bottom panels present the frequency–wavenumber (or ω–k) spectrum. It is computed
in the same way as for figure 5.12. The dispersion relation for linear waves (6.1) is shown
as a black line. In the case without turbulence (panel 6.6e), the energy concentrates in
the dispersion relation, specially around the excited frequency (5 Hz in figure 6.6) and
its harmonics. When MHD forcing is added (panel 6.6f), there is an important spreading
of the energy injected into wave modes. However, the local maximum is still on the
dispersion relation. On the other hand, a zero frequency mode appears quite far from
the dispersion relation. As we studied in the previous chapter, this mode comes as the
consequence of turbulent motion.

In figure 6.7 we present the spatial average of the PSDs over all the points in the line.
Top panels correspond to f0 = 8 Hz and bottom ones to f0 = 5 Hz. On the left we
present the spectra of the wave alone (in black) and then the spectra when there is both
the wave and MHD forcing (thick colored lined). We superposed the spectra of respective
signals with only MHD forcing (thin dashed lines of the corresponding color). At very low
frequency (less than 1 Hz), the wave + turbulence spectrum matches very well the one of
only turbulence. On the contrary, for frequencies larger than 1 Hz, some differences are
visible, especially for f0 = 5 Hz (bottom–left panel). The f0–peak characteristics will be
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Figure 6.7: Spatially averaged PSDs. They are computed by averaging the PSDs obtained
at every position in space. On the left, we compare the case with wave + turbulence (solid
lines) to the one with only turbulence (dashed thin lines). On the right we isolate the
wave contribution by subtracting the PSD of the turbulence case to the one with wave
+ turbulence. Top panels correspond to an excitation at f0 = 8 Hz, and bottom ones to
f0 = 5 Hz. Black lines correspond to the case without turbulence, then colors go from
blue to red as the MHD forcing is increased (see legends on the right).

considered in the section below.
In order to emphasize the wave contribution to spectra, we subtracted the turbulence

spectrum to the one with wave + turbulence. This is presented on right panels. A
residual low frequency components is present as as consequence of the differences between
turbulence and wave + turbulence spectra. The specific correspondence of colors and the
MHD forcing is shown in the legends on the right, and it will be used in further figures.

These spectra look similar to those obtained by local measurements, but this time we
can understand their variations as the cumulative effect of turbulence over the averaging
distance.
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Figure 6.8: Evolution of the wave–spectral–peak as a function of the turbulence intensity.
It is presented here as the f0-peak characteristics obtained from the PSDs in right panels
of figure 6.7. In (a) we present the peak’s maximum height. In (b) we show the peak’s
width at half its height. Black diamonds correspond to a wave of f0 = 8 Hz and red
stars to one of f0 = 5 Hz. Error-bars are constructed on the resolution of the spectrum
computation: for (a), an estimation is done as the mean variation of the spectrum over
the band [f0 − 2, f0 + 2] Hz. For (b), it is the frequency resolution of the computation,
given by the temporal window used (∼ 8.5 s).

6.3.3 f0–peak characteristics

Now we consider the evolution of the peak corresponding to the excited wave (at f0), as a
function of the MHD forcing. We focus on the spectrum SWT−T

η obtained after subtracting
the one of turbulence from the one of wave + turbulence (see right panels of figure 6.7).

The results are presented in figure 6.8. On (a) we present the local maximum of the
spectrum SWT−T

η around f0. Most of the times the maximum is at f0, although an slight
shift can also be observed. Excluding the first point in the f0 = 5 Hz series (in red)2,
the data show the tendency of a decrease in the maximum height, as the MHD forcing is
increased. This tendency is confirmed by local measurements.

Then we consider the peak–width, defined as the width at the half height (the height
being that of figure 6.8a). This is presented on figure 6.8b. Here the tendency is of an
increase of the width as turbulence is increased. We can observe that the peak’s widening
is stronger for 8 Hz (black diamonds) than for 5 Hz (red stars).

These two results –peak reduction and peak widening– present good agreement with
the observations of Falcón & Fauve [8], despite the experimental differences. They excite

2Unlike our expectations, the first point in the f0 = 5 Hz series is smaller than the rest. It is indeed
smaller than its harmonic, as it can be seen in figure 6.8c. Based on this figure, one may speculate about
a subtile border effect strengthen the harmonic frequency to the detriment of the fundamental one. This
effect being loss in the presence of MHD forcing.
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Figure 6.9: Spatiotemporal diagrams when considering t only at successive periods nT ,
with n an integer number. Flow characteristics are the same as in figure 6.6: (a) is for
wave with no turbulence; and (b) is the wave with turbulence given by I = 080 A.

standing waves by means of the Faraday instability (produced by a vertical vibration at
a frequency 2fw). Thus, there is no wave propagation. On the other hand, they excite
spatiotemporal fluctuations using a MHD forcing, exactly as we do, but on a weaker
level3. Peak reduction and widening is a clear part of their observations (see figure 8 in
[8]) although the focus of the study was on the influence of fluctuations on the instability
properties.

When considering the spatial variation of spectra at f0 (what one may see by looking
the line at 5 Hz in figure 6.6d), one would like to define a value of x for which waves are
no longer measurable. This value is expected to be reduced when turbulence is increased.
However, it seems difficult to quantify this, on the light of the high spatial variability of
the signal. Therefore, we consider an alternative method to study such a spatial variation.

6.3.4 Spatial decrease of the wave contribution to η

In order to quantify the spatial decrease of the wave contribution to η, we can take
advantage of its periodicity, together with the intrinsic randomness of the turbulence
contribution. A sinusoidal wave is T–periodic: η(x, t + nT ) = η(x, t), with n an integer
number. Thus, if we consider the time only at successive periods, the temporal dependence
is lost, as it can be seen in figure 6.9a. Therefore, a coherent average of such a conditioned
data set gives a clear sinusoidal pattern. When turbulence is included, although it can
dominate the instantaneous dynamics (see figure 6.9b), it present no contribution to the
coherent average. Thus we can focus on the wave contribution to η with confidence. We
can model the coherent mean as

3In their experiment, the imposed electrical current are much smaller than ours, but the dimensions
of the setup are smaller as well. Thus, any comparison should be done in terms of the density of current
J0: it spans values from 0.14 to 0.57 A/cm2 in their case, and from 0.75 to 10 A/cm2 in our experiment.
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Figure 6.10: Coherent mean profiles as a function of the forcing. We compute a mean
over frames at successive periods (example of data sets are those of figure 6.9). (a) Mean
profiles for f0 = 8 Hz. (b) Mean profiles for f0 = 5 Hz. In each case, profiles of a given
forcing are superposed (14 profiles for f0 = 8 Hz and 11 for f0 = 5 Hz). Profiles of
different forcing have a different color, and they are shifted following the legend in blue.

η(x) = a0 exp (−αIx) sin (kx), (6.2)

were a0 is the excitation amplitude, k is the wavenumber and αI is the dissipation coeffi-
cient due both to turbulence (quantified by the intensity I of the MHD forcing), or just
to viscous dissipation [12]. It can be noticed that for viscous dissipation of linear waves in
deep water, Lamb shown that α0 = 2νk2/c, where ν is the kinematic viscosity of the fluid
and c is the phase velocity. For turbulence, theoretical arguments give also a k2 scaling,
as noticed in the introduction. However, the validity of these arguments is restricted to
very specific conditions between λ = 2π/k and L (the typical length–scale of turbulent
fluctuations).

In figure 6.10 we present the result of the coherent averaging for the two frequencies
considered before: (a) 8 Hz; (b) 5 Hz. Several realizations are obtained from each data
set, as averages are computed over frames separated by one period. Realizations of the
same data set are just superposed and the color is related to the forcing, following the
convention used in figure 6.7. Profiles of different forcing are shifted for clarity: upper
profiles correspond to stronger forcing. The vertical shift is proportional to the intensity
of the MHD forcing, in order to facilitate comparison between (a) and (b). The scale of
fluctuations is always the same.

One can remark (specially on panel 6.10b) that as the forcing is increased, there is a
reduction of the zone where wave amplitudes are significant. This is consistent with the
model of equation (6.2). By comparing both panels in figure 6.10, one can see that the
profiles at 8 Hz (a) decrease for a weaker forcing than those at 5 Hz (b). These features
can be quantified by computing the variance of the profiles obtained by coherent average.
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Figure 6.11: Increase of dissipation due to turbulence. Inset: we plot here the inverse of
the variance of coherent mean profiles, as a function of the forcing. By normalizing by
the variance of the wave alone, we access αI/α0 : a coefficient for the increase of wave
dissipation (see details in the text). Main: both curves collapse by considering the ratio
between the forcing I and the wavelength λ. λs are given in table 6.2: black diamonds
correspond to a wave of f0 = 8 Hz with λ = 2.7 cm; and red stars to one of f0 = 5 Hz with
λ = 4.7 cm. Error-bars give account of the variance’s dispersion on equivalent profiles.

One has,

Var(η(x)) = σ2 =
1

L

∫ L

0

η2dx =
a2

0

L

∫ L

0

exp (−2αIx) sin (kx)2dx, (6.3)

where L is the distance over which dissipation is considered. Although this integral involve
a complicated dependence4 on k, for the waves considered here it is accurate enough to

4The exact expression for the integral reads

σ2 =
a2

0

4L(α2 + k2)

[

k2

α

(

1 − e−2αL
)

− 2
(

α sin (kL)
2

+ k sin (2kL)
)

e−2αL

]

,

but the dependence on k is much reduced when neglecting finite size effects, which is reasonable whenever
the wavelength λ do not exhibit quantization because of the walls. There one gets

σ2 =
a2
0k

2

4Lα(α2 + k2)
,

which should be considered as the reference expression. However, when α ≪ k, it can be further simplified
to the form of equation (6.4). The validity of this limit was checked for the cases considered here.
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Summary and discussion

use a the simpler expression:

σ2
I ∼ a2

0

4LαI
. (6.4)

Therefore, by considering the ratio σ2
0/σ

2
I , we obtain a measure of how dissipation increases

as a consequence of turbulence. We may underline the dissipative nature of this expression
by noticing that it is equivalent to αI/α0. It is presented in figure 6.11 for the previously
considered frequencies. If we consider only the dependence on the forcing (given by
the current intensity I, as shown in the inset of figure 6.11), for f0 = 8 Hz (in black)
the dissipation starts faster and it saturates at a larger value, compared to the case at
f0 = 5 Hz (in red). These features are consistent with the qualitative observation of
figure 6.10. Therefore, there is a dependence on f0. As it cannot comes neither from the
fluid properties nor from geometrical considerations, it should correspond to a frequency–
dependent response of turbulence.

A dependence on k2 is observed for these frequencies. This is shown in the main panel
of figure 6.11, where both curves collapse when using the product I/λ2. This dependence
matches the theoretical one discussed in the introduction. For instance, Teixeira & Belcher
proposed αTB ∼ U2k2/g [20]5. However, the scaling on U2 is less clear, as it implies a
linear increase with I (see chapter 4).

This analysis complements the one of the f0–peak. Indeed, general features are shared:
(i) both analyses give account of the dissipative effect of turbulence on the excited wave.
(ii) Waves at higher frequency (8 Hz) experience stronger attenuation. On the other
hand, the coherent average analysis appears to be more robust to quantify the 0–MHD–
forcing contribution, as it implicitly take into account the fundamental frequency and its
harmonics. Also, it allows to gain a further insight into the frequency–dependent response
of turbulence.

6.4 Summary and discussion

In this chapter we described our study on the influence of turbulence on wave propagation.
By analyzing the height fluctuations under different conditions –specifically, by varying
the intensity of the MHD forcing and the frequency of the excited wave– we observed the
enhancement of wave dissipation by turbulence.

After describing the experimental conditions, we shown some flow features obtained
with local measurements: specifically we shown that the large scale flow produced by the
MHD forcing present the most important contribution to surface deformation η.

Then we focused on the frequency spectrum of η. From both local and spatially
resolved measurements, we observe that the spectral peak corresponding to the excited
wave (the f0–peak) changes as a function of the turbulence produced by the MHD flow.

By analyzing the f0–peak, we observe the decrease of its amplitude, accompanied by
its widening. These two effects can be understood as follows: the decrease of the peak’s
amplitude may be due to the transfer of the wave energy into turbulent fluctuations, in

5We observed in the introduction that this theory is related to the Phillips’ one [17]. However, the
expression given by Teixeira & Belcher is easier to compare with our results.
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6. Turbulence and waves

particular through its closest scales. It implies higher spectral amplitudes of the con-
tiguous scales, thus widening the original peak. Linear waves do not suffer of such a
transfer. Therefore, turbulence triggers the nonlinear transfers of energy happen through
contiguous scales.

This attenuation effect of turbulence on waves cumulates along the space. There-
fore, to evaluate the spatial attenuation gives an alternative quantification of the effects
of turbulence. We evaluate this by computing coherent averages of the spatiotemporal
evolution of η, from which the variance can be linked to an attenuation coefficient. This
analysis share the general features of the one of f0–peak.

Both analysis (the one of f0–peak and the one of coherent averaging) demonstrate the
enhancement of dissipation by turbulence. They also shown a non trivial dependency of
dissipation on f0 (the frequency of the excited wave): waves of higher frequency are more
efficiently attenuated by turbulence.

We contrasted our results with theoretical predictions, finding agreement with those
of Teixeira & Belcher [20], although complementary measurements have to be done.

One may see these effects as an increase in turbulent dissipation. As we are far enough
from molecular dissipation, the losses of wave–energy imply an increase of turbulent ki-
netic energy (TKE). Teixeira & Belcher proposed a scenario for this increase (valid in the
limits of their theory, where turbulent scales are smaller than the wavelength): as waves
propagates in a given direction, the Stokes drift would intensify and elongate the turbu-
lent eddies in that direction. This can be seen as an alternative source for anisotropy for
turbulence. However, we were unable to measure any increase in the TKE and it could
be a very challenging perspective.
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Chapter 7

The effect of turbulence on floating

particles

In this chapter we will consider the effect of turbulence on floating particles. It appeared to
us that particles’ position do not recover the whole measurement area in an homogeneous
way, giving the indication of a collective phenomena induced by the flow. Indeed, we
observe the formation of clusters when considering the area of triangles defined by the
position of nearest neighbors. By performing an statistical analysis of triangles’ area,
we got a powerful tool to decide which particles belong to a cluster. Indeed, clustered
particles exhibit much stronger velocity and angular correlations than the unconditioned
case.

As noticed in the introduction, several mechanisms are susceptible to induce clustering
of floating particles: (i) particles’ inertia, (ii) upwelling/downwelling flows and (iii) surface
tension. For each mechanism we construct suitable quantities, which we correlate with
time averaged velocity. These correlations suggest upwelling and downwelling motions as
responsible for particles clustering.
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Article’s copie:

Experimental study on the clustering of floaters on the

free surface of a turbulent flow*

Pablo Gutiérrez & Sébastien Aumâıtre

Abstract

We present an experimental study of the statistical properties of particles float-
ing on the surface of a turbulent flow. Two random flows with different properties
are generated in a layer liquid metal by an electromagnetic forcing. The forcing is
strong enough to generate a 3D flow deforming the interface. The motion of hun-
dreds of millimeter-size particles floating at the interface between the liquid metal
and a diluted acid solution is followed by particle tracking and the surface level is
recorded along a line. Basic properties of the flow, of the surface deformation and
of the particle diffusion are given. Then a statistical procedure is proposed to evi-
dence the clustering of floaters. Some dynamical properties of clusters are exposed.
Hypotheses are proposed to explain clusters formation.

* We chosen to keep the original structure of the submitted paper, despite some sections
were already presented in the manuscript.
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7.1 Introduction

Floating objects on the sea surface, going from
large containers to micrometer plankton and pass-
ing through algae and plastics litters, have a large
economic and ecological impact [1]. Their ten-
dency to agglomerate in large clusters is often ob-
served, as testified by the plastic litter islands and
huge garbage patches reported on all oceans [2].
However, the mechanisms of this clustering is far
from being fully understood. The action of tur-
bulent eddies and Stokes drift induced by swell
have been evoked [3]. Indeed it has been sug-
gested first by Kraichnan [4] that a passive scalar
stretched and folded by the gradients of a tur-
bulent velocity field, should have a more inter-
mittent behavior than the velocity field itself (see
also Appendix A). But floating objects are far to
be passive bodies. Indeed they are less dense than
the supporting fluid, thus sensitive to inertia. In-
ertial particles are known to form clusters in 3D
turbulent flows [5; 6]. Moreover, the floaters ex-
perience a 2D surface flow us(x, y, z = h(t)). It is
a compressible flow since upward and downward
motions of the underlying fluid, generate hill and
subduction zones where ∂xu + ∂yv = −∂zw 6= 0
These zones act as shrinking and expanding ar-
eas for the floaters concentration [7]. Finally, a
millimeter-size particle is sensitive to capillarity
forces. It is attracted by particles with similar
wetting [8] and sensitive to the surface curvature
[9; 10].

We present here an experiment where some of
these processes are relevant. The device consists
of a layer of liquid metal placed over a magnet net-
work and forced by a constant horizontal current.
It can generate a fully turbulent flow that disturbs
the liquid metal surface. To prevent the oxida-
tion of the liquid metal surface, we cover it with
an aqueous solution of hydrochloric acid at low
concentration. In this study, we follow the trajec-
tory of hundred millimeter-size spheres floating
on the liquid metal. The first section is devoted
to the description of the experimental device and
the measurement procedures. In section 2 we give
some basic properties of the surface flows experi-
enced by the floaters. We especially underline the
discrepancies between the flows generated by a
regular and a random array of magnets. Then we
focus on the statistical properties of the floaters in
section 3. In this section we first consider diffusion
properties of individual particles and the mixing
efficiency of both magnet arrays, as the function
of the applied current. Then we study the spatial

distribution of the particles by using the Delaunay
triangle linking three neighboring particles. Sta-
tistical properties of the area of these triangles
show the clustering propensity and give us a clear
criterion to define clusters. Using this criterion we
are able to characterize the statistics of the num-
ber of particles per cluster and to underline the
coherent dynamics inside clusters. Possible mech-
anisms of this clusterization will be discussed in
the concluding section.

7.2 Experimental device and

procedure

7.2.1 Flow generation

An electric current, of density J, in addition to a
magnetic field, B, can generate a Lorentz force FL

inside a conducting body: FL = J×B. This force
has been used to stir conducting fluids since Bon-
darenko et al [11]. They used a uniform current
an alternative magnetic strips to study 2D turbu-
lence with a well-defined periodic forcing. Later,
Sommeria [12] applies a strong uniform magnetic
field and space-dependent distribution of current
to generate an almost 2D flow and to study the
transition between large scale structures. Then
the technique becomes a common tool to study 2D
turbulence, [13], instability [14; 15] and chaotic
mixing [16] in 2D flows.

We adopted a similar forcing, albeit different
objectives and experimental details. A sketch of
the experiment is shown figure 7.1. The exper-
iment is performed in a plastic (isolating) rect-
angular container, with a maximal working area
of L × l = 40 × 50cm2. This cell is filled with
H = 1cm layer of gallinstan, a liquid alloy at room
temperature made of gallium, indium and tin [17].
The use of liquid metal provides us to reach high
density current up to 1.5×105 A/m2 with no need
of high power nor cooling (the applied voltage is
less than a Volt). The current is supplied with
Sorensen DHP Series Power supply by two brass
electrodes placed along the cell end. Beneath
the container, we can produce two vertical mag-
netic fields B. Their shape in space is constrained
by arrays of strong permanent Neodymium Iron
magnets about 20 mm diameter as shown in figure
7.1. One array is made with regular lines of al-
ternating polarity and the second with randomly
distributed magnets. Both have a mean distance
between magnets of the order of 35 mm. At the
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Figure 7.1: The experimental device. Top :

Sketch of the experimental cell. A 1 cm layer of
Gallinstan (GaIn Ti) is placed between two elec-
trodes (E), over a magnet array (MA) in a cell
of 50 × 40 cm. The potential probe (PP) puts
under a magnet, gives an estimate of the local ve-
locity fluctuations and the inductive sensor (I.S)
gives access to the local elevation. The beam of
the Laser diode (La) is transformed into a laser
sheet by the cylindrical lens (Le) and projected
on the surface of a mirror (M1). A line diffused
on the surface is made by the laser sheet on the
Gallinstan surface is tracked with 2 opposite angle
by a single Camera(C) by the two mirrors (M2)
and the prims (P). Bottom : Sketch of the ran-
dom and regular magnets array used in the exper-
iment. The black and white indSicate the magnet
polarity.

bottom of the container, the magnetic field of each
permanent magnet is around 1200 Gauss. Both
generated flows are briefly compared in the next
section. To prevent the oxidation of the surface
which creates a thin solid film, the Gallinstan is
surmounted by a layer of Chlorite Acid solution
(at concentrations lower than a percent). The
layer is thick enough (about 10 cm) in order to
make the Gallinstan–Acid interface insensitive to
the boundary condition at the top of the Acid
layer.

In the context of two layers of stratified fluid,
some authors already discussed the susceptibility
of such a flow to the forcing geometry. A common

conclusion is that almost no differences appear as
long as statistical quantities are concerned espe-
cially under strong forcing [20; 22]. This seems
in agreement with the 2D turbulence framework,
in which the detail of the forcing geometry has
to be smeared out by inverse cascade transfer-
ring energy to large scales. However Williams
et al pointed out that after an average over a
time long enough, the trace of the forcing becomes
visible again, even in strongly fluctuating flows
[21]. Recently, this trace was explored in more
details (again under stable stratification) at mod-
erate Reynolds number (until 300) by Liao et al.
[23]. They claim that under their experimental
conditions, the symmetries of the forcing are de-
terminant for the energy distribution of the flow.
In contrast to these previous works, we did not try
to maintain a 2D flow with a flat surface. Instead,
we want to reach a more natural fully developed
3D free surface flow with deformed interface. The
surface elevation is measured either locally with
an induction sensor or along a line with an optical
device. Moreover our aim is the study floating ob-
jects on the liquid metal interface which is seeded
with millimeter-size plastic spheres. The particles
are tracked by using a Dalsa PT-41-04M60-med
CMOS camera and their dynamics are obtained
using usual Particle Tracking Velocimetry (PTV)
algorithm described below. In contrast to [7], we
are interested by the motion of these inertial parti-
cles moving on deformed interface and sensitive to
capillarity force. Obviously our study will benefit
from a close comparison with the one of a passive
scalar moving on compressible flow with a flat in-
terface [7] as well as the study of inertial particles
moving in the bulk of a 3D or 2D turbulent flow
[6; 21].

7.2.2 Dimensionless parameters

The dimensionless Navier–Stokes Equation driven
by an electromagnetic Lorentz forcing, exhibits
a natural velocity scale that balances advection
term and the Lorentz force Uo =

√

JBL/ρ ∼ 1
m/s with L a characteristic length of the flow.
Therefore, one gets the Reynolds number Re =
√

JB/ρL3/2/ν. With the relevant choice for L,
this scaling is efficient to describe electromagneti-
cally forced flows in another geometry [24]. In our
device the maximum Reynolds number accessible
built on the global cell size L = L = 50 cm is of
order of ReL ∼ 1.5×106 (corresponding to Uo ∼ 1
m/s). Built on the characteristic length scale of

121



the forcing l = 4 cm, it will be limited to a more
realistic value Rel = 3 × 104 (corresponding to
Uo ∼ 30 cm/s) and the flow will be still turbulent
from this point of view.

In such a flow, an important phenomenon is
the magnetic boundary layer, perpendicular to
the applied field, where induction concentrates
the electric currents and the velocity gradients in
a thin layer near the boundary. Its depth, eH

is characterized by the Hartmann number Ha =
√

σ/ρνBH ≤ 45 with eH = H/Ha which can be
as small as 0.2 mm. Bottom friction which lin-
early damps the horizontal velocity has also to be
taken into account. It can be characterized by
a Reynolds number built on the Hartmann layer
depth thus ReH = ReL/Ha·H/L =

√

JL/σνB ∼
3 × 104. Such a parameter plays an important
role for the structure of the flow in the 2D ap-
proximation [25]. Another useful scale is the Kol-
mogorov scale η = ν3/4/ǫ1/4 where the mean en-
ergy flux can be estimated as ǫ = U3

o /L, hence
η ∼ 3× 10−2mm. This scale η is the one at which
viscous damping becomes efficient in the bulk of
the flow. We have the following hierarchy of scales
L > l ∼ H ≫ eH ≫ η. We can expect a fully de-
veloped turbulence in the bulk of a fluid driven
through Hartmann’s boundary layers by an elec-
tromagnetic forcing.

Finally, we studied an interface between Ga-
llinstan–Acid for which we determined a surface
tension of order of γ = 0.5N/m by the use of Fara-
day surface instability. The capillary length is
then lc =

√

γ/(ρ − ρo)g ∼ 3mm, with ρo the acid
solution density. Thus our millimeter-size floaters
are sensitive to capillarity. The surface deforma-
tion is thwarted by both capillarity and gravity
force. At the centimeter forcing scale, l, where
gravity dominates, one can estimate the Froude
number Fr = Uo/

√
gl ∼ 0.2. This means that

advection by the flow is slower than the emitted
gravity wave at that scale.

7.2.3 Measurement techniques

7.2.3.1 Surface velocity field

PTV is a conceptually simple technique to obtain
a two dimensional velocity field. The basic idea is
to have a set of particles moving in a plane, and to
take pictures of them for consecutive times t and
t + ∆t. Then one can find their positions at each
time and reconstruct their trajectory, by which
one can estimate their velocity during the inter-
val ∆t. In our case, we use particles of a = 1 mm

in diameter, with density ρp = 2000 kg/m3: less
than the density ρ of the liquid metal, and more
than the density of the acid. Therefore particles
stay in the Acid-Galinstan interface. We acquired
images of the whole cell of 2000 × 1700 pixels2.
This gives particles of around 4 pixels in diam-
eter. Acquisitions were performed at 50 Hz and
stocked on real time on a personal computer. We
track around 200 particles in each frame, so the
filling fraction is very small. In this regime, colli-
sions of particles are rare, so we can successfully
reconstruct trajectories in spite of the relatively
limited acquisition frequency of the camera. Nev-
ertheless, as we will see later, we are not able to
consider the evolution between two frames as a
complete picture of the velocity field.

Since the surface of the flow is actually a de-
formable mirror, a special care was devoted on
lighting, in order to obtain particles contrasting
from background. Once the images are obtained,
we perform high pass filtering to remove the in-
tensity modulations at length scales larger than
particles diameter. Then we compute intensity
contours of the image and identify particles as the
superposition of at least 4 concentric circles. This
procedure gives us the position of the particles
with a subpixel resolution. This method is very
robust under noisy conditions, even if it is com-
putationally expensive. And, as expected, when
parasite lighting fluctuations matches shape and
size of real particles, the method assumes them
as being particles. Nevertheless those events are
generally filtered by the tracking stage.

From the position data, we compute trajec-
tories using multi-frame predictive tracking algo-
rithm [26; 27]. The tracking of a particle has
two principal stages: First the algorithm performs
a prediction for the position of the particle in a
given frame based on its motion within the pre-
vious two frames. Then the algorithm selects the
real position of the tracked particle in the given
frame by choosing the one minimizing its distance
to predicted position. Such tracking is repeated
for all the particles in the frame (a detailed de-
scription of the algorithm is given in [26]). Given
the set of trajectories, we used a convolution ker-
nel in order to directly obtain a filtered velocity
field [27]. One important advantage of this pre-
dictive tracking algorithm is its lack of intrinsic
velocity cutoffs, as particles are always searched
consequently to their previous motion.
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7.2.3.2 Surface elevation

Surface elevation in the vertical direction is sam-
pled locally using induction sensor. This sensor
measures its distance to an electrically conduc-
tive material including liquid metal [28]. It is well
suited for measurement of motion perpendicular
to its axis. However, it averages the vertical dis-
placement on a horizontal area comparable to the
sensor surface (about a cm2). Therefore it is ef-
ficient to measure surface fluctuations having a
horizontal wavelength much larger than the ver-
tical displacement.

In addition to this local measurement, we mea-
sure the surface elevation along a line using a
classical triangulation technique. This technique
tracks the displacement of diffused light spots.
However as the liquid metal interface is poorly
diffusive and highly reflective, we need to use very
sensitive camera to follow the diffused light. There-
fore we have also to deal with direct reflective
spots saturating the camera sensor. To do so, we
record the line displacement under two opposite
angles. Hence, the blinding reflective spot in one
angle is not seen in the other. Then the all line
displacement can be reconstructed.

7.3 General characteristics of

the observed turbulent

flows

As we focus the present study on the floaters dis-
persion properties, we postpone a precise descrip-
tion of the surface deformation generated by such
flows to further studies. In this section, we will
give first an overview of the basic properties of the
surface that can be estimated from the floaters
motion for both magnets arrays. Then a limited
description of the basic properties of the surface
elevation of the flow along a line is presented.

7.3.1 Average properties of the

particles velocity field

Using PTV technique, we are able to follow about
two hundred particles during more than 60 sec.
Figure 7.2a–b shows the trace of these trajecto-
ries during 5 sec for both magnet arrays driven
by an imposed electrical current of I = 250 A.
The flow generated by the random array is shown
Figure 7.2–a and the one generated by the regular

array is shown on Figure 7.2–b. Fig 7.2–c presents

the RMS velocity,
√

〈V 2
p 〉, of all the floaters during

the 60s of the experiment where Vp stands for the
Lagrangian velocity of the particles measured by
PTV, 〈 · 〉 stands for spatial averaging and ·
stands for time averaging. Velocities are normal-
ized by the expected velocity Uo =

√

JBl/ρ with
l the characteristic length of the forcing. Uo over–
estimates the measured velocity about a factor 2
or 3. This is not surprising since we overestimate
the magnetic field by using its maximum to com-
pute Uo, whereas we are considering the RMS ve-
locity. Moreover, excepted the plateau below 200

A in the case the random array,
√

〈V 2
p 〉/Uo de-

creases with the forcing intensity. It means that
the surface flow explored by the particles contains
less and less of the energy injected by the Lorentz
forcing. This could be interpreted as an increasing
of tridimensional effects.

The trajectories shown in Figure 7.2a–b, give
an idea of the stream-lines of the flow averaged
over 5s. The flow generated by the random mag-
net array exhibits clear structures whereas it seems
notto be the case for the one generated by regular
array . This remains true even for larger time win-
dows and it is observed at all driving intensities.
This is due to the fact that the flows generated
by the random array fluctuate less in time than
the flows generated by the regular array. This
is well illustrated by the Figure7.2–d. We plot
on this figure the kinetic energy contained in the
time–averaged flow of the particles 〈u2〉 divided
by the total kinetics energy, where u is the time–
averaged Eulerian velocity deduced from the La-
grangian measurement of the particle. The Eule-
rian velocity field of the time–averaged flow con-
tains almost all the energy in the case of the ran-
dom magnet array, whereas it contains less 40% in
the case of the regular array. In the first case, the
magnet pattern anchors the structure of the flow.
This discrepancy between both magnet arrays re-
mains whatever the spatial resolution chosen to
coarse–grain the Eulerian field (although the rel-
ative fluctuations decrease in both cases, when the
resolution of the Eulerian field is decreased, as ex-
pected from the central limit theorem). Hence we
are able to generate two distinct flows with differ-
ent properties, one having much more temporal
fluctuations than the other.

It has to be mentioned that the tracking meth-
ods give only access to the motions of the tracers,
and thus the velocity field felt by the floater in
our case. Although the averaged procedure used

123



10 20 30 40 50

5

10

15

20

25

30

35

40

X [cm]

Y
[c

m
]

a

0 100 200 300 400 500 600 700
0.25

0.3

0.35

0.4

0.45

0.5

I [A]

√

〈V
2 p
〉/

U
o

 

 

c

Random array
Regular array

10 20 30 40 50

5

10

15

20

25

30

35

40

X [cm]

Y
[c

m
]

b

0 100 200 300 400 500 600 700
0

0.2

0.4

0.6

0.8

1

I [A]

〈u
2
〉/
〈V

2 p
〉

d

Figure 7.2: Flow characterization.Top figures: The dots give the positions of all the particles recorded
during 5s at a rate of 50 Hz with a forcing current of I =250 A, a) for the random magnet array, b)
for the regular magnet array. Bottom figures shows c) the evolution of RMS velocities of the floaters
normalized by Uo versus the driving intensity I for the random magnet array (blue dots) and the regular
magnet array (red squares), and d) shows the ratio of the kinetic energy contained in a time–averaged
Eulerian flow, divided by the total kinetic energy as a function of I. Two spatial resolution of the Eulerian
field are given for each magnets array : the random magnet array with a resolution of [50 × 50] (blue
asterisks) and [100 × 100] (blue dots ) and the regular magnet array at a resolution of [50 × 50] (red
diamonds) and [100 × 100] (red squares) ). Error bars are estimated from the fluctuations in time and
redundant measurements.

to estimate the Eulerian field cancels the spatial
inhomogeneity of the particles distribution, it is
not clear how the floaters motion reproduces ex-
actly the surface flow. At least, one can expect
that it keeps a qualitative trace of the basic prop-
erties of the flow presented here.

7.3.2 Surface elevation

This difference between both magnet arrays is re-
flected in the study of the surface elevation along
a line perpendicular to the imposed current den-
sity. We first study the variance of the elevation:
〈∆h2〉 = 〈(h − 〈h〉)2〉, as a function of the im-
posed current. This is shown on figure 7.3-top
in logarithmic axis (main panel) and linear axis

(inset). Both magnet arrays seem to follow dif-
ferent power law with an exponent around 1.6 for
the regular array and an exponent 2.2 for the ran-
dom one. Especially for I > 150 A, the elevation
increases faster for the random array. Moreover,
the stationary part of the elevation is larger for
the random array as already observed for the ve-
locity field figure 7.2–d. Indeed as shown in the
figure 7.3–bottom, the stationary deformation in-
duces around 50 % of the surface elevation with
the random magnet array whereas it is less 20%
for the regular array. Moreover this part grows
initially up to 200 A with the random array and
then decreases slowly with intensity, whereas it
continuously decreases for the regular magnet ar-
ray. This change recalls the one observed in the
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Figure 7.3: Top: Variance of the surface eleva-
tion ∆h, in logarithmic (main panel) and linear
axis (inset) at various driving electrical current I,
for the regular (blue asterisks) and random (red
circles) magnet array. The dashed lines represent
a power law 〈∆h2〉 ∝ Iα, fitted for I > 200 A.
The deduced exponents are α =1.6 for the regu-
lar and 2.2 the random magnet array. Error bars
are of order of the symbols size. Bottom: Ra-
tio of variance of the time–averaged deformation
divided by the total variance as a function of the
driving current intensity for the regular (blue as-
terisks) and random (red circles) magnet array.
Error bars are estimated from the fluctuations in
time and redundant measurements.

kinetic energy in figure 7.2–c.
In order to quantify a characteristic correla-

tion length scale of the surface deformation along
a line, h(x, t), we considered the normalized self-
correlation function in space and averaged in time
Gh(λ) :

Gh(λ) =
1

2L

∫ L

−L
δh(x + λ) · δh(x)dx/〈h2〉 (7.1)

In the main panel of figure 7.4, the time–averaged
profile h(x) has been subtracted before the com-
putation of the correlation function, i.e. in equa-
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Figure 7.4: Main panel: Self-correlation func-
tion, in space of the elevation averaged in time,
for a driving intensity of 400 A. Full lines are used
for the random magnet array, and dashed lines are
used for the regular array. The averaged profile
shown in the left inset has been subtracted to
obtain G(λ). On the right inset is shown the
selfcorrelation function in space of the elevation,
averaged time, but whitout the substraction of the
mean profile.

tion (7.1) one takes δh(x) = h(x) − h(x) where
h(x) is shown on the left inset. For the driving
current of 400 A used in the figure 7.4 the corre-
lation length obtained for the fluctuations, λc, is
about 1.6 longer for the random array. When the
time–averaged profile is not subtracted, as shown
on the right inset, then the correlation length, Λc,
is almost unchanged for the regular array but is
50% larger for the random array. It illustrates
that static correlations of longer range are in-
volved in the latter. This last observation remains
true whatever is the driving current and it is even
stronger at lower driving.

Figure 7.5, represents for both magnet arrays
the correlation length λc, defined as the mid–width
at the half maximum of self-correlation function,
once that the time-averaged profile has been sub-
tracted. It shows that, for the regular array, the
values of the correlation lengths weakly depend on
the forcing strength. Indeed λc fluctuates between
1.3 and 1.6 cm. The variations are more pro-
nounced for the random array. Up to 200 A the
correlation length scale strongly increases, from
almost 0 up to 2.5 cm and then slowly decreases
for subsequent increase of the current. Once again
a change is observed around 200 A.

The correlations in time, averaged in space,

gh(τ) = 〈 1

2T

∫ T

−T
δh(t + τ) · δh(t)dt〉/〈h2〉 (7.2)
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Figure 7.5: Correlation length λc as a func-
tion of the driving intensity for the regular (blue
asterisks) and random (red circles) magnet array.

are shown on figures 7.6 for both magnet arrays
at 400 A. At this driving intensity, the correlation
time, τc, is about the same order for both arrays.
It is defined as the mid–width at half the height
of the self-correlation function. Actually, above
200 A, as shown in the inset, for both magnet ar-
rays, the τc are similar and they decrease with a
rate near 10−3s/A. Below 200 A, the correlation
time of the regular array decays faster, whereas
the one of the random array grows. A more pre-
cise study of this transition in connection with the
underlying flow as well as the spectral analysis of
the elevation and the generation of surface wave,
is postponed to a further publication where we
will focus on surface deformation and wave tur-
bulence.

7.4 Dynamical properties of

the floaters

We focus now on the motion of the particles. The
first thing to consider is the diffusion properties
of a single particle in reference to the classical
Brownian motion. Then we will compare the mix-
ing properties of both generated flows. Finally,
we will study the instantaneous spatial distribu-
tion of particles. To do so, we study the statis-
tical properties of the Delaunay triangle linking
the nearest neighbors. By comparing the distri-
bution of triangles obtained experimentally with
the one obtained from a homogeneous distribu-
tion of points, we are able to quantify the level
of clustering and to determine a criterion defining
clusters. Finally the properties of the particles
velocity inside a cluster are explored.
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Figure 7.6: Self-correlation function in time of
the elevation averaged in space for a driving in-
tensity of 400 A. The full lines are used for the
random magnet array, and dashed lines are use
for the regular array. The inset shows the evo-
lution of the characteristic correlation time with
the driving intensity for the random magnet array
(red circles) and the regular one (blue asterisks).

7.4.1 Particles diffusion and

mixing

We first study the statistical properties of R(t) =
√

(X(t) − X(0))2 + (Y (t) − Y (0))2, the displace-
ment of all the single particles that we are able to
follow during a time t. For the well-known Brow-
nian particles, one has 〈R(τ)2〉 = Dτ where dif-
fusion coefficient is given by the Einstein formula

: D = 2〈V 2〉d2

18ν with ν the fluid viscosity and d the
particle diameter. Figure 7.7top presents 〈R(τ)2〉
as a function of the dimensionless time τ · 〈V 2〉/ν
in logarithmic axes. Comparison with the dot–
dashed line proportional to τ and the dashed line
proportional to τ2, shows that we are closer to a
ballistic regime than to a diffusive regime. Actu-
ally, one can compute an exponent γ such that
〈R(τ)2〉 ∝ τγ . We made the estimate in a range
of τ such that λ

√

〈R(τ)2〉L/2, in order to be not
too sensitive to the forcing length and to the cell
size. Therefore, one gets γ ∼ 1.6 for the regu-
lar array and γ ∼ 1.8 for the random one. This
almost ballistic behavior is confirmed on the Fig-
ure 7.7–bottom. Indeed a better collapse of the
curves at different forcing strengths is obtained
when a characteristic ballistic time, proportional
to l/

√

〈V 2〉, is taken to rescale the time unit, with
l the characteristic length of the forcing. It has
to be noticed that the range of scales between the
forcing length and the cell size might be too small
to reach the real diffusive regime.
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Figure 7.7: Single diffusion processes of the float-
ing particles under different current intensities
driving I = [25, 100, , 175, 325, 400, 475, 575], for
the random array of magnets. Top: The time
is rescaled by the diffusive time ν/〈V 2〉.Bottom:
The time is rescaled by the characteristic ballis-
tic time scale, l/

√

〈V 2〉 is used, with l the char-
acteristic length of the forcing. The dot-dashed
line shows the linear scaling expected for diffu-
sive processes, whereas the dashed line shows the
quadratic behaviors expected for Ballistic trans-
port.

However, from figure 7.2 a–b, one can expect
that the flow generated by the regular array im-
plies a better mixing of the trajectories of the par-
ticles. In order to get a quantitative check of this,
we pixelate the cell in Np squares and we compute
the number of particles, ni that can be found in
each cell, i, during the experimental run and we
divide it by the mean density. Then we use the
usual tools to quantify the mixing : the variance
of the relative density σ(ρi)

2 = 〈ρ2
i − 〈ρi〉2〉 with

ρi = (ni/vi) · (V/N) the relative density in each
cell. The smallest is σ(ρi)

2, the best is the mixing.
Others tools to quantify a mixing, are the relative
Rényi entropies [29]:

Sα =
1

1 − α
log





Np
∑

i=1

ρα
i



 ,

ranging from 0 to 1. It reaches the limit Sα = 1 for
the perfectly homogeneous mixing. α = 1 corre-
sponds to the usual Shannon entropy, whereas S2

is called the correlation entropy, and higher values
of α give more importance to higher fluctuations
[29].

The upper curve of figure 7.8 shows the con-
centration variance difference between the ran-
dom array and the regular array , ∆σ(ρi)

2 =
σrg(ρi)

2 − σrd(ρi)
2, at various driving current in-

tensities. The bottom curves show the Rényi en-
tropies differences between both arrays at five suc-
cessive values of α. These quantities are estimated
during the 60 s of statistically stationary regimes
of the experiment. It appears clearly that, above
200 A, the mixing is equivalent for both magnet
arrays. Below 200 A, there is a discrepancy. It
shows that the regular array performs a better
mixing. This discrepancy is more important for
higher values of α. It underlines that the differ-
ence is increased when the higher fluctuations of
the concentration are concerned. It should be re-
called that a transition around 200 A has been
already observed in the kinetic energy of the par-
ticles driven by the random magnet array. In-
stead of the study of the mixing properties for
a fixed duration, the same quantity can be esti-
mated for a fixed average displacement. As we
showed that the displacement is mainly ballis-
tic and proportional to the RMS velocity, thus
we have to estimate the mixing during a time
T (I) = To · (

√

〈V (Io)2〉/
√

〈V (I)2〉), where To and
Io are respectively the duration and the intensity
of the slowest experiment (Io = 25 A). This pro-
cedure brings to the same conclusions although
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Figure 7.8: Mixing properties of both magnet ar-
rays as a function of the applied driving currents
for experimental runs of 60. Top: Difference be-
tween the particles concentration variance of the
regular magnet array and the random magnet ar-
ray as a function of the applied driving current.
Bottom: The difference between the Rényi en-
tropies, ∆Sα, of the regular magnet array and
the random magnet array as a function of the ap-
plied driving current, with α = 1, ∗ ; α = 2, ◦
;α = 3, � α = 4, ⋄ ; α = 5, △.

the curves of ∆σ(ρi)
2, and ∆Sα (not shown) are

more noisy.

7.4.2 Clustering

In the previous sections, the averaged behaviors
of the particles are concerned. We are now go-
ing to focus on the instantaneous spatial distribu-
tion of the floaters. To do so, we borrow a tool
usually used to study granular packing [30; 31],
and successfully introduced to track cluster of in-
ertial particles in fully developed 3D turbulence
[6]. In order to quantify the floaters density at
the surface, we use the area of the Delaunay tri-
angles linking three nearest neighbors. Such tri-
angulations are shown in figure 7.9, for a uniform
distribution of 254 points (top) and for the same
number of particles tracked on a snapshot of our
experiment (bottom). In solid state physic and
granular matter these tessellations of the surface
are used to study amorphous states. In the case
of a random set of point, the tessellation gives a
gamma distribution P (A) for the elementary tri-
angles area, A [31] with:

P (A) =
ba

Γ(a)
Aa−1 exp(−bA), (7.3)

where a = 〈A〉2/σ(A)2 and b = 〈A〉/σ(A)2.
For uncorrelated points uniformly distributed with
a Gaussian distribution for s1 = (r1−r2)/

√
2 and

s2 = (2r3−r1−r2)/
√

3, where vectors r1, r2, r3

define the triangle position, one expects an expo-
nential distribution with a = 1 and b = 1/〈A〉
[32]. This is indeed the case to figure 7.9–a, ex-
cepting small deviations due to constraints im-
posed by the cell boundaries. This uniform dis-
tribution will be used as the reference state here-
after. All excess of a small area of this reference,
can be considered as a trace of clusters of corre-
lated particles. More precisely, an exponent a < 1
will be the signature of this excess of small areas,
since this induces a negative power near 0 and
a vanishing most probable value, whereas b will
characterize the exponential cut–off.

We study the areas obtained for each snapshot
of the experiment. As the number of followed par-
ticles and Delaunay triangles can change slightly
from time to time, we normalized the area of each
triangle, Ai by the mean area of triangles at each
instantaneous tessellation: Ai = Ai · Lx · Ly/Nt

where Nt is the number of triangles of the instan-
taneous tessellation. Hence 〈A〉=1. Figure 7.10
shows the Probability Density function (PDF) of
these normalized areas obtained from 3000 succes-
sive snapshots of an experiment performed with
the random array and with a driving intensity of
I =300 A (blue crosses). It shows also the PDF of
3000 realizations of independent successive syn-
thetic tessellations for sets of nearly 200 parti-
cles uniformly distributed. For both magnet array
and all applied currents, the distribution of trian-
gles areas follows perfectly a Gamma distribution
(without any fitting parameters once mean and
standard deviation are given). Notice that, if in
the case of the synthetic uniform distribution one
gets a and b close to one (within 20% of error due
to cell boundary), in the case of the experimental
PDF one gets a = 0.311. This value, smaller than
one, is responsible of the cusp observed near 0.
Smaller is a, the stronger is this cusp, i.e larger
is the excess of small area. Thus a is indeed a
signature of the clustering.

Figure 7.11 shows the value of a as a function
of the driving current I for both magnet arrays.
In both cases, excepted for the smallest intensity,
one gets a decay with 0.24 < a < 0.5. There is
therefore always a strong clustering. In the case
of the regular array, the decay is almost linear and
a goes form 0.5 to 0.35. For the random array we
can observe, here again, different behaviors below

128



5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

30

35

40

X [cm]

Y
[c

m
]

a

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

b

X [cm]

Y
[c

m
]

Figure 7.9: A snapshot of the position of 254
particles and the corresponding Delaunay tessel-
lation, for particles uniformly distributed (a) and
for an instantaneous measurement in the experi-
ment with the random array for I = 300 A (b).
In this last case, color marked points correspond
to particles found in different clusters

and above 200 A. Below 200 A, the decay of a,
going form 0.5 to 0.35 in 150 A, is faster than
for the regular array. Above 200 A, the decay
rate becomes of the same order for both magnet
arrays.

As the areas of the tessellation follow a Gamma
distribution (7.3) for a set of points uniformly dis-
tributed (our reference) as well as for the experi-
mental observation, one can easily find a criterion
to define particles inside a cluster. We consider
that a particle is in a cluster if it belongs to a
triangle with an area A smaller than a critical
value Ac. Ac is chosen such that Pe(A ≤ Ac) ≥
Pr(A ≤ Ac), where the indices r and e refer to the
synthetic reference distribution and experimental
distribution respectively. Using (7.3) and neglect-
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Figure 7.10: Probability Density Function of the
normalized Delaunay triangle area obtained ex-
perimentally (blue crosses) and constructed from
an uniform distribution of points (red dots).
Dashed lines correspond to the Gamma distribu-
tion of same average and standard deviation.
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Figure 7.11: The values of the exponent a ex-
tracted from the fit of the PDF of the Delaunay
triangles area, for both magnet arrays as a func-
tion of the driving current. Error bars are esti-
mated from the level of accuracy of the fit of the
experimental PDF by a Gamma distribution.

ing the exponential decay at large A one get:

Ac =

(

bar
r · Γ(ae)

bae
e · Γ(ar)

) 1

ae−ar

(7.4)

(with ar and br close but not exactly equal to 1).
This criterion has been used to define the cluster
shown in figure 7.9 for which Ac = 0.14.

We have now the tools to study clusters prop-
erties. We first checked the statistics of the num-
ber of particles per cluster, Nc, for the regular and
random magnets arrays. For both magnets con-
figurations, the PDF are identical and are com-
patible with a power law with an exponent near
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2.5. However, this value is sensitive to the choice
of the threshold value of the area defining the clus-
ters. For an onset smaller than Ac, the cutoff can-
cels the power law. For an onset larger than Ac,
huge clusters containing almost all the detected
particles imply a bottleneck effect that pollutes
the power law. Finally the relation between this
exponent and the spatial intermittency is still an
open question.

Knowing which particles belong to a cluster,we
can compare the velocity fluctuations inside clus-
ters with the unconditional global fluctuations.
The top panel of figure 7.12, exhibits the PDF
of the fluctuations of one component of the ve-
locity of particles belonging to a cluster δvy =
vy−Vcy around the mean velocity, Vc, of the clus-
ter. These fluctuations are compared to the un-
conditioned case corresponding to the fluctuations
Vy of all the particles in the cell. The conditioned
PDF is narrower and its shape, with exponential
tails, differs from the unconditioned one which is
nearly Gaussian. The flatness

〈(δvy − 〈δvy〉)4〉/σ(δvy)
4

of the fluctuations around the cluster velocity, is
equal to 5.1 whereas the flatness of Vcy is 3.2 i.e.
close to the value expected for Gaussian variables.
These discrepancies imply a correlation between
the velocity of a particle and the fact that it be-
longs to a cluster. The same ascertainment can
be obtained from the other velocity component.
One can also look for correlation in the direction
of displacement by defining θc like the direction
of the velocity compared to the one of the clus-
ter. θc can be compared with θ the angle with
a fixed arbitrary direction in the unconditioned
case. The distribution of θc is narrower than the
unconditioned one, θ (which is almost uniformly
distributed) as shown in the bottom of the figure
7.12. Both results mean that, as expected, the
motions inside the clusters are much more coher-
ent that the unconditioned global ones, strength-
ening our definition of clusters.

Finally we can check how the coherence is con-
served when the forcing is increased. Figure 7.13
shows the ratio between the standard deviation
of conditional velocities and of angles belonging
to clusters and the unconditional ones, for differ-
ent intensity and both magnet arrays. The ve-
locity fluctuation ratio is slightly higher in the
regular array whereas the angle fluctuations are
of the same order for both magnet arrays. De-
spite the noise, fluctuations seem to increase with

the driving for the regular array whereas a transi-
tion between a decreasing and an almost constant
behavior can be observed around 200 A for the
random magnet array here again.
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Figure 7.12: Statistics of the clusters dynam-
ics. Top PDF of the fluctuations around the
mean velocity of a cluster for the y–component of
the velocity of particles belonging to the cluster
(red) compared to the unconditional fluctuations
(blue). Bottom Angle distribution of the direc-
tion of the particles displacements, belonging to a
cluster, around the direction of the cluster (red).
It is compared to the unconditioned distribution
of direction (blue) and a uniform distribution of
angles (dashed line).

7.5 Discussion

Before discussing possible mechanisms of cluster-
ing, let us summarize some of our experimental
results. Using a liquid metal and an electromag-
netic forcing, we are able to generate strongly fluc-
tuating free surface flows. We used two kinds of
magnet arrays. The first is made of regular strips
of alternative polarities. The second is made with
magnets put randomly. We apply to them an elec-
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Figure 7.13: Relative fluctuation of velocity (top)
and direction (bottom) for both magnet arrays
versus the applied driving current.

trical current I going from 25 A to 600 A. Both
magnet arrays have different level of fluctuations,
i.e. the level of energy contained in the temporal
fluctuations compared to the energy in the gen-
erated mean flow, is twice higher for the regular
array. Equally, the surface deformation induced
by the flow above the random array, has a larger
stationary part. The stationary part induces long
range correlations. The characteristic correlation
length does not vary strongly with the forcing es-
pecially above 200 A. No transition emerges from
the flow produced by the regular array, whereas
the flow produced by the random magnet array
presents several clues of a transition around 200
A. Indeed, kinetic energy of particles, character-
istic correlation time, mixing properties or the
ability to form clusters, behave differently below
and above 200 A. Above this value, both mag-
net arrays seem to adopt similar behavior, except
that the random array generates a more station-
ary flow. In any case, floaters do not mix uni-
formly but tend to form clusters that can be iden-
tified by the study of the distribution of the De-
launay triangles areas. The statistics of the area
of the triangle linking neighbor particles, follow
Γ–distributions. These distributions are singular
near 0, illustrating the tendency to form clusters.
Particles belonging to a same cluster have a co-
herent displacement.

Now, we try to explore the origin of the clus-
tering. Several mechanisms can be identified. The
first is related to the specificity of the surface
flow where the particles are constrained to move.
These flows are not purely 2D and a floater at

the surface is subjected to a compressible 2D flow
where

∂xu(x, y)|z=h(t)+∂yv(x, y)|z=h(t) = −∂zw(x, y)|z=h(t).

To quantify this compressibility, it has been in-
troduced a criterion using the Eulerian velocity
field:

C = 〈(∂xu + ∂yv)2〉/
(

2〈(∂xu − ∂yv)2〉
)

with C = 1/2 for an incompressible 2D flows [7].
The second mechanism is induced by the fi-

nite size of the floaters. Therefore, they can ex-
perience inertial effects. Inertial particles in 3D
turbulent flow are known to form clusters. In-
deed, in first approximation, the velocity V of the
particles is not divergence free either. By using a
first order expansion in terms of the Stokes time,
τs = 2a2(ρp −ρf )/(9νρf ), one gets for particles of
density ρp immerged in a fluid of density ρf and
of viscosity ν [6; 33]:

∇ · V ∼ −τs∇ · (u · ∇u) .

Although the effective mass of floating body is
not easy to determine because it depends on the
immersed portion of the body, on the wetting an-
gle. One can try to estimate inertial effects by
computing ∇ · (u · ∇u) .

The third mechanism is due to capillarity. Our
particles are smaller than the capillarity length lc,
and thus, they are sensitive to the surface ten-
sion. Capillarity tends to make attractive parti-
cles of similar wetting. However, the attractive
capillarity force between particles decays expo-
nentially with the distance [10], and thus, they
are significant on characteristics length of order
of lc. Therefore, this interaction length is an or-
der of magnitude smaller than the mean free path
between floaters. Hence, due to the low particle
concentration, we expect that capillarity will be
initially inefficient to agglomerate floaters. How-
ever, once the clusters are formed, the attraction
could play a stabilizing role and it could affect
the cluster cohesion. Capillarity force makes also
particles sensitive to the surface curvature. In
our experiment, the surface is far from being flat,
since the standard deviation of the surface defor-
mation can reach 20% of the layer depth of liquid
metal. Although the characteristic radius of cur-
vature of the surface deformation is much higher
than lc, it can tend to move and to concentrate
particles by capillary effect. This was reported as
the Cheerios effect [10; 8]. Considering this capil-
larity effect combined with Stokes drift, clustering
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has been observed in a Faraday wave experiment
and in surface wave turbulence [19; 34]. However,
in our device, surface deformation is mainly as-
sociated with vertical vortices. The motion of a
particle subject to centrifugal forces, to gravity
and to surface tension acting on a curved sur-
face is a subject of studies by itself. However,
with non-wetting particles lighter than the fluid,
as our floaters, a simple force balance tends to
exhibit a net force pointing to the center of the
vortex. In contrast, in our experiment, we ob-
served that the particles are repelled from vortex
cores, as shown below. Hence, we assume that
the capillarity forces are not at the origin of the
cluster formation, although it could contribute to
the cluster cohesion.

In order to estimate the first effect, we have
to evaluate −∂zw(x, y)|z=h(t) for our surface flow.
Therefore, we need to know the Eulerian veloc-
ity field at the surface. In order to have only few
collisions and small interactions between floaters,
and to be able to track particles without a high
speed camera, we choose to have large mean free
path between floaters and thus a relatively small
number of particles Therefore, we are not able to
get the instantaneous Eulerian field with a good
spatial resolution. However, as shown figure 7.2–
d, the time averaged mean flow reproduced with
80 % of accurate the flow when we use the ran-
dom array of magnet. Moreover, at high current,
both magnet arrays seem to share similar cluster-
ing properties. Thus, we compute in a pixilated
grid of Np squares of 5 × 5mm2,

αi = ∂zwi(xi, yi)|zi=h(t)

= −∂xui(xi, yi)|zi=h(t) − ∂yvi(xi, yi)|zi=h(t),

where the subscript i refers to the cell i of the
pixilated image. Then, we estimate the correla-
tor, rα, between this quantity and the normalized
time-averaged density ρi = ni/vi previously intro-
duced with

rα = 〈∆αi · ∆ρi〉/(σ(αi) · σ(ρi)),

where the averages 〈 · 〉 are taken on the spa-
tial distribution and where ∆X means X − 〈X〉.
Figure 7.14 shows the spatial distribution of the
normalized ∆ρi/σ(ρi) and ∆αi/σ(αi) as well as
their product ∆ρi/σ(ρi) · ∆αi/σ(αi) for a driv-
ing current of 400 A. Although they are not iden-
tical, some similar patterns emerge in both fig-
ures 7.14a–b. Moreover, clear patches where both
quantities are highly correlated appear in 7.14–c.
The global correlator rα = 0.35 is not huge but

still significant, considering the noise introduced
by the coarse-grained gradient and the decoher-
ence induced by the time averaging.

A crude estimate of the compressibility crite-
rion gives C − 1/2 ∼ 0.05, i.e. the surface flow
appears nearly incompressible. Hence, it seems
relevant to assume in first approximation that the
measured time-averaged surface flow u is a 2D in-
compressible flow. Thus, one can try to compute
the inertia effect by computing ∇ · Vi ∼ −τsβi

with

βi = ∇ · (ui · ∇ui) .

In comparison with figure 7.14 the spatial cor-
relations are less obvious. Indeed, in figure 7.16–
bottom the product ∆ρi/σ(ρi)·∆βi/σ(βi) is larger
than one over 9% of the studied surface only. In
contrast, in figure 7.14–bottom the product
∆ρi/σ(ρi) · ∆αi/σ(αi) is larger than one on 19.4
% of the surface of the pixilated image. There-
fore, the spatial coherence between αi and ρi is
larger than the spatial coherence between βi and
ρi. This is confirmed the spatially averaged corre-
lators. In the case of a driving I = 400 A one gets
rα = 0.35 and rβ = 0.07. It underlines that the
upwelling/downwelling flows have a more signifi-
cant contribution to clustering than inertial effect.

It has to be noticed that due to the secondary
upwelling flow in the vortex core and downwelling
flow at the vortex hedge [35], αi is highly corre-
lated to vorticity as shown figure 7.15. The cor-
relator rΩ = 〈∆Ωi · ∆αi〉/(σ(αi) · σ(Ωi)) is equal
to 0.83, where Ωi = (∂xv − ∂yu)i is the vortic-
ity in the cell i. Thus Ωi is also correlated with
the density ρi although the correlator is slightly
smaller and negative (-0.30 compared to rα =
0.35). Moreover, one expects that inertia drives
particles lighter than the fluid to the center of the
vortex by centrifugal effect, which is the opposite
of what we observe. In shallow water limit, the
secondary vertical flow is assumed to be smaller
than the horizontal one, since one expects 〈w〉 ∝
(h/R)3〈uh〉 [36], with w the vertical velocity com-
ponents (near the vortex core), uh the horizontal
velocity field, h the fluid layer and R ∼ 2λc ∼ 5h
is the characteristic radius of the vortex. How-
ever, in our cases where (h/R) is about 1/3, it
seems that the downwelling flow, at the vortex
edge, acts as a particle attractor whereas the vor-
tex core, acts as a Repeller. Moreover as the
stretching is large at the vortex edge, particles
cluster in elongated structures where they have
coherent velocities and directions of displacement.

To summarize this part, we used the station-
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Figure 7.14: Spatial repartition of the normal-
ized density ∆ρi/σ(ρi) (top), ∆αi/σ(αi) (middle)
and the product ∆ρi ·∆αi/(σ(ρi)σ(αi)) for a driv-
ing current I = 400 and the random array.
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Figure 7.15: Spatial repatition of ∆βi/σ(βi)
(top) and the product ∆ρi · ∆βi/(σ(ρi)σ(βi)) for
a driving current I = 400.
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arity property of the random array to explore the
clustering mechanism. To do so, we check the lo-
cal and global correlation between the spatial dis-
tributions of the particle averaged in time, with
(i) the compressible part of the time-averaged sur-
face flow, (ii) the inertia effects and (iii) the vortic-
ity. Our analysis shows that the particles concen-
trate along the compressi downwelling part of the
flow. The downwelling and upwelling parts of the
flow are highly correlated to the vorticity. Thus,
the vorticity is correlated with the particle den-
sity distribution as well. However vorticity and
inertia should have the tendency to concentrate
light floaters near the vortex core, in contrast to
our observatiosn. This is the major difference be-
tween floaters and inertial particles in a 3D flow.
However it has to be mentioned that the action
of the upper fluid is still unknown. Some exper-
iments are planned in a device devoted to this
study.

The last issue is how spatial inhomogeneity of
the floaters reflects the intermittent property of
the underlying flow. In Appendix A, we propose
an argument sustaining the conjecture of Kraich-
nan claiming that the passive scalar has to be
more intermittent than the underlying flow. The
high intermittency of the passive scalar stretched
and folded by the velocity gradient is revealed by
the anomalous scaling of the structure function of
the concentration field [4]. It has been related to
the ramp and cliff inhomogeneous structure of the
passive scalar density [37]. We do not reach a res-
olution accurate enough to compute the structure
function of the concentration field of floaters in
our experiment. However, it has been shown that
some properties of turbulent flow, or others com-
plex stretched flows, are enclosed in the time evo-
lution of the shape of triangles in 2D (or tetrads
in 3D ) delimited by Lagrangian points passively
advected by the flow [32; 38; 39]. Therefore a
forthcoming work will be devoted to the study
of the time evolution of such distorted triangles,
delimited by floaters, in order to underline dis-
crepancies with the passive scalar case [32; 39].
Moreover, with the tool introduced to define par-
ticles belonging to a cluster, we should be able to
study the triangle distortion evolution in relation
to the particles ability to enter or escape from the
clusters and thus to relate spatial inhomogeneity
and intermittent properties.

Appendix: Intermittence of the

passive scalar

It was argued in [4] that the concentration field
of a passive scalar will be intermittent even if the
advective velocity field is not. Here we give an ar-
gument sustaining this conjecture using the con-
straints imposed by the stationarity on the self-
correlation function in time of concentration field.
We consider a passive scalar θ (like temperature
fluctuations, salt or contaminant concentration)
transported by a homogeneous and uniform tur-
bulent velocity flow u at high Reynolds Num-
ber, Re. We assume that the velocity field u fol-
lows the K41 scaling theory in the inertial range.
Therefore in this intermediate range of scales, the
energy flux ǫ through the scales is conserved and
the Fourier components of all quantities become
independent of the dissipation and injection en-
ergy processes; Thus they will depend only on ǫ
and on the wave number k . The dimensional
analysis implies 〈ûk|p〉 ∝ (ǫ/k)p/3. For a passive
scalar in a statistically stationary state one can
write

∂tθ + ui∂iθ = S + D∂jjui (7.5)

where S is a large scale source term, compensat-
ing the diffusive lost (e.g. a maintained large scale
temperature or concentration gradient). For mod-
erately small Schmidt Numbers Sc = ν/D such
that the Péclet number Pe = Sc · Re is large,
the passive scalar has to be transported through
the inertial range upto the diffusive scale ηD. ηD

is defined such that PeηD
= δuηD

ηD/D is nearly
1 with δuηD

a typical velocity increment on the
diffusive scale. One can consider the quantities
coarse–grained up to a scale K = 1/l in the in-
ertial range by using a low pass filtering on the
velocity field. Thus one has the following balance
for the coarse–grained field uK and θK :

∂t〈θ2
K/2〉 = Po + ΠK (7.6)

where Po is a large scale injection term, inde-
pendent of K and ΠK is the concentration flux
through the scale K = 1/l in the inertial range. It
is assumed to be independent of the large scale L
and the small scale ηD. Stationarity imposes that
in Po = ΠK and the dimensional analysis imposes
the only time scale (1/KûK) in the inertial range.
It implies : 〈|θ̂2

K |〉 ∝ Po/(KûK) ∝ PoK
−2/3/ǫ1/3.

Hence the usual non-intermittent scaling will be :

〈|θ̂2p
K |〉 ∝ P p

o K−2p/3/ǫp/3. (7.7)
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However stationarity does not only impose the
equality between the time average of Io and ΠK

but also the equality of the time integral of their
self-correlation function as demonstrated in [40].
Applying the previous dimensional analysis to the
equality

τPoσ(Po)
2 =

∫ ∞

0
∆Po(t) · ∆Po(t + τ)dτ

=

∫ ∞

0
∆ΠK(t) · ∆ΠK(t + τ)dτ

= τΠK
σ(ΠK)2 (7.8)

with ∆X = X−〈X〉 and where we define the cor-
relation time of the variable X as:
τX = 1/σ(X)2

∫ ∞
0 ∆X(t) · ∆X(t + τ)dτ . The lhs

of (7.8) does not depend on the scale K whereas
the dependence in K of rhs, can be estimated us-
ing dimensional analysis. Thus one gets 〈|θ̂4

K |〉 ·
KûK ∝ σ(Po)

2τIo, hence

〈|θ̂4
K |〉 ∝ σ(Po)

2τPoK
−2/3/ǫ1/3.

This result is far from the expected scaling (7.7)
although the velocity follows a normal scaling.
Parts of the scaling hypothesis have to be released
in order to agree with observations. Moreover
such kind of constrains could explain the satu-
ration of the structure function exponents of the
passive scalar, noticed in the no-intermittent in-
verse cascade regime of the 2D turbulence [37] or
compressible flows [41].
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Chapter 8

Conclusions and Perspectives

8.1 Summary and Conclusions

During this thesis several results were presented, and they can be summarized in four main
parts:

1) We characterized a turbulent flow produced with a MHD forcing.

By imposing simultaneously a homogeneous horizontal electrical current and a heteroge-
neous vertical magnetic field, we generate fluid motion in a thin layer of conducting fluid.
The signature of the forcing geometry (as defined by the magnetic field) rules fundamental
characteristics of the resulting flows. Therefore, we are capable to create two very different
flows. (i) A flow in which the velocity field present a much larger time averaged component
than its temporal fluctuations. As the flow show a coherent large scale structure, surface
deformations have a time averaged component of the same order as fluctuations about
the mean profile. (ii) Another flow where fluctuating components concentrate most of the
flow energy: temporal fluctuations of velocity are larger than time averaged velocity and
the equivalent relation is also valid for the surface deformation.

For the two flows, there is an increase both on velocity and in the amplitude of surface
deformation, despite the discussed differences. Horizontal velocities are much larger than
vertical ones, thus the flow can be considered as primarily two-dimensional.

2) We considered the influence of turbulence on surface deformation:

We studied the surface deformation generated by a primarily horizontal turbulent flow.
At gentle forcing (with imposed electrical current from 50 A to around 200 A) we clearly
distinguished coherent vortices: (i) qualitatively from temporal and spatiotemporal traces
of surface deformation, and (ii) in statistical terms, as they introduce an asymmetry
through values below the mean surface level, as a consequence of their characteristic
shape.

For stronger forcing, there are some indications of the existence of –spontaneously generated–
waves in our experiment: the observation of an asymmetry to values larger than the most
probable value in local measurements; and indications of a small part of the energy con-
centrated around the dispersion relation of waves. At this stage, we can –weakly– conclude
that waves are spontaneously generated in our experiment. However, more experiments
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8. Conclusions and Perspectives

should be carried out –in order to make statistics more reliable– and further data analysis
should be performed in order to quantify wave contributions in our measured fields.

3) We considered the influence of turbulence on wave propagation:

By analyzing the height fluctuations under different conditions –specifically, by varying
the intensity of the MHD forcing and the frequency of an externally excited wave– we
observed the enhancement of wave dissipation by turbulence.

We performed two complementary analyses: one based on the spectral signature of the
excited wave, or f0–peak in the frequency spectrum; and a second analysis that consist
in computing coherent averages of the spatiotemporal evolution of η, from which the
variance can be linked to an attenuation coefficient. As we increase the intensity of the
forcing –implying stronger turbulent fluctuations–, the analysis of the f0–peak, reveals
the decrease of its amplitude, accompanied by its widening. A transfer of the wave energy
into turbulent fluctuations of close scales may explain the simultaneous decrease and
widening of the peak. This enhancement of wave dissipation by turbulence is confirmed
by the analysis of the coherent average. Both analyses shown a non trivial dependency
of dissipation on the frequency of the excited wave: waves of higher frequency are more
efficiently attenuated by turbulence.

4) We considered the influence of turbulence on floating particles:

When particles float a the surface of a flow, they are subjected to a specific constrains:
first they have to stay at the surface; then they experience the action of surface tension
and of other surface motions. Therefore, floating particles experience an effective com-
pressibility. As a consequence, we observe the phenomenon of preferential concentration
of floating particles. We first develop statistical tools that allows us to identify clustering
of particles. As expected, we observe strong velocity and angular correlations between
particles belonging to a cluster. Then, we constructed suitable quantities to rely flow
characteristics to the cumulated concentration of particles. As we found that upward-
downward flow present larger correlations than particles’ inertia or surface deformation,
we propose it as the responsible mechanism for preferential concentration of particles.

8.2 Perspectives

We can mention some short term perspectives, as they are a natural continuation of the presented
works.

Concerning the dynamics of particles, we focused on the statistics of clusters by taking each
time as independent. Thus, a natural perspective of our work is to extend the analysis to the
temporal evolution of clusters. In particular, the evolution of the area defined by three particles
can be contrasted with prediction stated for two dimensional flows.

We observed that several processes are involved in the evolution –and clustering– of floating
particles, from which turbulent motion is perhaps the most complex. Thus, we started simpler
experiments excluding turbulence: we put particles in a parabolic fluid surface, as obtained
when a cylindrical contained is subjected to rotation about its vertical axis. We observe slow
non-trivial motions as a consequence of surface tension and particle’s inertia. This preliminary
experiments are still to be understood, and then, the interaction of several particles under these
conditions will be considered.

We presented an scenario where upward-downward flows are responsible both from prefer-
ential concentration of particles and from their tendency to go outside vortices cores. However,
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Perspectives

an alternative scenario could be the one where particle dynamics is ruled by the acid instead of
liquid metal (because particles are heavier than the acid). This scenario must be tested. This is
difficult to do in the presented experiment, thus, it will be necessary to make a complementary
one, on the spirit of the one mentioned in the previous paragraph.

Concerning surface deformation, it is necessary to improve the statistics obtained, in par-
ticular to understand the observed differences between local and space-resolved measurements.
It is also relevant to develop more delicate analysis of the spatiotemporal measurements of sur-
face deformation, in order to distinguish potential from rotational contributions and clarify the
existence of waves.

As longer term perspectives, there are different directions that could be followed:
During this thesis, we emphasized the richness of the MHD forcing to generate a turbulent

flow with a free surface. This is an important advantage of working with liquid metals: because
the high conductivity of the fluid, the Lorentz forcing is a very effective one. However, despite our
efforts, we experienced strong limitations at the moment of performing measurements. Therefore
one perspective is to develop an optical method to obtain the full two dimensional surface
deformation in reflective surfaces –perhaps by properly correlating stereo images–.

On the other hand, for transparent electrolytes (that reach weaker turbulent regimes), it
could be interesting to test the available techniques to measure global surface deformation. In
this way, we can also take advantage of standard velocimetry techniques –like Particle Image
Velocimetry (PIV)– to go deeper into the spatiotemporal characterization of the flow, and to
compute correlations with surface deformation.

We explored in detail two aspects of the wave-turbulence problem: the one of wave generation
by a turbulent flow; and the influence of turbulence on wave propagation. There is still many
others aspect to be explored in experiments, in particular how the nonlineal interaction of
turbulent waves is affected by vorticity. Another, related and interesting problem, not yet
explored experimentally to my knowledge, is how a velocity field is affected by a wave that
travels on the surface.
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