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Abstract: : In this paper, the adaptive estimation of spatially varying diffusion and source term
coefficients for a linear parabolic partial differential equation describing tokamak plasma heat
transport is considered. An estimator is defined in the infinite-dimensional framework having
the system state and the parameters’ estimate as its states. Our scheme allows to estimate
constant, spatially distributed and spatio-temporally distributed parameters as well as input
with known upper bounds in time. While the parameters convergence depends on the plant
signal richness assumption, the state convergence is established using the Lyapunov approach.
Since the estimator is infinite-dimensional, the Galerkin finite-dimensional technique is used to
implement it. In silico simulations are provided to illustrate the performance of the proposed
approach.

Keywords: Thermonuclear fusion, distributed parameter systems, input state and parameter
estimation, adaptive infinite-dimensional estimation, Galerkin method

1. INTRODUCTION

In a controlled thermonuclear fusion reactor, the plasma
thermal diffusivity and heating energy play an important
role in the development of new challenging control strate-
gies. These parameters describe the plasma heat transport,
which affects the current and pressure profiles and there-
fore the plasma confinement itself. Presently, to the best of
our knowledge, there are no physical laws describing these
variables. In fact, for the diffusion coefficient, only some
empirical models exist (Hoang et al. (1998)). Each one
depends on various conditions (tokamak dimensions, dis-
charge parameters, temperature profile, etc.). The source
term (the heating energy absorbed by the particles), due to
its dependence on the plasma-wave coupling is also difficult
to model based on theoretical knowledge.
The plasma heat transport in tokamak is described by a
linear parabolic partial differential equation (PDE) with
reaction and diffusion coefficients. While the reaction
parameter is assumed to be constant (given by Hoang
et al. (1998) empirical model), the diffusion coefficient
and source term are distributed space-time parameters.
Thus, the plasma heat transport can be considered as a
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dynamical distributed parameter system (DPS).
In our previous works (Mechhoud et al. (2013a), Mechhoud
et al. (2013b)), we attempted to solve this problem in a
finite-dimensional framework using Galerkin formulation
and a modified Kalman filter. In order to investigate the
possible improvements brought by considering the dis-
tributed dynamics directly in the estimation approach,
this paper is focused on the infinite-dimensional framework
using on-line or adaptive estimation techniques.
Off-line methods for functional parameters in DPS were
extensively studied both in finite and infinite-dimensional
frameworks (Banks and Kunisch (1989), Yu and Sein-
feld (1988), etc.). The identification methods were based
mainly on output least squares and maximum likelihood
estimators. These techniques lead generally to nonlinear
optimization problems. An on-line estimator utilizes the
PDE characteristics and consequently the problem re-
mains linear.
Adaptive estimation for infinite dimensional dynamic sys-
tems with both constant and spatially varying parameters
with known inputs was first addressed in Baumeister et al.
(1997) and their earlier works (for example: Dr. Scondo
and Dr. Demetriou’s Ph. D theses). They also established
the abstract framework of this problem using functional
analysis tools and Sobolev spaces properties. In Orlov and
Bentsman (2000), constructively enforceable identifiability
conditions based on manipulable quantities were intro-
duced for the first time. Unlike Baumeister et al. (1997),
the proposed adaptive estimator used the PDE features to
reduce the order of the spatial derivatives by obviating the



repetition of the spatial derivative structure of the plant
in the tuning laws.
Two main contributions are presented in this work. First,
the identifiability conditions of the simultaneous diffu-
sion/input estimation problem are shown. Since the input
is unknown, these conditions are passive. Then, only con-
stant or spatially varying input/parameters’ simultaneous
on-line estimation is considered. This part can be regarded
as an extension of Orlov and Bentsman (2000) work to the
joint input/parameter identification problem. In the sec-
ond part, distributed slowly time-varying input/parameter
are examined. We demonstrate that a region of conver-
gence of the state error can be expressed explicitly as a
function of the identifiers’ tuning parameters. After that,
inspired by Wada et al. (2006) paper, adaptive estimation
of distributed time-varying input/parameter with known
upper bounds is discussed.
The question of input estimation is not only related to
plasma heat transport but arises more generally in fault
detection and inverse problems.

This paper is organized as follows. The electron heat
transport model and the framework of our PDE problem
are presented in Section II. In Section III, we treat the
diffusion and source term identifiability conditions. The
adaptive estimators for functional (spatially varying) and
distributed time-varying state, input and parameters are
considered in Section IV. In order to illustrate the perfor-
mance of the proposed identifiers, computer simulations
are carried out in Section V.

2. ELECTRON HEAT TRANSPORT MODEL

Assuming the poloidal and toroidal axisymmetry, the toka-
mak may be considered as an infinite cylinder where space
variations occur only along the radius a. Applying the
energy conservation principle, the electron heat transport
model is given by the following parabolic partial differen-
tial equation (Hinton and Hazeltine (1976)):

∂(nT )

∂t
=

2

3

1

r

∂

∂r

(

rnχe(r, t)
∂T

∂r

)

− 1

τ
nT (r, t) +

2

3
Pe(r, t), (1)

where t is the time, r is the radial variable along a, χe

is the electron diffusivity, τ(< ∞) is a damping time
modelling energy losses, T is the electron temperature, n is
the electron density and Pe is the power density absorbed
by the particles from an external heating system.
The spatio-temporal variations of the electron density are
assumed to be negligible with respect to the temperature
variations during the heating process, and using the nor-

malized variable x =
r

a
, (1) can be written as:



































∂T

∂t
=

1

x

∂

∂x

(

x χe(x, t)
∂T

∂x

)

− 1

τ
T (x, t) + S(x, t);

∂T

∂x
(0, t) = 0 ; T (1, t) = 0;

T (x, 0) = 0; x ∈ Ω; t ∈]0, tf ],

(2)

where Ω is the interval ]0, 1[. The normalized source term
and diffusivity coefficient are respectively given by:















S(x, t) =
2

3n
Pe(x, t)

χe(x, t) =
2

3 a2
χe(r, t)

(3)

In system (2), the second and third equations represent
initial and boundary conditions, chosen to guaranty the
symmetry and boundedness of the solution near zero. The
value 0 refers to an equilibrium temperature level and not
to the absolute zero temperature. The diffusion coefficient
χe is assumed to belong to the space Qχ2 = {f : f(x, t) ∈
C0(0, tf ;C

1(Ω)), f(x, t) > c > 0}, the reaction coefficient
τ in R

+
∗ and the source term S in QS := C0(0, tf ; C

0(Ω)).
These assumptions guarantee the existence, uniqueness
and differentiability of the classical solution of PDE (2)
in QT := C1(0, tf ;C

2(Ω))(see Evans (2010), chapter 07,
page 375).
In the following, τ is considered as a known variable given
by Hoang et al. (1998) experimental model.

3. DIFFUSION AND SOURCE TERM
IDENTIFIABILITY

The input/parameter estimation convergence is guaran-
teed if we can ensure the problem identifiability: whether
it is possible to uniquely extract the solution for the model
unknown variables from the measurements.
In the finite-dimensional framework, this problem has been
extensively studied (see Raue et al. (2010) and references
therein) both for structural (noise-free model) and prac-
tical aspects. In adaptive estimation techniques, this is
equivalent to ensure plant signals richness. The finite-
dimensional notion of persistence of excitation was ex-
tended to infinite-dimensional systems first by Baumeister
et al. (1997) and Demetriou and Rosen (1997). Later,
in Orlov and Bentsman (2000), constructively enforceable
identifiability conditions were given and the construction
of persistently exciting inputs was shown. In this paper,
the structural identifiability question is treated in the
spirit of Orlov and Bentsman (2000) paper, extended to
deal with both diffusion/source term reconstruction and
the only available inputs under which identifiability is
considered are the PDE’s (2) boundary conditions.

Definition: (Orlov and Bentsman (2000)) A set of pa-
rameters {χe(x, t), S(x, t)} of the PDE (2) is said to be
identifiable with the corresponding boundary conditions if
and only if:

∀x ∈]0, 1[, ∀t ≥ 0, ∀χe 6= χe, ∀ S 6= S :

div

(

∆χe

∂T

∂x

)

+∆S = 0 ⇒ ∆χe = ∆S = 0,
(4)

where div is the divergence operator in the cylindrical
coordinates supposing a gradient in the x direction only:

div(.) :=
1

x

∂

∂x
(x .), ∆χe = χe − χe and ∆S = S − S.

The concept of persistent excitation relies on the ability
of finding the Fourier expansion of the plant state on an
arbitrary orthonormal basis in L2(0, 1). In this, T (x, t) can
be written as:



T (x, t) =

∞
∑

n=0

ln(t) cos(πnx). (5)

where the Fourier coefficients ln are linearly indepen-
dent functions (for more details see Orlov and Bentsman
(2000)). Sufficient conditions for simultaneous diffusion
and source term identification are given as follows.

Theorem 1. If the boundary conditions (and the input)
of the PDE (2) generate a persistent excitation of the
system (such that the Fourier coefficients of the plant
state are linearly independent), then the parameter χe and
the external input S are identifiable (with these boundary
conditions).

Proof. Substituting the Fourier expansion of T given in
(5) into (4) yields:

∞
∑

n=0

{[div(∆χe)nπln(t) +
nπ

x
∆χeln(t)]sin(nπx) +

+(nπ)2∆χeln(t)cos(nπx)} −∆S = 0. (6)

The input S can also be written as a Fourier series:

S(x, t) =
∞
∑

n=0

ωn(t)cos(nπx)

where {ωn(t)}n=∞
n=0 are linearly independent. Substituting

S in (6) gives:

∞
∑

n=0

{[div(∆χe)nπln(t) +
nπ

x
∆χeln(t)]sin(nπx) +

+[(nπ)2∆χeln(t)−∆ωn(t)]cos(nπx)} = 0. (7)

Since the sets {cos(nπx)} and {sin(nπx)} have no in-
tersecting zero and {ln(t)}∞n=0 are linearly independent
(persistent excitations hypothesis), we conclude that (7)
implies:

∆χe = 0 and (∆ωn = 0 ⇔ ∆S = 0).

♦

Remark: Since the input is unknown and the aim of this
work is to estimate it simultaneously with the diffusion
coefficient, unlike what was done in Orlov and Bentsman
(2000), input persistent generators cannot be constructed.
The persistent excitation of the plant is investigated a
posteriori, once the measurements are available by check-
ing the linear dependence of the plant Fourier coefficients
unless a simulator on which tests can be carried out is
accessible.

4. ADAPTIVE ESTIMATOR DESIGN FOR
DISTRIBUTED TIME-SPACE INPUT AND

DIFFUSION COEFFICIENT

For sufficiently rich signals, the simultaneous estimation
of the input and the diffusion coefficient can be achieved
using an adaptive estimator. The adaptive law is developed
based on stability considerations or using simple optimiza-
tion techniques to minimize the output error equation.
In this section, we first assume that the parameters (S
and χe) are time independent. Our initial objective is to

demonstrate that under this assumption, a stable adap-
tive estimator for the simultaneous problem exists and
guarantees the L2 and point-wise convergence of both
state and parameters (input and diffusion coefficient). The
problem of distributed slowly time varying coefficients and
time-varying parameters with known upper bounds will be
addressed in the next subsection.

4.1 Adaptive estimator for spatially varying parameters

The adaptive identifier is a model-based estimator. It
takes the form of PDE (2) to which an innovation term
(correction) is added and a gradient-type update law for
the parameters’ estimate is associated. Supposing that
distributed sensors are available and measure the system
state, this estimator is described by:







































∂T̂

∂t
=

1

x

∂

∂x

(

x χ̂e(x, t)
∂T̂

∂x

)

− 1

τ
T̂ (x, t) + Ŝ(x, t)

−ϑ0 (T̂ (x, t)− T (x, t));

∂T̂

∂x
(0, t) = T̂ (1, t) = 0; T̂ (x, 0) = T̂0(x) ≥ 0;

(8)



































∂χ̂e

∂t
= ϑ1

∂

∂x

(

T̂ − T
) ∂T̂

∂x
; χ̂e(x, 0) = χ̂e0(x);

∂Ŝ

∂t
= −ϑ2 (T̂ − T ); Ŝ(x, 0) = Ŝ0(x);

∀x ∈ ]0, 1[ ; t ≥ 0,

(9)

where ϑi ≥ 0, i = 0, 1, 2 are the adaptation gains,
χ̂e0(x) > 0 is a smooth function and S0(x) is a continuous
function.

Theorem 2. If the plant (2) is identifiable (under 1’ con-
ditions), the adaptive identification law given by (8) com-
bined with the parameters identifiers in (9) ensure the L2

convergence of the state and parameters deviations.

Proof. Let us first define the state and parameters devi-
ations











∆T = T̂ − T,
∂∆T

∂x
(0, t) = ∆T (1, t) = 0;

∆χe(x, t) = χ̂e(x, t)− χe(x);

∆S(x, t) = Ŝ(x, t) − S(x);

(10)

and their derivatives:


























































∂∆T

∂t
= div

(

χe(x)
∂∆T

∂x

)

+ div

(

∆χe(x, t)
∂T̂

∂x

)

−(
1

τ
+ ϑ0)∆T (x, t) + ∆S.

∂∆χe

∂t
= ϑ1

∂T̂

∂x

∂∆T

∂x
.

∂∆S

∂t
= −ϑ2 ∆T (x, t).

(11)

Since χ̂e0(x) > 0 and τ ∈ R
+
∗ are bounded, Ŝ(x) is

a continuous bounded function. There exists a unique



local solution for the global system (2), (8) and (9).Thus
the problem is well-posed and we introduce the following
Lyapunov functional

V (t) =
1

2

∫ 1

0

(

[∆T (x, t)]2 +
1

ϑ1
[∆χe(x, t)]

2

+
1

ϑ2
[∆S(x, t)]2

)

dx.
(12)

Taking into account the system (11) and using the Gauss’
divergence formula:

∫ 1

0

div

(

χe

∂∆T

∂x
∆T

)

dx = χe

∂∆T

∂x
∆T
∣

∣

∣

1

0

and:

div

(

χe

∂∆T

∂x
∆T

)

= ∆T div

(

χe

∂∆T

∂x

)

+ χe

(

∂∆T

∂x

)2

we obtain the following integration by parts for the diver-
gence term:
∫

1

0

div

(

χe

∂∆T

∂x

)

∆Tdx = χe

∂∆T

∂x
∆T

∣

∣

∣

1

0

−

∫

1

0

χe

(

∂∆T

∂x

)2

dx.

The time derivative of the Lyapunov functional (12) is
given by:

V̇ (t) = χe(x, t)
∂∆T

∂x
∆T (x, t)

∣

∣

∣

1

0
−
∫ 1

0

χe(x, t)

(

∂∆T

∂x

)2

dx

+∆χe(x, t)
∂T̂

∂x
∆T (x, t)

∣

∣

∣

1

0
−
∫ 1

0

∆χe(x, t)
∂∆T

∂x

∂T̂

∂x
dx

−
∫ 1

0

(

1

τ
+ ϑ0

)

[∆T (x, t)]2dx+

∫ 1

0

∆S(x, t)∆T (x, t)dx

+

∫ 1

0

∆χe(x, t)
∂T̂

∂x

∂∆T

∂x
dx−

∫ 1

0

∆S(x, t)∆T (x, t)dx

= −
∫ 1

0

χe(x, t)

(

∂∆T

∂x

)2

dx −
∫ 1

0

(
1

τ
+ ϑ0)[∆T (x, t)]2dx

≤ −
∫ 1

0

(
1

τ
+ ϑ0)[∆T (x, t)]2dx ≤ 0

This proves the boundedness of Lyapunov functional (12)
for all t ≥ 0 and L2 boundedness of system solutions
(8),(9). In this special case, the invariance principle can
be used (see Orlov and Bentsman (2000) and references
therein). Therefore, the trajectories of system (8),(9) con-
verge to the maximal invariant subset of a set of solutions
of (8),(9), for which V̇ = 0. This implies ∆T = 0 and leads
to the following expression:

div(∆χe(x, t)
∂T

∂x
) + ∆S(x, t) = 0; ∀x ∈]0, 1[, t ≥ 0(13)

With the identifiability hypothesis, it follows that:

∆χe(x, t) = ∆S(x, t) = 0; ∀x ∈]0, 1[, t ≥ 0.

and thus, we deduce that

lim
t→+∞

∫ 1

0

{

(∆T )2 + (∆S)2 + (∆χe)
2
}

dx = 0.

Finally, using the same methodology as the one proposed
in Orlov and Bentsman (2000), parameters’ point-wise
convergence can be asserted.

4.2 Case of the distributed slowly time-varying parameters

When dealing with slowly time varying parameters, L2

convergence for all ∆T ∈ QT can no longer be guaranteed:
only a region of convergence can be established.
In the infinite-dimensional framework, parameters’ slowly
time varying and boundedness assumptions can be given
by:

∀x ∈]0, 1[, ∀t ≥ 0, ∃ ǫ1, ǫ2, ǫ⋆1, ǫ⋆2 :

(14)










∥

∥

∥

∂χe

∂t
(., t)

∥

∥

∥

2
≤ ǫ1 ;

∥

∥

∥

∂S

∂t
(., t)

∥

∥

∥

2
≤ ǫ2

‖∆χe(., t)‖2 ≤ ǫ⋆1 ; ‖∆S(., t)‖2 ≤ ǫ⋆2

Lemma 3. Under assumptions (14), parameters’ update
laws given in (8), (9) guarantee the L2 convergence of the
state error in the region:

Π =

{

∆T ∈ QT : ‖∆T (., t)‖2 ≤

√

ǫ1 ǫ⋆
1
ϑ2 + ǫ2 ǫ⋆

2
ϑ1

ϑ0 ϑ1 ϑ2

, ∀t ≥ 0

}

Proof. The proof is based on Theorem 2. As we consider
space-time varying parameters (χe(x, t) and S(x, t)), the
derivative of Lyapunov functional (12) becomes:

V̇ (t) = −

∫

1

0

χe(x, t)

(

∂∆T

∂x

)

2

dx+
1

ϑ1

∫

1

0

∂χe

∂t
∆χe(x, t)dx

−

∫

1

0

(

1

τ
+ ϑ0

)

[∆T (x, t)]2dx+
1

ϑ2

∫

1

0

∂S

∂t
∆S(x, t)dx

Using the Cauchy-Schwarz inequality and assumptions
(14)

V̇ (t) ≤ −
∫ 1

0

ϑ0[∆T (x, t)]2dx+
ǫ1 ǫ

⋆
1

ϑ1
+

ǫ2 ǫ
⋆
2

ϑ2
.

where 1/τ has been implicitly included in the design
parameter ϑ0. Thus,

(

‖∆T (x, t)‖22 ≥ ǫ1 ǫ
⋆
1 ϑ2 + ǫ2 ǫ

⋆
2 ϑ1

ϑ0 ϑ1 ϑ2

)

⇒ (V̇ ≤ 0).

Hence for ∆T ∈ QT −Π, state and parameters errors are
L2 bounded. By choosing large tuning parameters ϑi, i =
0, 1, 2, we can make the state error region Π arbitrarily
small. On the other hand, large tuning parameters may
lead to noise amplification.

4.3 Adaptive estimation of space-time parameters with
known upper bounds

Now, we assume that the parameters satisfy the following
inequalities ∀x ∈]0, 1[, t ≥ 0 :







‖χe(x, t)− χe(x, 0)‖22 ≤ ξ0,

‖S(x, t)− S(x, 0)‖22 ≤ γ0,
(15)

where ξ0 and γ0 are known upper bounds and parameters
χe and S can be written as

{

χe(x, t) = χe(x, 0) + ξ(x, t),

S(x, t) = S(x, 0) + γ(x, t).
(16)



For the parameters’ tuning laws (9), additional update
laws on the new variables ξ and γ, that characterize
respectively χe and S time variations, are selected as:



















∂ξ̂

∂t
=

(

∂∆T

∂x

)2
∥

∥

∥

∂T̂

∂x
(., t)

∥

∥

∥

2

2
,

∂γ̂

∂t
= [∆T (x, t)]2.

(17)

The state adaptation law is given by:



































































∂T̂

∂t
= div

(

χ̂e

∂T̂

∂x

)

− 1

τ
T̂ (x, t) + Ŝ(x, t)− ϑ0∆T (x, t)

−γ̂(x, t)∆T (x, t) + div

(

ξ̂
∥

∥

∥

∂T̂

∂x

∥

∥

∥

2

2

∂∆T

∂x

)

;

∂T̂

∂x
(0, t) = T̂ (1, t) = 0; T̂ (x, 0) = T̂0;

∀x ∈ [0, 1], ∀t ≥ 0.

(18)

Lemma 4. The state and parameters adaptive estimators
(18), (9) and (17) guarantee the stability of the origin of
the state and parameters errors as follows:

lim
t→+∞

‖∆T (x, t)‖2 = 0

lim
t→+∞

∆T (x, t) = lim
t→+∞

∆χe(x, t) = lim
t→+∞

∆S(x, t) = 0

Proof. Introduce the following errors: ∀x ∈]0, 1[, t ≥ 0 :







γ̃(x, t) = γ̂(x, t) − γ0, S̃(x, t) = Ŝ(x, t) − S(x, 0),

ξ̃(x, t) = ξ̂(x, t) − ξ0, χ̃e(x, t) = χ̂e(x, t) − χe(x, 0),

(19)

and define a new Lyapunov functional:

V (t) =
1

2

∫ 1

0

{

(∆T )2 +
1

ϑ1
χ̃e

2 +
1

ϑ2
S̃2 + γ̃2 + ξ̃2

}

dx,(20)

where the space-time dependence is dropped for the sake
of simplicity. The time derivative of ∆T becomes:























































∂∆T

∂t
= div(χe

∂∆T

∂t
) + div(∆χe

∂T̂

∂x
)− γ̂∆T

+div(ξ̂
∥

∥

∥

∂T̂

∂x

∥

∥

∥

2

2

∂∆T

∂x
)− (

1

τ
+ ϑ0)∆T +∆S,

∂∆T

∂x
(0, t) = ∆T (1, t) = 0,

∆T (x, 0) = 0.

(21)

Using integration by parts and divergence Gauss formula,
V̇ is given by

V̇ = −
∫ 1

0

χe

(

∂∆T

∂x

)2

dx+

∫ 1

0

ξ
∂T̂

∂x

∂∆T

∂x
dx

−
∫ 1

0

ξ0

(

∂∆T

∂x

)2
∥

∥

∥

∂T̂

∂x

∥

∥

∥

2

2
dx−

∫ 1

0

γ0(∆T )2dx

−
∫ 1

0

γ∆Tdx−
∫ 1

0

(
1

τ
+ ϑ0)(∆T )2dx.

(22)

From Cauchy-Schwarz inequality and assumptions (14) we
get

V̇ ≤ −ϑ0

∫ 1

0

(∆T )2dx − (γ0 − ‖γ‖22)‖∆T ‖22 ‖T̂‖22

−(ξ0 − ‖ξ‖22)
∥

∥

∥

∂∆T

∂x

∥

∥

∥

2

2

∥

∥

∥

∂T̂

∂x

∥

∥

∥

2

2

≤ −ϑ0‖∆T ‖22 ≤ 0.

(23)

As we are considering space-time varying parameters, the
invariance principle can not be used. Inequality (23) im-

plies that ∆T (., t) ∈ L2 ∩ L∞, χ̃e(., t) ∈ L∞, S̃(., t) ∈ L∞

and hence ∆̇T (., t) ∈ L∞. Using Barbalat’s lemma (Popov
(1973)), we conclude that limt→+∞ ‖∆T ‖2(., t) = 0.

Note that equations (21), ((9), (17)), (20) and (23) cor-
respond to equations (1),(2),(3) and (6) in [Hong (1996).
Theorem1], which leads to:

lim
t→+∞

∆T = 0,

and thus,
lim
t→∞

∆χe = lim
t→∞

∆S = 0,

with Theorem 1 and the persistent excitation assumption.

5. SIMULATION RESULTS

Simulation with computed data is carried out to evaluate
the reconstruction performance of the spatially varying
input/diffusion adaptive identifier (8),(9). The dissipation
parameter τ is assumed to be known and constant, given
by Hoang et al. (1998) empirical model. Simulations are
performed using MATLAB/Simulink.
Since the identifier is infinite-dimensional, the bspline-
cubic Galerkin method is used in order to implement
it (Banks and Kunisch (1989)). The simulated data is
generated by using:















χe(x, t) = (0.1 + 5 x+ 2 x2 + 4 x3)1(t); τ = 0.05

S(x, t) =
105√
2 π σ

exp

(−(x− µ)2

2 σ2

)

1(t)

x ∈ [0, 1], t ∈ [0, 1], dx = 0.05, dt = 0.01.

(24)

The choice of χe, τ and S is motivated by the example
proposed by Zou et al. (2003), where it was assumed that
the diffusion coefficient has a monomial monotonically
increasing function and the heating source undergoes a
spatial Gaussian form. These parameters were considered
constant in time. Fig. 1 presents the space variations of χe

and S used in the mock-up data to generate T .
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Fig. 1. T , χe and S for the mock-up example

To evaluate the reconstruction performance using the
adaptive identifier (8),(9), the initialization of the filter
was arbitrary. The choice of the bases dimensions in the
Galerkin formulation is as follows. For χe and S, we have
chosen a dimension of n = 9, whereas for T , we have chosen
n = 20 for its space basis dimension. It is a good trade-off
between precision and convergence rate as shown in Fig. 2.
Note that the space basis dimension of T is related to the
number of required sensors as we are using the bsplines-
Galerkin method. In practice (for the tokamak facility)
more sensors are available.
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Fig. 2. Estimation errors of χe, S, and T for the mock-up
example

From Fig. 2, the estimation of χe, S and T using the
adaptive identifier (8),(9) is satisfactory. This figure shows
the time evolution of each node relative estimation error.
The filter needs few iterations to converge to the original
variables. The choice of ϑi, i = 0, 1, 2 is crucial. From the
simulation, we observe that for each ϑ0 corresponds a cou-
ple of (ϑ1, ϑ2) and increasing these estimation/adaptation
gains leads to faster state and parameters (χe and S)
convergence. However, similarly to the gradient search
method, beyond some points, larger sizes lead to oscilla-
tions and even slow convergence.

6. CONCLUSION

In this paper we have studied and tested state input
and parameter adaptive estimation for a linear parabolic
PDE representing the plasma heat transport in a Toka-
mak. Three related problems were considered. First, only
space-varying parameter/input were considered. The pro-
posed identifier tested in simulation gives good results.
For distributed slowly time-varying and time-varying in-
put/parameter with known upper bounds, only theoretical
results were given. More simulations on computed and
real data are needed to establish the performance of the
proposed technique.
In comparison with our previous results using a Kalman

filter in the finite dimensional framework, the present
approach provided a clearer analytical framework but is
more sensitive to tuning parameters. In this paper, noise
measurement implication is not investigated. In our future
works, this question will be addressed.
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