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Combined distributed parameters and source estimation in tokamak

plasma heat transport

Sarah Mechhoud1, Emmanuel Witrant1, Luc Dugard1 and Didier Moreau2

Abstract— : We investigate the joint estimation of time and
space distributed parameters and input in the tokamak heat
transport equation. This physical phenomenon can be modelled
by a non-homogeneous linear parabolic partial differential
equation (PDE). The analysis of this PDE is achieved in a
finite dimensional framework using the cubic b-splines finite
element method. The application of the parameter projection
method results in a linear time-varying state-space model with
unknown parameters and inputs. The DAISYS method proves
the structural identifiability of the model and the EKF-UI-WDF
estimates simultaneously the states, parameters and inputs. This
methodology is applied on the tokamak plasma heat transport
equation in order to reconstruct simultaneously its coefficients
and its source term. Computer simulations on both mock-up
and real data show the performance of the proposed technique.

I. INTRODUCTION

Heat transport in tokamak plasmas is one of the main

complex physical phenomena in the controlled fusion re-

search. This transport can be described by a one dimen-

sional linear non-homogeneous parabolic partial differential

equation with time-varying distributed diffusion coefficient

and source term. The reaction parameter is constant. In the

thermonuclear fusion community there is no consensus on

defined models for these coefficients. For example, there are

different empirical and theoretical laws for the diffusion coef-

ficient [1]. Each one depends on various conditions (tokamak

dimensions, discharge parameters, temperature profile,...).

The heating energy absorbed by the particles (the source

term in the heat equation) generally comes from radio-

frequency heating or neutral beam injection and is sometimes

difficult to model from first principles because of parasitic

phenomena and energy losses. Thus, in order to keep the

model linear and because of the modelling difficulties, the

diffusivity and the source term are assumed to be unknown.

The aim of this work is to develop a method to reconstruct,

efficiently and simultaneously, these unknown parameters

(diffusivity and source term) in the finite dimensional frame-

work. It is important to note that these coefficients are

not only useful for the heat transport description but also

for the development of current and pressure profile control

strategies, which are strongly affected by the temperature
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dynamics. In this work, our estimation method is an exten-

sion of the one used in [2], where the diffusion, reaction

and advection parameters of a one dimensional parabolic

PDE were estimated, based on a perfect knowledge of the

inputs and the measurements. The PDE is discretized using

a finite element method based on cubic b-splines [3]. Here

the problem considered is to estimate simultaneously the

transport parameters and the inputs. The main difference

with previous results is the parameter projection. In [2]

the parameter projection was performed in time and space,

leading to a non-linear optimization problem. Here, a linear

estimation problem is derived by projecting the parameters

only in space. The resulting time-varying coefficients are

then estimated/identified, using the Extended Kalman Filter

with Unknown Inputs Without Direct Feedthrough (EKF-UI-

WDF) [4]. The validation of the estimation strategy relies

on our capability to reconstruct the parameters and the

inputs, based on the available measurements. This question

is answered by analysing the structural global identifiability

with the Differential Algebra for Identifiability of SYStems

(DAISYS) [5] method. This paper is organized as follows.

First, the heat transport model and its cubic b-splines finite

element method space-discretization are presented in Section

I. The statement of the estimation/identification problem, the

structural identifiability and the application of the DAISYS

method are in Section II. The joint estimation of the diffusiv-

ity and the source term using the EKF-UI-WDF is considered

in Section III. Simulations on both illustrative and real-data

are carried out to evaluate the performance of the chosen

approach.

II. ELECTRON HEAT TRANSPORT MODEL

Assuming the poloidal and toroidal axisymmetry, the

tokamak is considered as an infinite cylinder where space

variations only occur along the radius r ∈ [0, a]. Applying

the energy conservation principle and neglecting the spatio-

temporel variations of the electron density, the electron heat

transport model is given by the following parabolic partial

differential equation (PDE) [6]:







∂T

∂t
=

1

z

∂

∂z

(

zχe(z, t)
∂T

∂z

)

− 1

τ
T (z, t) + S(z, t)

∂T

∂z
(z = 0, t) = 0; T (z = 1, t) = 0

T (z, t = 0) = 0; z ∈ Ω; t ∈]0, tf ]

(1)



where Ω is the interval ]0, 1[, t is the time, a the small

plasma radius, χe the electron diffusivity, τ(< ∞) a damping

time modelling the energy losses, T the electron temperature

and S is the power density absorbed by the particles. In

system (1), the second and third equations represent initial

and mixed Neumann-Dirichlet boundary conditions, chosen

to guaranty the symmetry and boundedness of the solution

near zero.

The existence and uniqueness conditions of the weak solution

T (z, t) ∈ L2(0, tf ;H
1
0,{1}(Ω))

1 based on the Lax-Milgramm

theorem [7] are satisfied for:






χe ∈ L2(0, tf ; L
2(Ω)) ∩ C0(0, tf ;C

1(Ω))
and χe(x, t) ≥ c > 0
τ ∈ R

∗
+

S ∈ L2(0, tf ; L
2(Ω)) ∩C0(0, tf ; C

0(Ω))

(2)

Once the well-posedness of the heat model is established,

an approximate solution can be derived. In this paper, the

approximation is considered in the Galerkin formulation,

using the cubic b-splines finite element method, one of the

widely used methods that provides accurate approximate

solutions of class C2. In the following, this technique is

briefly summarized (see details in [3], [8]).

Starting from the variational formulation of (1), the cubic

b-splines basis functions are chosen to span the finite di-

mensional space of approximate solutions. Specifically, let

{zi}ni=0 be a uniform mesh of Ω. The approximate solution

is given by:

Th(z, t) =

n+1∑

k=−1

xk(t)πk(z) (3)

where {πi}n+1
i=−1 is the sequence of standard piecewise cu-

bic b-splines functions that vanish outside [zi−2, zi+2] and

{xk(t)}k=−1
n+1 is the sequence of the corresponding weighting

functions. However, to satisfy the boundary conditions, some

of these functions have to be adapted. Consequently, the

modified cubic b-splines basis elements {ωi(z)}ni=0 have the

following expression [8]:

ωi(z) =







π0(z) if i = 0
π−1(z) + π1(x) if i = 1
πi(z), for i = 2, ..., n− 2
πn−1(z)− πn+1 if i = n− 1
πn(z)− 4πn+1(z) if i = n

(4)

and the approximate solution (3) becomes:

Th(z, t) =
n∑

k=0

xk(t)ωk(z) (5)

Following all the classical steps of a standard b-splines cubic

finite element method, the PDE given in (1) is converted to a

set of ordinary differential equations (ODE) in the continuous

time domain, leading to:






M Ẋ(t) = (A(t) − 1

τ
M)X(t) +B(t)

X(0) = 0.

(6)

1where L
2 and H

1
0,{1}

are two Hilbert spaces [7]

where: X(t) = [x0(t), x2(t), ..., xn(t)]
T (X ∈ R

n+1),
M ∈ R

n+1×n+1 is the stiffness matrix, non-singular (by

definition), symmetric and diagonally dominant, written as:

M =





∫

1

0
ω

2

0
(z)dz ...

∫

1

0
ω0(z) ωn(z)dz

.

.

.
. . .

.

.

.
∫

1

0
ω0(z) ωn(z)dz ...

∫

1

0
ω

2

n
(z)dz





with :
∫ 1

0 ωi(z) ωi+4(z)dz = 0, i = 0, ..., n− 4.

A(t) ∈ R
(n+1)×(n+1) is the matrix of dynamics (or

the damping matrix), symmetric and given by:

−











∫

1

0
χe(z, t)ω

′2

0
(z)dz ...

∫

1

0
χe(z, t) ω′

0
(z) ω′

n
(z)dz

.

.

.
. . .

.

.

.
∫

1

0
χe(z, t) ω′

0
(z) ω′

n
(z)dz ...

∫

1

0
χe(z, t) ω

′2

n
(z)dz











and the input vector B(t) ∈ R
n+1 is given by:

B(t) =






∫ 1

0 S(z, t) ω0(z)dz
...

∫ 1

0
S(z, t) ωn(z)dz






Splines are a powerful tool for general approximation

problems and when combined with finite element methods

they provide very accurate approximate solutions. To

illustrate this, we compute the Absolute Approximation

Error (AAE) defined as:






AAE(z, t) = Texp(z, t)− Trec(z, t), z ∈ [0, 1]

Trec(z, t) =
∑n

i=0 αi(t)ωi(z)

where Trec is the temperature profile reconstructed after

projection of the measured temperature Texp on the space

spanned by {ω}ni=0 and αk are the solution of the follow-

ing Cramer linear system, resulting from the interpolation

problem:







Trec(zi, t) = Texp(zi, t), i = 0, ..., n− 1

∂Trec

∂z
(zn, t) =

∂Texp

∂z
(zn, t)

(7)

As the electron temperature model (1) does not include the

edge pedestal and plasma scrape-off phenomena, the AAE

is defined for z belonging to the interval [0, 0.8]. Fig. 1

illustrates the AAE using the Tore Supra experimental data

TS 33632 with n = 20. The AAE can be assimilated to

round-off errors.

III. JOINT DIFFUSION AND SOURCE

ESTIMATION

In this section, we first start with the conversion of the

parameter-input (χe and S) estimation problem from the

infinite to the finite dimensional framework. The fundamental

infinite identification problem consists in finding χe and

S such that: χe > c > 0 ∈ L2(0, tf ;L
2(Ω)) and S ∈
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Fig. 1: (a) Spatio-temporal temperature profile Texp and (b)

its AAE for shot TS 33632.

L2(0, tf ;L
2(Ω)) which minimize the following distributed

least-squares criterion:

J(χe, S) =

r∑

i=0

∫ 1

0

(Texp(z, ti)− T (z, ti;χe;S))
2dz (8)

satisfying the constraints (1) and where Texp(z, t) is the

experimental temperature profile given at ti, i = 1, ..., r and

T (z, t;χe;S) is the solution of (1).

In order to develop a computationally more tractable estima-

tion solution, (8) is weakened to the following form:

J(χe, S) =

r∑

i=0

∫ 1

0

(Texp(z, ti)− Th(z, ti;χe;S))
2dz (9)

where Th is the weak solution of the abstract evolution

equation of (1):






d

dt
(Th, v)− b(Th, v; t) = L(t)(v); ∀v ∈ H1

0,{1}(Ω)

Th(0) = T (x, 0) = 0

(10)

where b and L are the bilinear and linear forms associ-

ated with (10), uniformly continuous and coercive. This is

straightforward considering the spaces defined for χe and S.

Note that the problem (9)-(10) admits a solution if the

mapping: χe 7−→ Th is uniformly continuous and S 7−→
Th is continuous. For more details, refer to [9] and [2],

from which the extension to our parameter-input estimation

problem is direct (this extension relies on the chosen spaces

of χe and S, which guarantee the existence and uniqueness

of equation (10)).

According to the Ritz-Galerkin framework, the approximate

solution Th is the orthogonal projection of T on the finite

dimensional space (spanned by {ωi} for example). It con-

verges in L2 norm to T as n −→ ∞. Taking QM (for χe) and

FL (for S) as two compact subsets in L2(0, tf ;L
2(Ω)), the

abstract infinite dimensional estimation problem is converted

to the following finite one [2]:

min
χeM

,SL

Jn(χeM , SL) =

r∑

i=0

n∑

k=0

(αk(ti)− xk(ti;χeM ;SL))
2

with the dynamic constraints provided by (6). αk and xk

are defined previously in section II, {χeM } and {SL} are

parameters sequences that converge to the parameter solution

(χe, S) under the compactness condition on the chosen

parameter sets (QM and FL).

For the parameter sets, the space spanned by the cubic

piecewise twice differentiable b-splines {πk}M,L
k=1 is chosen.

χeM (z, t) can be expressed as follows:

χeM (z, t) =
M∑

k=1

λk(t) πk(z) = θT (t) P (z). (11)

where:






θT (t) = [λ1(t), λ2(t), ..., λM (t)] , θ ∈ R
M

P (z) = [π1(z), π2(z), ..., πM (z)]T

The source term writes as:

SL(z, t) =

L∑

k=1

ζk(t) πk(z) = B(z) β(t). (12)

where :






β(t) = [ζ1(t), ζ2(t), ..., ζL(t)]
T , β ∈ R

L

B(z) = [π1(z), π2(z), ..., πL(z)]

The matrix A(t) defined in Section II then becomes:

A(θT (t)) = −θ
T (t) ⊗









∫

1

0
P (z)ω′ 2

0
(z)dz · · ·

∫

1

0
P (z)ω′

0
(z)ω′

n
(z)dz

.

.

.
. . .

.

.

.
∫

1

0
P (z)ω′

0
(z) ω′

n
(z)dz · · ·

∫

1

0
P (z)ω′ 2

n
(z)dz









Since M is invertible, (6) can be written as a linear

parameter-varying system :






Ẋ(t) =

(

M
−1A(θT (t)) +

1

τ
In+1

)

X(t) +M
−1Dβ(t)

X(0) = 0
y(t) = X(t)

(13)

where D ∈ R
(n+1)×L has the following form:

D =






∫ 1

0
ω1(z)π1(z) dz · · ·

∫ 1

0
ω1(z)πL(z) dz

...
. . .

...
∫ 1

0 ωn(z)π1(z) dz · · ·
∫ 1

0 ωn(z)πL(z) dz






This approach is different from that presented in [2], where

the authors were interested only in parameters estimation

and where the projection operation was done simultaneously

in time and space. This led to a purely nonlinear parame-

ter estimation problem. Note also that, in previous works

[10], [11] where the problem was tackled in the infinite

dimensional framework, the source term was considered as

a known variable and the estimation was computed using

nonlinear optimization algorithms performing well for small

scaled systems.

The main contribution of our formulation is first to carry

out the projection only in space, which allows to finally

deal with a linear state-space system with time-varying

coefficients. Second, the problem of interest is not to estimate

only the parameters but also to reconstruct efficiently and



simultaneously the inputs.

Once the transformation of the initial problem to the finite

dimensional framework is achieved, process identification

techniques developed for state-space systems can be used

to estimate both θ and β in system (13). But, prior to the

estimation process, the question of whether it is possible

to estimate the parameters and the input from the available

measurements has to be answered. This question is the heart

of identifiability.

A. Structural identifiability

Structural identifiability is related to the model structure,

precisely to the injectivity of the input-output mapping

y = φ(q, u), where q is the set of parameters and u the

inputs. It is an a priori investigation which attempts to

answer the crucial question of whether solutions for the

unknown variables of the noise-free model exist or not. The

uniqueness of solutions corresponds to the global structural

identifiability, the existence of a finite number of solutions

to local identifiability and the absence or infinite solutions

to non-identifiability.

The local and global structural identifiability of both linear

and nonlinear systems with respect to the parameters

(not including the inputs) has been exhaustively studied

[12], [13] and references therein. One of them, that can

be easily understood and extrapolated to unknown inputs

identifiability is the Differential Algebra for Identifiability

of SYStems method (DAISYS) for which a succinct and

clear description can be found in [14].

The application of the DAISYS steps on model (13) is

achieved as follows. First the input-output state-independent

mapping is computed (our input is noted β in (13)):

Ψ(y, ẏ, β, θ, τ) = ẏ+ (M−1PWy)θ+
1

τ
y+M

−1Dβ = 0.

(14)

From the A(θ(t)) matrix formula given previously, it is clear

that A is linear in θ and can be readily rearranged so that

the first term in the right-side of (13) can be written as:
(

M
−1A(θT (t)) +

1

τ
In+1

)

X(t) = (M−1PWX)θ(t)+
1

τ
X

where PW is such that the matrix multiplication is well

defined (dim(PW ) = (n+ 1)×M ).

Second, the injectivity condition is obtained by setting:

Ψ(y, ẏ, β, θ, τ) = Ψ(y, ẏ,
∗

β,
∗

θ,
∗
τ ) (15)

where
∗

β,
∗

θ and
∗
τ may be another solution of (14).

(15) can be written as:

[M−1PWy y M
−1D]

︸ ︷︷ ︸

ϕ







θ −
∗

θ

τ − ∗
τ

β −
∗

β






= 0

Note that the rank of ϕ is equal to M+1+L ≤ n+1. If ϕ is

full column rank (the columns are linearly independent) then

θ =
∗

θ, τ =
∗
τ, and β =

∗

β. This means that the parameters (θ

and τ ) and the inputs β are structurally globally identifiable.

However, it is not sufficient for the solution’s numerical

computations: matrix ϕ also has to be well conditioned.

B. Estimation using the EKF-UI-WDF

The Kalman Filter for Unknown Inputs Without Direct

Feedthrough (KF-UI-WDF) is an optimal filter for state and

input estimation. Unlike the minimum-variance unbiased

(MVU) estimators ([15], [16]) where only the MVU

optimality is provided, the KF-UI-WDF is a natural

extension of the Kalman filter (KF) to the unknown inputs

estimation problem and keeps all the KF performances

and practical knowledge. By minimizing a weighted least

squares objective function with respect to an extended

variable including states and unknown inputs, the filter

proposed by [4] guarantees, under classical observability

condition, the global optimality for both state and unknown

inputs estimation in a least square sense.

In this section the KF-UI-WDF is extended to estimate

also the parameter θ using the same philosophy as the

EKF. To this end, we first extend the state vector in (13)

to include the unknown parameter θ and then discretize the

time-variation. Define:

f(X, θ, β, k) =







(I + dt ∗ (M−1A(θT (k)))−
1

τ
In+1)X(k) + dt ∗M−1Dβ(k)

θ(k)







The discrete extended model is given by:






xext(k + 1) = f(X, θ, β, k) + w(k)

y(k) = C xext(k) + v(k)
(16)

where x
ext

(k + 1) =

(
X(k + 1)
θ(k + 1)

)

is the extended state,

C = [In+1 0] is the observation matrix, dt is the time

step, w(k) ∈ R
n+1+M and v(k) ∈ R

n+1 are respectively

the model uncertainty and the measurements noise vectors,

assumed to be independent, white and Gaussian. In order to

take account the unknown dynamics of the parameter θ, the

model noise w has a dimension of n+ 1 +M .

Based on the above representation (16), the EKF-UI-

WDF approach can be used to estimate the extended state

x̂ext(k|k) and the inputs β̂(k − 1|k) given all the available

observations (prior and including time k). The EKF asymp-

totic convergence for observable systems is proved in [17].

In [4], the optimality conditions for the KF-UI-WDF are

analysed. The only restriction of this filter is to impose that

the dimension of the outputs has to be larger than that of the

inputs (n+1 > L), to ensure the uniqueness of the estimated

variables. For the extended case, n+1 has to be larger than

or equal to M +L, where M is the length of the parameters

vector.

Unfortunately, like the KF, the limitations of this filter are

the hypotheses on the model and measurements noises (only

additive noises) and the need of a perfect knowledge of the



covariance matrices W and V . Since we are considering

a deterministic framework, these matrices are regarded as

tuning parameters. Nevertheless, the EKF has proved its

performances in practice even with some missing knowledge,

provided that all the implementation steps listed in [18] are

respected. Since the final objective of this paper is to propose

a practical method for the problem of combined diffusivity

and source term estimation in tokamak plasmas, the reaction

coefficient τ is assumed to be known and constant, given by

the empirical model [1]. This is convenient since the study of

the matrix ϕ defined in subsection III-A using available real

data shows that the rank remains full but the conditioning

number is close to computer’s precision if τ is estimated,

which indicates poor identifiability conditions with this term.

C. Simulation and experimental results

The reconstruction performance of our method is evaluated

using simulations with computed and experimental data.

1) Illustrative example: The mock-up data is generated

using:






χe(z, t) = (0.1 + 5 z + 2 z2 + 4 z3)1(t)(m2/s); τ = 0.1(s)

S(z, t) =
105√
2 π σ

exp

(−(z − µ)2

2 σ2

)

g(t)(eV/s)

z ∈ [0, 1], t ∈ [0, 26], dz = 0.05, dt = 0.01.

(17)

The choice of χe, τ and S is motivated by the example

proposed in [19] where it is assumed that the diffusion co-

efficient has a monomial monotonically increasing function

and the heating source undergoes a spatial Gaussian form.

χe is considered constant in time (1(t) = 1∀t ∈ [0, 26]),
whereas the time variations of S are given by the three-step

function g defined by:

g(t) =







1 if t ∈ [0, 1/3[
1.5 if t ∈ [1/3, 2/3[
2 if t ∈ [2/3, 1[

(18)

Fig. 2 shows that using the cubic b-splines basis functions

{πi}9i=0 for both χe and S, the approximation error of χe is

of the order of 10−15 and the relative approximation error

of S is around 10−6. This led us to take n ≥ 20 (see III-

A) for the temperature basis. To evaluate the reconstruction
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Fig. 2: Approximation errors of χe and S for the mock-up

example

performance using the EKF-UI-WDF, the initialization of

the filter was arbitrary.The covariance matrix of the model

noise W is taken equal to 10−1In+M+1, the measurements

covariance noise V is set to 10−3In+1 and the initial state

estimation error covariance matrix is 103 In+M+1. From
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Fig. 3: Estimation errors of χe and S for the mock-up

example
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Fig. 4: Relative estimation error of the temperature profile T
for the mock-up example

figures 3 and 4, the estimation of χe, S and T using the EKF-

UI-WDF is very good. The filter needs only few iterations to

converge to the original variables despite the abrupt changes

in the source term S.

2) Experimental results: Our estimation strategy is

implemented on data provided by the Tore Supra tokamak. It

is a large tokamak with a superconducting toroidal magnet,

and with a plasma minor radius, a = 0.72m and major

radius R = 2.4m. We consider the discharge TS 33632,

where the heating is mainly due to the radio-frequency power

at the Ion Cyclotron Resonant Heating (ICRH) and the

measured temperature and input power Petot are provided

using diagnostic systems. As in section II, we are dealing

with the joint estimation of the diffusion coefficient χe

and the source term S. τ is fixed using the empirical law

given in [1]. For the projection method, the temperature

projection basis, is n = 21 (since the Ω is divided into 21

uniform meshes). For χe and S, the orders of the bases are

M = L = 10. The numerical values for dz, dt, V and W
are chosen as in the previous section. Fig. 5 presents the

estimated profiles of χe and S in the spatial validity interval

(z ≤ 0.8). Both are positive without enforcing this constraint

in the Kalman filter criterion. The EKF-UI-WDF performs

well since the relative estimation error of T in Fig. 6 is

around 10−2%, the trace of Px(k|k) is decreasing and the

standard deviation converges to 0.5 eV . The superposition of

the input power (Petot , in red dashed-line) and the estimated

absorbed power (Estimated Pe, continuous blue line) is

presented in Fig.7. The temporal power form is coherent with
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Fig. 5: Estimated profiles of χe and S
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Px(k|k)

the estimated profile, with a different magnitude probably

due to energy losses. The estimated χe close to 1(m2/s) is

consistent with the expected physical value.
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IV. CONCLUSION

In this paper we discussed a method for estimating

distributed parameters in a finite dimensional framework

for linear parabolic PDEs. First we dealt with the space

discretization problem, where a cubic b-splines finite element

method was chosen. This widely used method provides

accurate approximate solutions with sufficient smoothness

for direct problems. In the second part, using Galerkin

formulation, the spatio-temporal problem was reduced to a

state-space time-varying parameter model, and then the EKF-

UI-WDF was used to estimate simultaneously the states,

the parameters and the inputs. Simulation and experimental

results testified the interest of the adopted methodology. To

overtake the EKF restrictions, other filters like the UKF, H∞

or particle filter can be used, combined with the square-

root implementation, to guarantee the stability and to fix

the conditioning number problem. This strategy will be the

subject of future studies.
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