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“If politics is the art of the possible, research is surely the art of the soluble [1]”

1. Introduction

The atomic nucleus is a many-body system predominantly governed by a complex

and effective in-medium nuclear interaction and as such exhibits a rich spectrum of

properties. These range from independent nucleon motion in nuclei near closed shells,

to correlated two-nucleon pair formation as well as collective effects characterized by

vibrations and rotations resulting from the cooperative motion of many nucleons.

The present-day theoretical description of the observed variety of nuclear excited

states has two possible microscopic approaches as its starting point. Self-consistent

mean-field methods start from a given nucleon–nucleon effective force or energy

functional to construct the average nuclear field; this leads to a description of collective

modes starting from the correlations between all neutrons and protons constituting

a given nucleus [2]. The spherical nuclear shell model, on the other hand, includes

all possible interactions between neutrons and protons outside a certain closed-shell

configuration [3]. Both approaches make use of numerical algorithms and are therefore

computer intensive.

In this paper a review is given of a class of sub-models of both approaches,

characterized by the fact that they can be solved exactly, highlighting in the process a

number of generic results related to both the nature of pair-correlated systems as well as

collective modes of motion in the atomic nucleus. Exactly solvable models necessarily

are of a schematic character, valid for specific nuclei only. But they can be used as a

reference or ‘bench mark’ in the study of data over large regions of the nuclear chart

(series of isotopes or isotones) with more realistic models using numerical approaches.

The emphasis here is on the exactly solvable models themselves rather than on the

comparison with data. The latter aspect of exactly solvable models is treated in several

of the books mentioned at the end of this review (e.g., references [115, 116, 117, 118]).
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2. An algebraic formulation of the quantal n-body problem

Symmetry techniques and algebraic methods are not confined to certain models in

nuclear physics but can be applied generally to find particular solutions of the quantal

n-body problem. How that comes about is explained in this section.

To describe the stationary properties of an n-body system in non-relativistic

quantum mechanics, one needs to solve the time-independent Schrödinger equation

which reads

ĤΨ(ξ1, . . . , ξn) = EΨ(ξ1, . . . , ξn), (1)

where Ĥ is the many-body hamiltonian

Ĥ =
n∑
k=1

(
p̂2k

2mk

+ V̂1(ξk)

)
+
∑
k<l

V̂2(ξk, ξl) +
∑
k<l<m

V̂3(ξk, ξl, ξm) + · · · , (2)

with mk the mass and p̂2k/2mk the kinetic energy of particle k. The particles can

be bosons or fermions. They may carry an intrinsic spin and/or be characterized by

other intrinsic variables (such as isospin the projection of which distinguishes between

a neutron and a proton). These variables of particle k, together with its position r̄k, are

collectively denoted by ξk. Besides the kinetic energy and a possible external potential

V̂1(ξk), the hamiltonian (2) contains terms that represent two-, three- and possible

higher-body interactions V̂2(ξk, ξl), V̂3(ξk, ξl, ξm), . . . between the constituent particles.

The stationary properties of the n-body quantal system are determined by solving the

Schrödinger equation (1) with the additional constraint that the solution Ψ(ξ1, . . . , ξn)

must be symmetric under exchange of bosons and anti-symmetric under exchange of

fermions.

The hamiltonian (2) can be written equivalently in second quantization. The one-

body part of it describes a system of independent, non-interacting particles, and defines

a basis consisting of single-particle states φα(ξk), where α characterizes a stationary

state in the potential V̂1. In Dirac’s notation this single-particle state can be written as

〈ξk|α〉, with |α〉 a ket vector that can be obtained by applying the creation operator c†α to

the vacuum, |α〉 = c†α|o〉. The hermitian adjoint bra vector can be obtained likewise by

applying (to the left) the annihilation operator cα, 〈α| = 〈o|cα. A many-body state can

now succinctly be written as |αβ . . .〉 = c†αc
†
β . . . |o〉, and the Pauli principle is implicitly

satisfied by requiring that the creation and annihilation operators c†α and cα obey either

commutation relations if the particles are bosons or anti-commutation relations

if they are fermions, viz.

[cα, c
†
β] = δαβ, [cα, cβ] = [c†α, c

†
β] = 0,

or

{cα, c†β} = δαβ, {cα, cβ} = {c†α, c
†
β} = 0,

respectively. With the preceding definitions, the hamiltonian (2) can be rewritten as

Ĥ =
∑
α

εαc
†
αcα +

∑
αβγδ

vαβγδc
†
αc
†
βcγcδ + · · · , (3)
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where εα are coefficients related to the one-body term in the hamiltonian (2), vαβγδ
to the two-particle interaction, and so on. The summations are over complete sets of

single-particle states, which in most applications are infinite in number. Even if the

summations are restricted to a finite set of single-particle states, the solution of the

Schrödinger equation remains a formidable task, owing to the exponential increase of

the dimension of the Hilbert space of many-body states with the numbers of particles

and of available single-particle states.

A straightforward solution of (the Schrödinger equation associated with) the

hamiltonian (3) is available only when the particles are non-interacting. In that case

the n-body problem reduces to n one-body problems, leading to n-particle eigenstates

that are Slater permanents for bosons or Slater determinants for fermions, i.e.,

eigenstates of the form c†α1
. . . c†αn

|o〉. A Slater permanent or determinant is an important

concept that emanates from Hartree(-Fock) theory. Although correlations can be

implicitly included by way of an average potential or mean field, two- and higher-particle

interactions are not explicitly treated in Hartree(-Fock) theory but Slater permanents

or determinants do provide a basis in which the interactions between particles can be

diagonalized. The main obstacle that prevents one from doing such a diagonalization

is the dimension of the basis. The question therefore arises whether interactions exist

that bypass the diagonalization and that can be treated analytically.

A strategy for solving with symmetry techniques particular classes of the many-

body hamiltonian (3) starts from the observation that it can be rewritten in terms of

the operators ûαβ ≡ c†αcβ. The latter operators can be shown, both for bosons and for

fermions, to obey the following commutation relations:

[ûαβ, ûα′β′ ] = ûαβ′δα′β − ûα′βδαβ′ , (4)

implying that the ûαβ generate the unitary Lie algebra U(Ω), with Ω the dimension of

the single-particle basis. [In the commutator (4) it is assumed that all indices refer to

either bosons or fermions. The case of mixed systems of bosons and fermions will be

dealt with separately in subsection 5.3.] The algebra U(Ω) is the dynamical algebra

Gdyn of the problem, in the sense that the hamiltonian as well as other operators can be

expressed in terms of its generators. It is not a true symmetry of the hamiltonian but a

broken one. The breaking of the symmetry associated with Gdyn is done in a particular

way which can be conveniently summarized by a chain of nested Lie algebras,

G1 ≡ Gdyn ⊃ G2 ⊃ · · · ⊃ Gs ≡ Gsym, (5)

where the last algebra Gsym in the chain is the true-symmetry algebra, whose generators

commute with the hamiltonian. For example, if the hamiltonian is rotationally invariant,

the symmetry algebra is the algebra of rotations in three dimensions, Gsym = SO(3).

To appreciate the relevance of the classification (5) in connection with the many-

body hamiltonian (3), note that to a particular chain of nested algebras corresponds a

class of hamiltonians that can be written as a linear combination of Casimir operators
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associated with the algebras in the chain,

ĤDS =
s∑
r=1

∑
m

κrmĈm[Gr], (6)

where κrm are arbitrary coefficients. The Ĉm[Gr] are so-called Casimir operators of

the algebra Gr; they are written as linear combinations of products of the generators

of Gr, up to order m, and satisfy the important property that they commute with all

generators of Gr, [Ĉm[Gr], ĝ] = 0 for all ĝ ∈ Gr. The Casimir operators in (6) satisfy

[Ĉm[Gr], Ĉm′ [Gr′ ]] = 0, that is, they all commute with each other. This property is

evident from the fact that for a chain of nested algebras all elements of Gr are in Gr′

or vice versa. Hence, the hamiltonian (6) is written as a sum of commuting operators

and as a result its eigenstates are labelled by the quantum numbers associated with

these operators. Note that the condition of the nesting of the algebras in (5) is crucial

for constructing a set of commuting operators and hence for obtaining an analytic

solution. Casimir operators can be expressed in terms of the operators ûαβ so that

the expansion (6) can, in principle, be rewritten in the form (3) with the order of the

interactions determined by the maximal order m of the invariants.

To summarize these results, the hamiltonian (6), which can be obtained from the

general hamiltonian (3) for specific choices of the coefficients εα, υαβγδ,. . . , can be solved

analytically. Its eigenstates are characterized by quantum numbers Γr which label

irreducible representations of the different algebras Gr appearing in the reduction (5),

leading to a classification that can conveniently be summarized as follows:

G1 ⊃ G2 ⊃ · · · ⊃ Gs

↓ ↓ ↓
Γ1 Γ2 Γs

.

The secular equation associated with the hamiltonian (6) is solved analytically

ĤDS|Γ1Γ2 . . .Γs〉 =
s∑
r=1

∑
m

κrmEm(Γr)|Γ1Γ2 . . .Γs〉,

where Em(Γr) is the eigenvalue of the Casimir operator Ĉm[Gr] in the irreducible

representation Γr. The most important property of the hamiltonian (6) is that, while

its energy eigenvalues are known functions of the parameters κrm, its eigenfunctions do

not depend on κrm and have a fixed structure. Hamiltonians with the above properties

are said to have a dynamical symmetry. The symmetry Gdyn is broken and the only

remaining symmetry is Gsym which is the true symmetry of the problem. This idea has

found repeated and fruitful application in many branches of physics, and in particular

in nuclear physics.

3. The nuclear shell model

The basic structure of nuclei can be derived from a few essential characteristics of the

nuclear mean field and the residual interaction. A schematic hamiltonian that grasps
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the essential features of nuclear many-body physics is of the form

Ĥ =
A∑
k=1

(
p̂2k

2mk

+
1

2
mkω

2r2k + ζ`` ˆ̀2
k + ζ`s ˆ̀

k · ŝk
)

+
∑
k<l

V̂ri(ξk, ξl), (7)

where the indices k, l run from 1 to A, the number of nucleons in the nucleus. The

different terms in the hamiltonian (7) are the kinetic energy, a harmonic-oscillator

potential with frequency ω (which is a first-order approximation to the nuclear

mean field), the quadratic orbital and spin–orbit terms, and the residual two-nucleon

interaction.

For a general residual interaction V̂ri(ξk, ξl) the hamiltonian (7) must be solved

numerically. Two types of interaction lead to solvable models: pairing (section 3.1) and

quadrupole (section 3.3).

3.1. Racah’s seniority model

The nuclear force between identical nucleons produces a large energy gap between J = 0

and J > 0 states, and therefore can be approximated by a pairing interaction which

only affects the “paired” J = 0 state. For nucleons in a single-j shell, pairing is defined

by the two-body matrix elements

〈j2; JMJ |V̂pairing|j2; JMJ〉 = −1

2
g(2j + 1)δJ0δMJ0, (8)

where j is the orbital+spin angular momentum of a single nucleon (hence j is half-

odd-integer), J results from the coupling of the angular momenta j of the two nucleons

and MJ is the projection of J on the z axis. Furthermore, g is the strength of the

pairing interaction which is attractive in nuclei (g > 0). Pairing is a reasonable, albeit

schematic, approximation to the residual interaction between identical nucleons and

hence can only be appropriate in semi-magic nuclei with valence nucleons of a single

type, either neutrons or protons. The degree of approximation is illustrated in figure 1

for the nucleus 210Pb which can be described as two neutrons in the 1g9/2 orbit outside

the doubly magic 208Pb inert core. Also shown is the probability density PJ to find

two nucleons at a distance r when they are in the 2g9/2 orbit of the harmonic oscillator

and coupled to angular momentum J . This probability density at r = 0 matches the

energies of the zero-range delta interaction. The profiles of PJ(r) for the different angular

momenta show that any attractive short-range interaction favours the formation of a

J = 0 pair. This basic property of the nuclear force is accounted for by pairing.

The pairing interaction was introduced by Racah for the classification of electrons in

an atom [4]. He was able to derive a closed formula for the interaction energy among the

electrons and to prove that any eigenstate of the pairing interaction is characterized by a

‘seniority number’ υ which corresponds to the number of electrons that are not in pairs

coupled to orbital angular momentum L = 0. Racah’s original definition of seniority

made use of coefficients of fractional parentage. He later noted that simplifications arose
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Figure 1. The experimental low-energy spectrum of 210Pb (left), and the

corresponding spectra for a zero-range delta (middle) and for a pairing interaction

(right). Levels are labelled by their angular momentum and parity Jπ. The inset

shows the probability density PJ to find two nucleons at a distance r when they are

in the 2g9/2 orbit of a harmonic oscillator and coupled to angular momentum J .

through the use of group theory [5]. Seniority turned out to be a label associated with

the (unitary) symplectic algebra Sp(2j + 1) in the classification

U(2j + 1) ⊃ Sp(2j + 1) ⊃ SU(2)

↓ ↓ ↓
[1n] [1υ] J

. (9)

Since the nucleons are identical, all states of the jn configuration belong to the

totally anti-symmetric irreducible representation [1n] of U(2j + 1). The irreducible

representations of Sp(2j + 1) therefore must also be totally anti-symmetric of the type

[1υ] with allowed values of seniority υ = n, n− 2, . . . , 1 or 0.

In the definition (9) seniority appears as a label associated with the algebra

Sp(2j + 1). This has the drawback that, depending on j, the algebra can be quite

large. Matters become even more complicated when the nucleons are non-identical and

have isospin t = 1
2
. The total number of single-particle states is then Ω ≡ (2j+1)(2t+1)

and one quickly runs into formidable group-theoretical reduction problems. Fortunately,

an alternative and simpler definition of seniority can be given in terms of algebras that

do not change with j. The idea was simultaneously and independently proposed by

Kerman [6] for t = 0 (i.e., for identical nucleons) and by Helmers [7] for general t. It

starts from operators Ŝj+ and Ŝj− that create and annihilate pairs of particles in a single-

j shell and the commutator of which leads to a third kind of generator, Ŝjz , with one

particle creation and one particle annihilation operator. This set of operators, known

as quasi-spin operators, closes under commutation and forms the (unitary) symplectic

algebra Sp(4t+2) which can be shown to have equivalent properties to those of Sp(2j+1),

introduced in the classification (9).

The quasi-spin formulation of the pairing problem relies on the fact that the pairing

interaction is related to the quadratic Casimir operator of the algebra Sp(4t+ 2). This
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allows a succinct and simultaneous derivation of the eigenvalues in the cases of identical

nucleons (t = 0) and of neutrons and protons (t = 1
2
). Over the years many results

have been derived and many extensions have been considered in both cases, which are

discussed separately in the following.

3.1.1. Identical nucleons. For t = 0 one obtains the algebra Sp(2) which is isomorphic

to SU(2). Due to its formal analogy with the spin algebra, the name ‘quasi-spin’ was

coined by Kerman [6], and this terminology has stuck for all cases, even when t 6= 0.

The quasi-spin algebra Sp(2) ∼ SU(2) is obtained by noting that, in second

quantization, the pairing interaction defined in equation (8) is written as

V̂pairing = −gŜj+Ŝ
j
−, (10)

with

Ŝj+ =
1

2

√
2j + 1 (a†j × a

†
j)

(0)
0 , Ŝj− =

(
Ŝj+

)†
, (11)

where a†jmj
creates a nucleon in orbit j with projection mj. No isospin labels t and

mt are needed to characterize the identical nucleons. The symbol × refers to coupling

in angular momentum and Ŝj+ therefore creates a pair of nucleons coupled to angular

momentum J = 0. The commutator [Ŝj+, Ŝ
j
−] ≡ 2Ŝjz , together with [Ŝjz , Ŝ

j
±] = ±Ŝj±,

shows that Ŝj+, Ŝj− and Ŝjz form a closed algebra SU(2).

Several emblematic results can be derived on the basis of SU(2). The quasi-

spin symmetry allows the determination of the complete eigenspectrum of the pairing

interaction which is given by

V̂pairing|jnυJMJ〉 = E(n, υ)|jnυJMJ〉, (12)

with

E(n, υ) = −g
4

(n− υ)(2j − n− υ + 3). (13)

Besides the nucleon number n, the total angular momentum J and its projection MJ ,

all eigenstates are characterized by a seniority quantum number υ which counts the

number of nucleons not in pairs coupled to angular momentum zero. For an attractive

pairing interaction (g > 0), the eigenstate with lowest energy has seniority v = 0 if the

nucleon number n is even and v = 1 if n is odd. These lowest-energy eigenstates can,

up to a normalization factor, be written as (Ŝj+)n/2|o〉 for even n and a†jmj
(Ŝj+)n/2|o〉 for

odd n, where |o〉 is the vacuum state for the nucleons.

The discussion of pairing correlations in nuclei traditionally has been inspired by the

treatment of superfluidity in condensed matter, explained in 1957 by Bardeen, Cooper

and Schrieffer [8], and later adapted to the discussion of pairing in nuclei [9]. The

superfluid phase is characterized by the presence of a large number of identical bosons

in a single quantum state. In superconductors the bosons are pairs of electrons with

opposite momenta that form at the Fermi surface while in nuclei, according to the

preceding discussion, they are pairs of valence nucleons with opposite angular momenta.
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Figure 2. Graphical solution of the Richardson equation for two nucleons distributed

over five single-particle orbits. The sum
∑
j Ωj/(2εj−E) ≡ y(E) (in MeV−1) is plotted

as a function of E (in MeV). The intersections (red dots) of this curve (blue) with the

(red) line y = 1/g correspond to the solutions of the Richardson equation.

A generalization of these concepts concerns that towards several orbits. In case of

degenerate orbits this can be achieved by making the substitution Ŝjµ 7→ Ŝµ ≡
∑

j Ŝ
j
µ

which leaves all preceding results, valid for a single-j shell, unchanged. The ensuing

formalism can then be applied to semi-magic nuclei but, since it requires the assumption

of a pairing interaction with degenerate orbits, its applicability is limited.

An exact method to solve the problem of particles distributed over non-degenerate

levels interacting through a pairing force was proposed by Richardson [10] based on the

Bethe ansatz and has been generalized more recently to other classes of integrable pairing

models [11]. Richardson’s approach can be illustrated by supplementing the pairing

interaction (10) with non-degenerate single-particle energies, to obtain the following

hamiltonian:

Ĥpairing =
∑
j

εjn̂j − gŜ+Ŝ−, (14)

where n̂j is the number operator for orbit j, εj is the single-particle energy of that

orbit and Ŝ± =
∑

j Ŝ
j
±. The solvability of the hamiltonian (14) arises as a result of the

symmetry SU(2) ⊗ SU(2)⊗ · · · where each SU(2) algebra pertains to a specific j. The

eigenstates are of the form

n/2∏
p=1

(∑
j

Ŝj+
2εj − Ep

)
|o〉, (15)

where the Ep are solutions of n/2 coupled, non-linear Richardson equations [10]∑
j

Ωj

2εj − Ep
−

n/2∑
p′(6=p)

2

Ep′ − Ep
=

1

g
, p = 1, . . . , n/2, (16)

with Ωj = j + 1/2. This equation is solved graphically for the simple case of n = 2 in

figure 2. Each pair in the product (15) is defined through coefficients αj = (2εj −Ep)−1
which depend on the energy Ep where p labels the n/2 pairs. A characteristic feature of

the Bethe ansatz is that it no longer consists of a superposition of identical pairs since

the coefficients (2εj − Ep)
−1 vary as p runs from 1 to n/2. Richardson’s model thus
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provides a solution that covers all possible hamiltonians (14), ranging from those with

superfluid character to those with little or no pairing correlations. Whether the solution

can be called superfluid depends on the differences εj − εj′ in relation to the strength g.

The pairing hamiltonian (14) admits non-degenerate single-particle orbits εj but

requires a constant strength g of the pairing interaction, independent of j. Alternatively,

a hamiltonian with degenerate single-particle orbits εj = ε but orbit-dependent strengths

gj,

Ĥ ′pairing = ε
∑
j

n̂j −
∑
j

gjŜ
j
+

∑
j′

gj′Ŝ
j′

− , (17)

can also be solved exactly based on the Bethe ansatz [12]. No exact solution is known,

however, of a pairing hamiltonian with non-degenerate single-particle orbits εj and orbit-

dependent strengths gj, except in the case of two orbits [13]. Solvability by Richardson’s

technique requires the pairing interaction to be separable with strengths that satisfy

gjj′ = gjgj′ and no exact solution is known in the non-separable case when gjj′ 6= gjgj′ .

These possible generalizations notwithstanding, it should be kept in mind that a

pairing interaction is but an approximation to a realistic residual interaction among

nucleons, as is clear from figure 1. A more generally valid approach is obtained if one

imposes the following condition on the shell-model hamiltonian (7):

[[ĤGS, Ŝ
α
+], Ŝα+] = ∆

(
Ŝα+

)2
, (18)

where ∆ is a constant and Ŝα+ =
∑

j αjS
j
+ creates the lowest two-particle eigenstate

of ĤGS with energy E0, ĤGSŜ
α
+|o〉 = E0Ŝ

α
+|o〉. The condition (18) of generalized

seniority, proposed by Talmi [14], is much weaker than the assumption of a pairing

interaction and it does not require that the commutator [Ŝα+, Ŝ
α
−] yields (up to a constant)

the number operator which is central to the quasi-spin formalism. In spite of the

absence of a closed algebraic structure, it is still possible to compute exact results for

hamiltonians satisfying the condition (18). For an even number of nucleons, its ground

state has the same simple structure as in the quasi-spin formalism,

ĤGS

(
Ŝα+

)n/2
|o〉 = EGS(n)

(
Ŝα+

)n/2
|o〉,

with an energy that can be computed for any nucleon number n,

EGS(n) = nE0 +
1

2
n(n− 1)∆.

Because of its linear and quadratic dependence on the nucleon number n, this result can

be considered as a generalization of Racah’s seniority formula (13), to which it reduces

if E0 = −g(j + 1)/2 and ∆ = g/2.

3.1.2. Neutrons and protons. For t = 1
2

one obtains the quasi-spin algebra Sp(4) which

is isomorphic to SO(5). The algebra Sp(4) or SO(5) is characterized by two labels,

corresponding to seniority υ and reduced isospin Tυ. Seniority υ has the same

interpretation as in the like-nucleon case, namely the number of nucleons not in pairs
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Figure 3. Schematic illustration of the different types of nucleon pairs with orbital

angular momentum L = 0. The valence neutrons (blue) or protons (red) that form

the pair occupy time-reversed orbits (circling the nucleus in opposite direction). If the

nucleons are identical they must have anti-parallel spins—a configuration which is also

allowed for a neutron–proton pair (top). The configuration with parallel spins is only

allowed for a neutron–proton pair (bottom). Taken from reference [117].

coupled to angular momentum J = 0, while reduced isospin Tυ corresponds to the total

isospin of these nucleons [15, 16].

The above results are obtained from the general analysis as carried out by

Helmers [7] for any t. It is of interest to carry out the analysis explicitly for the choice

which applies to nuclei, namely t = 1
2
. Results are given in LS coupling, which turns

out to be the more convenient scheme for the generalization to neutrons and protons.

If the ` shell contains neutrons and protons, the pairing interaction is assumed

to be isospin invariant, which implies that it is the same in the three possible T = 1

channels, neutron–neutron, neutron–proton and proton–proton, and that the pairing

interaction (10) takes the form

V̂ ′pairing = −g
∑
µ

Ŝ`+,µŜ
`
−,µ ≡ −gŜ`+ · Ŝ`−, (19)

where the dot indicates a scalar product in isospin. In terms of the nucleon operators

a†`m`,sms,tmt
, which now carry also isospin indices (with t = 1

2
), the pair operators are

Ŝ`+,µ =

√
1

2

√
2`+ 1(a†`,s,t × a

†
`,s,t)

(001)
00µ , Ŝ`−,µ =

(
Ŝ`+,µ

)†
, (20)

where Ŝ refers to a pair with orbital angular momentum L = 0, spin S = 0 and isospin

T = 1. The index µ (isospin projection) distinguishes neutron–neutron (µ = +1),

neutron–proton (µ = 0) and proton–proton (µ = −1) pairs. There are thus three

different pairs with L = 0, S = 0 and T = 1 (top line in figure 3) and they are

related through the action of the isospin raising and lowering operators T̂±. The quasi-

spin algebra associated with the hamiltonian (19) is SO(5) and makes the problem

analytically solvable [17].

For a neutron and a proton there exists a different paired state with parallel spins

(bottom line of figure 3). The most general pairing interaction for a system of neutrons
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and protons is therefore

V̂ ′′pairing = −gŜ`+ · Ŝ`− − g′P̂ `
+ · P̂ `

−, (21)

where P̂ refers to a pair with orbital angular momentum L = 0, spin S = 1 and isospin

T = 0,

P̂ `
+,µ =

√
1

2

√
2`+ 1(a†`,s,t × a

†
`,s,t)

(010)
0µ0 , P̂ `

−,µ =
(
P̂ `
+,µ

)†
. (22)

The index µ is the spin projection and distinguishes the three spatial orientations of

the S = 1 pair. The pairing interaction (21) now involves two parameters g and g′, the

strengths of the isovector and isoscalar components. Solutions with an intrinsically

different structure are obtained for different ratios g/g′.

In general, the eigenproblem associated with the pairing interaction (21) can only

be solved numerically which, given a typical size of a shell-model space, can be a

formidable task. However, for specific choices of g and g′ the solution of V̂ ′′pairing can be

obtained analytically [18, 19]. The analysis reveals the existence of a quasi-spin algebra

SO(8) formed by the pair operators (20) and (22), their commutators, the commutators

of these among themselves, and so on until a closed algebraic structure is attained.

Closure is obtained by introducing, in addition to the pair operators (20) and (22), the

number operator n̂, the spin and isospin operators Ŝµ and T̂µ, and the Gamow-Teller-like

operators Ûµν , defined in section 3.2 in the context of Wigner’s supermultiplet algebra.

From a study of the subalgebras of SO(8) it can be concluded that the pairing

interaction (21) has a dynamical symmetry (in the sense of section 2) in one of the three

following cases: (i) g = 0, (ii) g′ = 0 and (iii) g = g′, corresponding to pure isoscalar

pairing, pure isovector pairing and pairing with equal isoscalar and isovector strengths,

respectively. Seniority υ turns out to be conserved in these three limits and associated

with either an SO(5) algebra in cases (i) and (ii), or with the SO(8) algebra in case (iii).

One of the main results of the theory of pairing between identical nucleons is the

recognition of the special structure of low-energy states in terms of S pairs. It is therefore

of interest to address the same question in the theory of pairing between neutrons and

protons. The nature of SO(8) superfluidity can be illustrated with the example of the

ground state of nuclei with an equal number of neutrons N and protons Z. For equal

strengths of isoscalar and isovector pairing, g = g′, the pairing interaction (21) is solvable

and its ground state can be shown to be [20]:(
Ŝ`+ · Ŝ`+ − P̂ `

+ · P̂ `
+

)n/4
|o〉. (23)

This shows that the superfluid solution acquires a quartet structure in the sense that it

reduces to a condensate of a boson-like object, which corresponds to four nucleons. Since

this object in (23) is scalar in spin and isospin, it can be thought of as an α particle;

its orbital character, however, might be different from that of an actual α particle. A

quartet structure is also present in the other two limits of SO(8), with either g = 0 or

g′ = 0, which have a ground-state wave function of the type (23) with either the first

or the second term suppressed. Thus, a reasonable ansatz for the ground-state wave
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function of an N = Z nucleus of the pairing interaction (21) with arbitrary strengths g

and g′ is (
cos θ Ŝ`+ · Ŝ`+ − sin θ P̂ `

+ · P̂ `
+

)n/4
|o〉, (24)

where θ is a parameter that depends on the ratio g/g′.

The condensate (24) of α-like particles can serve as a good approximation to the

N = Z ground state of the pairing interaction (21) for any combination of g and g′ [20].

Nevertheless, it should be stressed that, in the presence of both neutrons and protons in

the valence shell, the pairing interaction (21) is not a good approximation to a realistic

shell-model hamiltonian which contains an important quadrupole component (see, e.g.,

the shell-model review [3]). Consequently, any model based on L = 0 fermion pairs only,

remains necessarily schematic in nature. A realistic model should include also L 6= 0

pairs.

3.2. Wigner’s supermultiplet model

Wigner’s supermultiplet model [21] assumes nuclear forces to be invariant under

rotations in spin as well as isospin space. A shell-model hamiltonian with this property

satifies the following commutation relations:

[Ĥ, Ŝµ] = [Ĥ, T̂µ] = [Ĥ, Ûµν ] = 0, (25)

where

Ŝµ =
A∑
k=1

ŝk,µ, T̂µ =
A∑
k=1

t̂k,µ, Ûµν =
A∑
k=1

ŝk,µt̂k,ν , (26)

are the spin, isospin and spin–isospin operators, in terms of ŝk,µ and t̂k,µ, the spin and

isospin components of nucleon k. The 15 operators (26) generate the Lie algebra SU(4).

According to the discussion in section 2, any hamiltonian satisfying the conditions (25)

has SU(4) symmetry, and this in addition to symmetries associated with the conservation

of total spin S and total isospin T .

The physical relevance of Wigner’s supermultiplet classification is due to the short-

range attractive nature of the residual interaction as a result of which states with spatial

symmetry are favoured energetically. To obtain a qualitative understanding of SU(4)

symmetry, it is instructive to analyze the case of two nucleons. Total anti-symmetry

of the wave function requires that the spatial part is symmetric and the spin-isospin

part anti-symmetric or vice versa. Both cases correspond to a different symmetry under

SU(4), the first being anti-symmetric and the second symmetric. The symmetry under

a given algebra can characterized by the so-called Young tableau [108]. For two nucleons

the symmetric and anti-symmetric irreducible representations are denoted by

�� ≡ [2, 0], �
� ≡ [1, 1],

respectively, and the Young tableaux are conjugate, that is, one is obtained from the

other by interchanging rows and columns. This result can be generalized to many
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nucleons, leading to the conclusion that the energy of a state depends on its SU(4)

labels, which are three in number and denoted here as (λ̄, µ̄, ν̄).

Wigner’s supermultiplet model is an LS-coupling scheme which is not appropriate

for nuclei. In spite of its limited applicability, Wigner’s idea remains important

because it demonstrates the connection between the short-range character of the residual

interaction and the spatial symmetry of the many-body wave function. The break

down of SU(4) symmetry is a consequence of the spin–orbit term in the shell-model

hamiltonian (7) which does not satisfy the first and third commutator in equation (25).

The spin–orbit term breaks SU(4) symmetry [SU(4) irreducible representations are

admixed by it] and does so increasingly in heavier nuclei since the energy splitting of

the spin doublets `− 1
2

and `+ 1
2

increases with nucleon number A. In addition, SU(4)

symmetry is also broken by the Coulomb interaction—an effect that also increases with

A—and by spin-dependent residual interactions.

3.3. Elliott’s rotation model

In Wigner’s supermultiplet model the spatial part of the wave function is characterized

by a total orbital angular momentum L but is left unspecified otherwise. The main

feature of Elliott’s model [22] is that it provides additional orbital quantum numbers that

are relevant for deformed nuclei. Elliott’s model of rotation presupposes Wigner’s SU(4)

classification and assumes in addition that the residual interaction has a quadrupole

character which is a reasonable hypothesis if the valence shell contains neutrons and

protons. One requires that the schematic shell-model hamiltonian (7) reduces to

ĤSU(3) =
A∑
k=1

(
p̂2k

2mk

+
1

2
mkω

2r2k

)
+ V̂quadrupole, (27)

where V̂quadrupole = −g2Q̂ · Q̂ contains a quadrupole operator

Q̂µ =

√
3

2

[
A∑
k=1

1

b2
(r̄k ∧ r̄k)(2)µ +

b2

~2
A∑
k=1

(p̄k ∧ p̄k)(2)µ

]
, (28)

in terms of coordinates r̄k and momenta p̄k of nucleon k, and where b is the oscillator

length parameter, b =
√
~/mnω with mn the mass of the nucleon.

With use of the techniques explained in section 2, it can be shown that the shell-

model hamiltonian (27) is analytically solvable. Since the hamiltonian (27) satisfies the

commutation relations (25), it has SU(4) symmetry and its eigenstates are characterized

by the associated quantum numbers, the supermultiplet labels (λ̄, µ̄, ν̄). The spin–

isospin symmetry SU(4) is equivalent through conjugation to the orbital symmetry U(Ω),

where Ω denotes the orbital shell size (i.e., Ω = 1, 3, 6, . . . for the s, p, sd,. . . shells). The

algebra U(Ω), however, is not a true symmetry of the hamiltonian (27) but is broken

according to the nested chain of algebras U(Ω) ⊃ SU(3) ⊃ SO(3). As a result one finds

that the hamiltonian (27) has the eigenstates |[1n](λ̄, µ̄, ν̄)(λ, µ)KLLMLSMSTMT 〉 with

energies

ESU(3)(λ, µ, L) = E0 − g2
[
4(λ2 + µ2 + λµ+ 3λ+ 3µ)− 3L(L+ 1)

]
,
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Figure 4. The single-particle energies (for a non-zero quadratic orbital strength,

ζ`` 6= 0) in SU(3), quasi-SU(3) and pseudo-SU(3) for the example of the sdg oscillator

shell. The spin–orbit strength is ζ`s ≈ 0 in SU(3), ζ`s ≈ 2ζ`` in quasi-SU(3) and

ζ`s ≈ 4ζ`` in pseudo-SU(3). The single-particle spaces in red and in blue are assumed to

be approximately decoupled. In pseudo-SU(3) the level degeneracies can be interpreted

in terms of a pseudo-spin symmetry.

where E0 is a constant energy associated with the first term in the hamiltonian (27).

Besides the set of quantum numbers encountered in Wigner’s supermultiplet model, that

is, the SU(4) labels (λ̄, µ̄, ν̄), the total orbital angular momentum L and its projection

ML, the total spin S and its projection MS, and the total isospin T and its projection

MT , all eigenstates of the hamiltonian (27) are characterized by the SU(3) quantum

numbers (λ, µ) and an additional label KL. Each irreducible representation (λ, µ)

contains the orbital angular momenta L typical of a rotational band, cut off at some

upper limit [22]. The label KL defines the intrinsic state associated to that band and

can be interpreted as the projection of the orbital angular momentum L on the axis of

symmetry of the rotating deformed nucleus.

The importance of Elliott’s idea is that it gives rise to a rotational classification of

states through mixing of spherical configurations. With the SU(3) model it was shown,

for the first time, how deformed nuclear shapes may arise out of the spherical shell

model. As a consequence, Elliott’s work bridged the gap between the spherical nuclear

shell model and the geometric collective model (see section 4) which up to that time

(1958) existed as separate views of the nucleus.

Elliott’s SU(3) model provides a natural explanation of rotational phenomena,

ubiquitous in nuclei, but it does so by assuming Wigner’s SU(4) symmetry which is

known to be badly broken in most nuclei. This puzzle has motivated much work since

Elliott: How can rotational phenomena in nuclei be understood starting from a jj-

coupling scheme which applies to most nuclei? Over the years several schemes have been

proposed with the aim of transposing the SU(3) scheme to those modified situations.

One such modification has been suggested by Zuker et al. [23] under the name of quasi-

SU(3) and it invokes the similarities of matrix elements of the quadrupole operator in
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the jj- and LS-coupling schemes.

Arguably the most successful way to extend the applications of the SU(3) model

to heavy nuclei is based upon the concept of pseudo-spin symmetry. The starting point

for the explanation of this symmetry is the single-particle part of the hamiltonian (7).

For ζ`` = ζ`s = 0 a three-dimensional isotropic harmonic oscillator is obtained which

exhibits degeneracies associated with U(3) symmetry. For arbitrary non-zero values of

ζ`` and ζ`s this symmetry is broken. However, for the particular combination 4ζ`` = ζ`s
some degree of degeneracy, associated with a so-called pseudo-spin symmetry, is restored

in the single-particle spectrum (see figure 4).

Pseudo-spin symmetry has a long history in nuclear physics. The existence of

nearly degenerate pseudo-spin doublets in the nuclear mean-field potential was pointed

out almost forty years ago by Hecht and Adler [24] and by Arima et al. [25] who noted

that, because of the small pseudo-spin–orbit splitting, pseudo-LS coupling should be a

reasonable starting point in medium-mass and heavy nuclei where LS coupling becomes

unacceptable. With pseudo-LS coupling as a premise, a pseudo-SU(3) model can be

constructed [26] in much the same way as Elliott’s SU(3) model can be defined in LS

coupling. It is only many years after its original suggestion that Ginocchio showed

pseudo-spin to be a symmetry of the Dirac equation which occurs if the scalar and

vector potentials are equal in size but opposite in sign [27].

The models discussed so far all share the property of being confined to a single

shell, either an oscillator or a pseudo-oscillator shell. A full description of nuclear

collective motion requires correlations that involve configurations outside a single

(pseudo) oscillator shell. The proper framework for such correlations invokes the concept

of a non-compact algebra which, in contrast to a compact one, can have infinite-

dimensional unitary irreducible representations. The latter condition is necessary since

the excitations into higher shells can be infinite in number. The inclusion of excitations

into higher shells of the harmonic oscillator, was achieved by Rosensteel and Rowe by

embedding the SU(3) algebra into the (non-compact) symplectic algebra Sp(3,R) [28].

3.4. The Lipkin model

Another noteworthy algebraic model in nuclear physics is due to Lipkin et al. [29] who

consider two levels (assigned an index σ = ±) each with degeneracy Ω over which n

fermions are distributed. The Lipkin model has an SU(2) algebraic structure which is

generated by the operators

K̂+ =
∑
m

a†m+am−, K̂− =
(
K̂+

)†
, K̂z =

1

2
(n̂+ − n̂−),

written in terms of the creation and annihilation operators a†mσ and amσ, with m =

1, . . . ,Ω and σ = ±, and where n̂± counts the number of nucleons in the level with

σ = ±. The hamiltonian

Ĥ = εK̂z +
1

2
υ
(
K̂+K̂− + K̂−K̂+

)
+

1

2
ω
(
K̂2

+ + K̂2
−

)
,
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can, with use of the underlying SU(2) algebra, be solved analytically for certain values of

the parameters ε, υ and ω. These have a simple physical meaning: ε is the energy needed

to promote a nucleon from the lower level with σ = − to the upper level with σ = +,

υ is the strength of the interaction that mixes configurations with the same nucleon

numbers n− and n+, and ω is the strength of the interaction that mixes configurations

differing by two in these numbers. The Lipkin model has thus three ingredients (albeit

in schematic form) that are of importance in determining the structure of nuclei: an

interaction υ between the nucleons in a valence shell, the possibility to excite nucleons

from the valence shell into a higher shell at the cost of an energy ε, and an interaction

ω that mixes these particle–hole excitations with the valence configurations. With

these ingredients the Lipkin model has played an important role as a testing ground

of various approximations proposed in nuclear physics, examples of which are given in

reference [112].

4. Geometric collective models

In 1879, in a study of the properties of a droplet of incompressible liquid, Lord Rayleigh

showed [30] that its normal modes of vibration are described by the variables αλµ which

appear in the expansion of the droplet’s radius,

R(θ, φ) = R0

(
1 +

∑
λµ

α∗λµYλµ(θ, φ)

)
, (29)

where Yλµ(θ, φ) are spherical harmonics in terms of the spherical angles θ and φ. Since

the atomic nucleus from early on was modeled as a dense, charged liquid drop [31], it

was natural for nuclear physicists to adopt the same multipole parameterization (29),

as was done in the classical papers on the geometric collective model by Rainwater [32],

Bohr [33], and Bohr and Mottelson [34].

As was also shown by Lord Rayleigh, the multipolarity that corresponds to the

normal mode with lowest eigenfrequency is of quadrupole nature, λ = 2. The

quadrupole collective coordinates α2µ can be transformed to an intrinsic-axes system

through a2µ =
∑

ν D2
νµ(θi)α2ν , with D2

νµ(θi) the Wigner D functions in terms of the

Euler angles θi that rotate the laboratory frame into the intrinsic frame. If the intrinsic

frame is chosen to coincide with the principal axes of the quadrupole-deformed ellipsoid,

the a2µ satisfy a2−1 = a2+1 = 0 and a2−2 = a2+2 while the remaining two variables

can be transformed further to two coordinates β and γ, according to a0 = β cos γ

and a2−2 = a2+2 = β sin γ/
√

2. The coordinate β ≥ 0 parameterizes deviations from

sphericity while γ is a polar coordinate confined to the interval [0, π/3]. For γ = 0 the

intrinsic shape is axially symmetric and prolate, for γ = π/3 it is axially symmetric and

oblate, and intermediate values of γ describe triaxial shapes.

The classical problem of quadrupole oscillations of a droplet has been quantized by

Bohr [33], resulting in the hamiltonian

ĤB = T̂β + T̂γ + T̂rot + V (β, γ),
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where T̂ (V ) refers to kinetic (potential) energy. The kinetic energy has three

contributions coming from β oscillations which preserve axial symmetry, from γ

oscillations which do not and from the rotation of a quadrupole-deformed object. Bohr’s

analysis results in a collective Schrödinger equation ĤBΨ(β, γ, θi) = EΨ(β, γ, θi) with

ĤB = − ~2

2B2

[
1

β4

∂

∂β
β4 ∂

∂β
+

1

β2 sin 3γ

∂

∂γ
sin 3γ

∂

∂γ

]
+

~2

8B2

3∑
k=1

L̂′2k
β2 sin2(γ − 2πk/3)

, (30)

where B2 = ρR5
0/2 is the mass parameter in terms of the constant matter density

ρ for an incompressible nucleus. The operators L̂′k are the components of the angular

momentum in the intrinsic frame of reference where the prime is used to distinguish these

from the components of the angular momentum in the laboratory frame of reference.

The collective coordinates are coupled in an intricate way in the Bohr hamiltonian (30)

and this limits the number of exactly solvable cases. In particular, because of the

γ dependence of the moments of inertia, γ excitations are strongly coupled to the

collective rotational motion. It turns out that β excitations are less strongly coupled

and a judicious choice of the potential may well lead to a separation of β from the γ

and θi coordinates.

4.1. Exactly solvable collective models

A way to decouple the Bohr hamiltonian (30) into separate differential equations was

proposed by Wilets and Jean [35] and requires a potential of the form

V (β, γ) = V1(β) +
V2(γ)

β2
,

leading to the coupled equations[
− 1

β4

∂

∂β
β4 ∂

∂β
+ u1(β)− ε+

ω

β2

]
ξ(β) = 0, (31)[

− 1

sin 3γ

∂

∂γ
sin 3γ

∂

∂γ
+

3∑
k=1

L̂′2k
4 sin2(γ − 2πk/3)

+ u2(γ)− ω
]
ψ(γ, θi) = 0,

(32)

where ω is the separation constant, ε = (2B2/~2)E and ui = (2B2/~2)Vi (i = 1, 2).

The first equation can only be solved exactly if the constant ω is obtained from the

solution of the second one. At present the only known analytic solution of the Bohr

hamiltonian (30) is for γ-independent potentials [35], that is, for V2(γ) = 0. In

that case, one still needs to determine the allowed values of ω in the equation (32).

Many techniques have been proposed to solve this equation relying on either algebraic

or analytic methods. Rakavy [36] noticed that the first two terms in equation (32)

correspond to the Casimir operator of the orthogonal group in five dimensions, SO(5),
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and it is known from group-theoretical arguments that ω therefore acquires the values

ω = v(v + 3) with v = 1, 2, . . ., leading to the following equation in β:[
− 1

β4

∂

∂β
β4 ∂

∂β
+ u1(β)− ε+

v(v + 3)

β2

]
ξ(β) = 0. (33)

Special choices of u1(β) [or V1(β)] lead to the following exact solutions of the Bohr

hamiltonian (30).

4.1.1. The five-dimensional harmonic oscillator. The harmonic quadrupole

oscillator was the first potential used in an exactly solvable collective model [33]. The

potential V (β, γ) reduces to a single term V (β) = C2β
2/2 where C2 is a constant.

Even though one does not expect harmonic quadrupole vibrations to appear in the

experimental study of atomic nuclei, the model serves as an interesting benchmark.

The solution of the differential equation in β results in the energy spectrum E(n, v) =

~Ω(2n+v+5/2) with Ω =
√
C2/B2 and the corresponding eigenfunctions are associated

Legendre polynomials of order v + 3/2. The energy spectrum is characterized by

degeneracies that increase with increasing n and v. The complete solution of the Bohr

hamiltonian with a harmonic potential can be obtained with group-theoretical methods

based on the reduction U(5) ⊃ SO(5) ⊃ SO(3) [37]. An alternative derivation is based on

the notion of quasi-spin discussed in subsection 3.1.1 which for bosons has the algebraic

structure is SU(1,1) [38].

4.1.2. The infinite square-well potential. It was shown by Wilets and Jean [35] that

the spectrum of the five-dimensional harmonic oscillator can be made anharmonic by

introducing a potential in β that has the form of an infinite square well, that is,

V (β) = constant for β ≤ b and V (β) = ∞ for β > b. This leads to solutions of

equation (33) that are Bessel functions with allowed values for v resulting from the

boundary condition of a vanishing wave function at β = b.

The solution of this problem has been worked out much later by Iachello [39] in

the context of a study on shape transitions from spherical and to γ-soft potentials. The

spectrum is determined by the energy eigenvalues

E(i, v) =
~2

2B2

k2i,v, ki,v =
xi,v
b
,

with corresponding eigenfunctions

ξi,v(β) ∝ β−3/2Jv+3/2(ki,vβ),

where xi,v is the ith zero of the Bessel function Jv+3/2(x). This solution, referred to as

E(5), proves therefore to be exact, as discussed in great detail in reference [39].

4.1.3. The Davidson potential. The five-dimensional analogue of a three-dimensional

potential, proposed by Davidson [40] for use in molecular physics, gives rise to another

analytic solution of the Bohr hamiltonian. The constraint of γ independence is kept



Exactly solvable models of nuclei 19

v=0
v=1

v=2
v=3

v=4
v=5

v=0

v=1
v=3
v=2

n
=0

n
=1

n
=2v=1

v=0

0

ex

 0

 1

 2

 3

 4

 5

 0  1  2  3  4  5

h [
]

E

Figure 5. The energy spectrum E(n, ṽ) = 2n+ ṽ+ 5/2 (in units ~Ω) of the Davidson

potential as a function of the deformation parameter β0. Taken from reference [55].

and the harmonic potential of subsection 4.1.1 is modified to V (β) = C2(β
2 +β4

0/β
2)/2.

The additional term changes the spherical potential into a deformed one with a

minimum value located at β0. The energy spectrum of the modified potential can

be obtained from the spherical one after the substitution v 7→ ṽ, with ṽ defined from

ṽ(ṽ + 3) = v(v + 3) + kβ4
0 with k = B2C2/~2. The resulting energy spectrum is shown

in figure 5. The corresponding problem with a mass parameter B2 depending on the

coordinate β has also been studied [41]. If one considers the form B2 = B2(0)/(1+aβ2)2,

the problem becomes exactly solvable with use of techniques from supersymmetric

quantum mechanics [42] and by imposing integrability conditions, also called shape

invariance [43].

4.1.4. Other analytic solutions. There are other γ-independent potentials V (β) that

lead to a solvable equation (33) and therefore yield an exactly solvable Bohr hamiltonian.

Most notably, they are the Coulomb potential V (β) = −A/β and the Kratzer

potential V (β) = −B[β0/β − β2
0/(2β

2)] [44]. Also potentials of the form V (β) = β2n

(n = 1, 2, . . .) have been studied, which for n = 1 reduce to the five-dimensional

harmonic oscillator and for n→∞ approach the infinite square-well potential, but with

numerical techniques (see, e.g., the reviews [45, 46]). Lévai and Arias [47] proposed a

sextic potential leading to a quasi-exactly solvable model [48, 49] which reduces to a

class of two-parameter potentials containing terms in β2, β4 and β6. This choice leads

to exact solutions of the Bohr hamiltonian for a finite subset of states, here in particular

for the lowest few eigenstates (energies, wave functions and a subset of B(E2) values).

Finally, the particular choice V (β) = C2bβ
2/(1 + bβ2), proposed by Ginocchio [50], is

solvable. It leads to a solution of the Bohr hamiltonian that reproduces the lowest energy

eigenvalues of an anharmonic vibrator [or of the U(5) limit of the IBM, see section 5].
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4.2. Triaxial models

Many nuclei may exhibit excursions away from axial symmetry, requiring the

introduction of explicit triaxial features in the Bohr hamiltonian. Due to the coupling

of vibrational and rotational degrees of freedom in the Bohr hamiltonian, potentials

with γ dependence allow very few exact solutions, even if they are of the separable

type, V (β, γ) = V1(β) + V2(γ). In early attempts to address this more complicated

situation, triaxial rotors were studied in an adiabatic approximation which implies

that the nucleus’ intrinsic shape does not change under the effect of rotation. Such

systems, in the context of the Bohr hamiltonian, correspond to a potential of the

type V (β, γ) = δ(β − β0)δ(γ − γ0) and their hamiltonian contains a rotational kinetic

energy term only. On the other hand, the quantum mechanics of a rotating rigid body

was studied much before the advent of the Bohr hamiltonian, by Reiche [51] and by

Casimir [52], starting from a classical description of rotating bodies. The two approaches

give rise to rather different moments of inertia, as discussed in the next subsection 4.2.1.

4.2.1. Rigid rotor models. Davydov and co-workers [53, 54] studied and solved a

triaxial rotor model in the context of the Bohr hamiltonian, which in the adiabatic

approximation reduces to its rotational part,

Ĥrot =
~2

8B2

3∑
k=1

L̂′2k
β2
0 sin2(γ0 − 2πk/3)

, (34)

where β0 and γ0 are fixed values that define the shape of the rotating nucleus. The

dependence of the moments of inertia Jk = 4B2β
2
0 sin2(γ0 − 2πk/3) on the shape

parameters β0 and γ0 is that of a droplet in irrotational flow, that is, of which the

velocity field v̄(r̄) obeys the condition ∇̄ ∧ v̄(r̄) = 0.

The Davydov model is exactly solvable in the sense that the energies of the lowest-

spin states Lπ = 0+, 2+, 3+, . . . can be derived in closed form. For higher-spin states the

energies are obtained as solutions of higher-order algebraic equations: cubic for Lπ = 4+,

quartic for Lπ = 6+, etc. The corresponding wave functions only depend on the Euler

angles θi and can be expressed as ΦiLM(θi) =
∑

K a
i
KΦKLM(θi), with coefficients aiK

obtained from the same algebraic equations, and

ΦKLM(θi) =

√
2L+ 1

16π2(1 + δK0)

[
DLMK(θi) + (−)LDLM,−K(θi)

]
,

where DLMK(θi) are the Wigner D functions. These expressions also allow the calculation

of electromagnetic transitions [53].

The classical expressions for the moments of inertia of a rigid body with

quadrupole deformation, on the other hand, are Jk = (2mnAR
2
0/5)[1−

√
5/4πβ0 cos(γ0−

2πk/3)] where mnA is the mass. As a result, its quantum-mechanical rotation leads to

an energy spectrum [51, 52] which is different from the one obtained with the Bohr

hamiltonian (see figure 6). The most obvious difference between the two cases occurs in

the limits of axial symmetry (γ0 = 0 or γ0 = π/3) when one of the moments of inertia
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Figure 6. The energy spectrum of a rigid rotor, with irrotational (left) and rigid

(right) values for the moments of inertia and with energy in units ~2/(8B2) and

5~2/(4mnAR
2
0), respectively. In both cases β0 = 1. Taken from reference [55].

diverges in the Davydov model. This divergence results from the extreme picture of rigid

rotation and disappears when the rigid triaxial rotor model is generalized by allowing

softness in the β and γ degrees of freedom [56, 57].

4.2.2. The Meyer-ter-Vehn model. Meyer-ter-Vehn found an interesting solution of

a rigid rotor with γ0 = π/6 [58]. For this value of γ0 the moments of inertia J2 and J3 in

equation (34) are equal while the three intrinsic quadrupole moments are different. The

hamiltonian (34) can then be rewritten in the form ~2/(2B2β
2
0)(L̂′2−3L̂′21 /4) with energy

eigenvalues ~2/(2B2β
2
0)[L(L+1)−3R2/4], where L denotes the angular momentum and

R the projection of L on the 1-axis (perpendicular to the 3-axis) which is a good quantum

number for such systems. This model can be used for odd-mass nuclei by coupling an

odd particle to the triaxial rotor [58].

4.2.3. Approximate solutions for soft potentials. While the rigid rotor may serve as a

good starting point for the description of certain nuclei, the strong coupling between γ

excitations and the collective rotational motion calls for simple, more realistic models,

in particular for strongly deformed nuclei in the rare-earth and actinide regions. One

approach is to assume harmonic-oscillator (or other schematic) potentials in the γ and

β variables, such that the Bohr hamiltonian can be solved approximately. Even with

potentials of the Wilets–Jean type that allow an exact decoupling of the β degree of

freedom, an analytic solution of the (γ, θi) part of the wave function requires moments

of inertia frozen at a certain γ0 value [corresponding with the minimum of the V (γ)

potential] in addition to the assumption of harmonic motion around γ0. With these
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restrictions analytic solutions can be obtained. Bonatsos et.al. studied a large number

of such potentials, deriving special solutions of the Bohr Hamiltonian characterized by

various expressions of V1(β) and V2(γ) (see the review paper [46]). The validity of these

approximations has to be confronted with numerical studies (see section 4.3). Two

particular approximate analytic solutions, extensively confronted with experimental

data in the rare-earth region, are named X(5) [59] and Y(5) [60]. The corresponding

potentials which are separable in β and γ, make use of a square-well potential in the β

direction and a harmonic oscillator in the γ direction ∝ γ2 [for the X(5) solution] and of

a harmonic oscillator in the β direction ∝ (β−β0)2 and an infinite square-well potential

in the γ direction around γ = 0 [for the Y(5) solution].

Many other models exhibiting softness in both the β and γ degrees of freedom are

discussed in the review papers by Fortunato [45] and Cejnar et al. [61].

4.2.4. Partial solutions. There are some models that can be solved exactly for a limited

number of states. An example is the Pöschl–Teller potential V (γ) = a/ sin2 3γ which

has an exact solution for the J = 0 and J = 3 states [62].

4.3. Geometric collective models: an algebraic approach

Exactly solvable models are only possible for specific potentials V (β, γ) and are clearly

limited in scope. To handle a general potential V (β, γ), the differential equation

associated with the Bohr hamiltonian (30) must be solved numerically [63].

An algebraic approach based on SU(1, 1)⊗ SO(5), has been proposed by Rowe [64]

and, independently, by De Baerdemacker et al. [65]. To improve the convergence in

a five-dimensional oscillator basis, a direct product is taken of SU(1,1) wave functions

in β with SO(5) ⊃ SO(3) generalized spherical harmonics in γ and θi. This algebraic

structure allows the calculation of a general set of matrix elements of potential and

kinetic energy terms in closed analytic form. Consequently, the exact solutions of the

harmonic oscillator, the γ-independent rotor and the axially deformed rotor can be

derived easily. As a nice illustration of this approach, the solution of the Davidson

potential (see section 4.1.3) can be obtained in the closed form [38]. The strength of

this approach (also called the algebraic collective model) is that one can go beyond the

adiabatic separation of the β and γ vibrational modes, usually taken as harmonic, and

test this restriction (see, e.g., reference [66]). Presently, more realistic potential and

kinetic energy terms are considered, leading to numerical studies going far beyond the

constraints of the exactly solvable models considered here.

5. The interacting boson model

In the geometric collective model exact solutions are found for specific potentials in the

Bohr hamiltonian (30). They correspond to solutions of coupled differential equations

in terms of standard mathematical functions and have no obvious connection with
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the algebraic formulation of the quantal n-body problem of section 2. Alternatively,

collective nuclear excitations can be described with the interacting boson model (IBM)

of Arima and Iachello [67] which, in contrast, can be formulated in an algebraic language.

The original version of the IBM, applicable to even–even nuclei, describes nuclear

properties in terms of interacting s and d bosons with angular momentum ` = 0

and ` = 2, and a vacuum state |o〉 which represents a doubly-magic core. Unitary

transformations among the six states s†|o〉 and d†m|o〉,m = 0,±1,±2, also collectively

denoted by b†`m, generate the Lie algebra U(6) (see section 2).

In nuclei with many valence neutrons and protons, the dimension of the shell-model

space is prohibitively large. A drastic reduction of this dimension is obtained if shell-

model states are considered that are constructed out of nucleon pairs coupled to angular

momenta J = 0 and J = 2 only. If, furthermore, a mapping is carried out from nucleon

pairs to genuine s and d bosons, a connection between the shell model and the IBM is

established [68].

Given this microscopic interpretation of the bosons, a low-lying collective state of

an even–even nucleus with 2Nb valence nucleons is approximated as an Nb-boson state.

Although the separate boson numbers ns and nd are not necessarily conserved, their

sum ns+nd = Nb is. This implies a hamiltonian that conserves the total boson number,

of the form ĤIBM = E0 + Ĥ1 + Ĥ2 + Ĥ3 + · · ·, where the index refers to the order of

the interaction in the generators of U(6) and where the first term is a constant which

represents the binding energy of the core.

The characteristics of the most general IBM hamiltonian which includes up to

two-body interactions and its group-theoretical properties are well understood [69].

Numerical procedures exist to obtain its eigensolutions but, as in the nuclear shell model,

this quantum-mechanical many-body problem can be solved analytically for particular

choices of boson energies and boson–boson interactions. For an IBM hamiltonian with

up to two-body interactions between the bosons, three different analytical solutions or

limits exist: the vibrational U(5) [70], the rotational SU(3) [71] and the γ-unstable

SO(6) limit [72]. They are associated with the following lattice of algebras:

U(6) ⊃


U(5) ⊃ SO(5)

SU(3)

SO(6) ⊃ SO(5)

 ⊃ SO(3). (35)

The algebras appearing in the lattice (35) are subalgebras of U(6) generated by operators

of the type b†`mb`′m′ . If the energies and interactions are chosen such that ĤIBM reduces

to a sum of Casimir operators of subalgebras belonging to a chain of nested algebras in

the lattice (35), the eigenvalue problem, according to the discussion of section 2, can

be solved analytically and the quantum numbers associated with the different Casimir

operators are conserved.

An important aspect of the IBM is its geometric interpretation which can be

obtained by means of coherent (or intrinsic) states [73, 74, 75]. The ones used for
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the IBM are of the form

|N ;α2µ〉 ∝

(
s† +

∑
µ

α2µd
†
µ

)N

|o〉,

where the α2µ are similar to the shape variables of the geometric collective model (see

section 4). In the same way as in that model, the α2µ can be related to Euler angles θi
and two intrinsic shape variables, β and γ, that parameterize quadrupole vibrations of

the nuclear surface around an equilibrium shape. The expectation value of an operator

in the coherent state leads to a functional expression in N , β and γ. The most general

IBM hamiltonian, therefore, can be converted in a total energy surface E(β, γ). An

analysis of this type shows that the three limits of the IBM have simple geometric

counterparts that are frequently encountered in nuclei [73, 74].

5.1. Neutrons and protons: F spin

The recognition that the s and d bosons can be identified with pairs of valence nucleons

coupled to angular momenta J = 0 or J = 2, made it clear that a connection

between the boson and shell model required a distinction between neutrons and protons.

Consequently, an extended version of the model was proposed by Arima et al. [76] in

which this distinction was made, referred to as IBM-2, as opposed to the original

version of the model, IBM-1.

In the IBM-2 the total number of bosons Nb is the sum of the neutron and proton

boson numbers, Nν and Nπ, which are conserved separately. The algebraic structure

of IBM-2 is a product of U(6) algebras, Uν(6) ⊗ Uπ(6), consisting of the operators

b†ν,`mbν,`′m′ for the neutron bosons and b†π,`mbπ,`′m′ for the proton bosons. The model

space of IBM-2 is the product of symmetric irreducible representations [Nν ] × [Nπ] of

Uν(6)⊗Uπ(6). In this model space the most general, (Nν , Nπ)-conserving, rotationally

invariant IBM-2 hamiltonian is diagonalized.

The IBM-2 proposes a phenomenological description of low-energy collective

properties of medium-mass and heavy nuclei. In particular, energy spectra and E2

and M1 transition properties can be reproduced with a global parameterization as a

function of the number of valence neutrons and protons but the detailed description

of specific nuclear properties can remain a challenge. The classification and analysis

of the symmetry limits of IBM-2 is considerably more complex than the corresponding

problem in IBM-1 but are known for the most important limits which are of relevance

in the analysis of nuclei [77].

The existence of two kinds of bosons offers the possibility to assign an F -spin

quantum number to them, F = 1
2
, the boson being in two possible charge states with

MF = −1
2

for neutrons and MF = +1
2

for protons [68]. Formally, F spin is defined by
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the algebraic reduction

U(12) ⊃ U(6) ⊗
(

U(2) ⊃ SU(2)
)

↓ ↓ ↓ ↓
[Nb] [Nb − f, f ] [Nb − f, f ] F

,

with 2F being the difference between the labels that characterize U(6) or U(2),

F = [(Nb − f) − f ]/2 = (Nb − 2f)/2. The algebra U(12) consists of the generators

b†ρ,`mbρ′,`′m′ , with ρ, ρ′ = ν or π, which also includes operators that change a neutron

boson into a proton boson or vice versa (ρ 6= ρ′). Under this algebra U(12) bosons behave

symmetrically whence the symmetric irreducible representation [Nb]. The irreducible

representations of U(6) and U(2), in contrast, do not have to be symmetric but, to

preserve the overall U(12) symmetry, they should be identical.

The mathematical structure of F spin is entirely similar to that of isospin T .

An F -spin SU(2) algebra can be defined which consists of the diagonal operator

F̂z = (−N̂ν + N̂π)/2 and the raising and lowering operators F̂± that transform neutron

into proton bosons or vice versa. These are the direct analogues of the isopin generators

T̂z and T̂±. The physical meaning of F spin and isospin is different, however, as the

mapping of a shell-model hamiltonian with isospin symmetry does not necessarily yield

an F -spin conserving hamiltonian in IBM-2. Conversely, an F -spin conserving IBM-2

hamiltonian may or may not have eigenstates with good isospin. If the neutrons and

protons occupy different shells, so that the bosons are defined in different shells, then

any IBM-2 hamiltonian has eigenstates that correspond to shell-model states with good

isospin, irrespective of its F -spin symmetry character. If, on the other hand, neutrons

and protons occupy the same shell, a general IBM-2 hamiltonian does not lead to states

with good isospin. The isospin symmetry violation is particularly significant in nuclei

with approximately equal numbers of neutrons and protons (N ∼ Z) and requires the

consideration of IBM-3 (see section 5.2). As the difference between the numbers of

neutrons and protons in the same shell increases, an approximate equivalence of F spin

and isospin is recovered and the need for IBM-3 disappears [78].

Just as isobaric multiplets of nuclei are defined through the connection implied by

the raising and lowering operators T̂±, F -spin multiplets can be defined through the

action of F̂± [79]. The states connected are in nuclei with Nν +Nπ constant; these can

be isobaric (constant nuclear mass number A) or may differ by multiples of α particles,

depending on whether the neutron and proton bosons are of the same or of a different

type (which refers to their particle- or hole-like character).

The phenomenology of F -spin multiplets is similar to that of isobaric multiplets

but for one important difference. The nucleon–nucleon interaction favours spatially

symmetric configurations and consequently nuclear excitations at low energy generally

have T = Tmin = |(N − Z)/2|. Boson–boson interactions also favour spatial symmetry

but that leads to low-lying levels with F = Fmax = (Nν + Nπ)/2. As a result, in the

case of an F -spin multiplet a relation is implied between the low-lying spectra of the

nuclei in the multiplet, while an isobaric multiplet (with T ≥ 1) involves states at higher
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Figure 7. Partial energy spectra in the three limits of the IBM-2 in which F spin

is a conserved quantum number. Levels are labelled by their angular momentum and

parity Jπ; the U(6) labels [N − f, f ] are also indicated. States symmetric in U(6) are

in blue while mixed-symmetry states are in red.

excitation energies in some nuclei.

Another important aspect of IBM-2 is that it predicts states that are additional

to those found in IBM-1. Their structure can be understood as follows. States with

maximal F spin, F = N/2, are symmetric in U(6) and are the exact analogues of

IBM-1 states. The next class of states has F = N/2 − 1, no longer symmetric in U(6)

but belonging to its irreducible representation [N − 1, 1]. Such states were studied

theoretically in 1984 by Iachello [80] and were observed, for the first time in 156Gd [81],

and later in many other deformed as well as spherical nuclei.

The existence of these states with mixed symmetry, excited in a variety of

reactions, is by now well established [82]. The pattern of the lowest symmetric and

mixed-symmetric states is shown in figure 7. Of particular relevance are 1+ states, since

these are allowed in IBM-2 but not in IBM-1. The characteristic excitation of 1+ levels

is of magnetic dipole type and the IBM-2 prediction for the M1 strength to the 1+

mixed-symmetry state is [77]

B(M1; 0+
1 → 1+

MS) =
3

4π
(gν − gπ)2f(N)NνNπ,

where gν and gπ are the boson g factors. The function f(N) is known analytically in

the three principal limits of the IBM-2, f(N) = 0, 8/(2N − 1) and 3/(N + 1) in U(5),

SU(3) and SO(6), respectively. This gives a simple and reasonably accurate estimate

of the total M1 strength of orbital nature to 1+ mixed-symmetry states in even–even

nuclei.

The geometric interpretation of mixed-symmetry states can be found by taking

the limit of large boson number [83]. From this analysis emerges that they correspond

to oscillations in which the neutrons and protons are out of phase, in contrast to the

symmetric IBM-2 states for which such oscillations are in phase. The occurrence of such

states was first predicted in the context of geometric two-fluid models in vibrational [84]
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and deformed [85] nuclei in which they appear as neutron–proton counter oscillations.

Because of this geometric interpretation, mixed-symmetry states are often referred to

as scissors states which is the pictorial image one has in the case of deformed nuclei.

The IBM-2 thus confirms these geometric descriptions but at the same time generalizes

them to all nuclei, not only spherical and deformed, but γ unstable and transitional as

well.

5.2. Neutrons and protons: Isospin

If neutrons and protons occupy different valence shells, it is natural to consider neutron–

neutron and proton–proton pairs only, and to include the neutron–proton interaction

explicitly between the two types of pairs. If neutrons and protons occupy the same

valence shell, this approach no longer is valid since there is no reason not to include the

T = 1 neutron–proton pair. The ensuing model, proposed by Elliott and White [86], is

called IBM-3. Because the IBM-3 includes the complete T = 1 triplet, it can be made

isospin invariant, enabling a more direct comparison with the shell model.

In the IBM-3 there are three kinds of bosons (ν, δ and π) each with six components

and, as a result, an Nb-boson state belongs to the symmetric irreducible representation

[Nb] of U(18). It is possible to construct IBM-3 states that have good total angular

momentum J and good total isospin T .

The classification of dynamical symmetries of IBM-3 is rather complex and as yet

their analysis is incomplete. The cases with dynamical U(6) symmetry [or SU(3) charge

symmetry] were studied in detail in reference [87]. Other classifications that conserve J

and T [but not charge SU(3)] were proposed and analyzed in references [88, 89].

All bosons included in IBM-3 have T = 1 and, in principle, other bosons can be

introduced that correspond to T = 0 neutron–proton pairs. This further extension

(proposed by Elliott and Evans [90] and referred to as IBM-4) can be considered as

the most elaborate version of the IBM. There are several reasons for including also

T = 0 bosons. One justification is found in the LS-coupling limit of the nuclear shell

model, where the two-particle states of lowest energy have orbital angular momenta

L = 0 and L = 2 with (S, T ) = (0, 1) or (1,0). Furthermore, the choice of bosons in

IBM-4 allows a boson classification containing Wigner’s supermultiplet algebra SU(4).

These qualitative arguments in favour of IBM-4 have been corroborated by quantitative,

microscopic studies in even–even [91] and odd–odd [92] sd-shell nuclei.

Arguably the most important virtue of the extended versions IBM-3 and IBM-4 is

that they allow the construction of dynamical symmetries in the IBM with quantum

numbers that have their counterparts in the shell model (isospin, Wigner supermultiplet

labels, etc.). As so often emphasized by Elliott [93], this feature allows tests of the

validity of the IBM in terms of the shell model.
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5.3. Supersymmetry

Symmetry techniques can be applied to systems of interacting bosons and to systems

of interacting fermions. In both cases the dynamical algebra is U(Ω), with Ω the

number of states available to a single particle. In both cases solvable models can be

constructed from the study of the subalgebras of U(Ω). Not surprisingly, the same

symmetry techniques can be applied to systems composed of interacting bosons and

fermions. If the bosons and fermions commute, the dynamical algebra of the boson–

fermion system is UB(Ωb) ⊗ UF(Ωf), and the study of its subalgebras again leads to

solvable hamiltonians.

This idea was applied in the context of the interacting boson–fermion model

(IBFM) which proposes a description of odd-mass nuclei by coupling a fermion to

a bosonic core [94]. Properties of even–even and odd-mass nuclei can be obtained

from IBM and IBFM, respectively, but no unified description is achieved with the

dynamical algebra UB(6) ⊗ UF(Ω) which does not contain both types of nuclei in a

single of its irreducible representations. Nuclear supersymmetry provides a theoretical

framework where bosonic and fermionic systems are treated as members of the same

supermultiplet and where excitation spectra of the different nuclei arise from a single

hamiltonian. A necessary condition for such an approach to be successful is that the

energy scale for bosonic and fermionic excitations is comparable which is indeed the

case in nuclei. Nuclear supersymmetry was originally postulated by Iachello and co-

workers [95, 96, 97, 98] as a symmetry among doublets and was subsequently extended

to quartets of nuclei which include an odd–odd member [99].

Schematically, states in even–even and odd-mass nuclei are connected by the

generators  b†b 0

−−− −−−
0 a†a

 ,

where a (b) refers to a fermion (boson) and indices are omitted for simplicity. States

in an even–even nucleus are connected by the operators in the upper left-hand corner

while those in odd-mass nuclei require both sets of generators. No operator connects

even–even to odd-mass states. An extension of this algebraic structure considers in

addition operators that transform a boson into a fermion or vice versa, b†b b†a

−−− −−−
a†b a†a

 .

This set does not any longer form a classical Lie algebra which is defined in terms of

commutation relations. For example,

[a†b, b†a] = a†bb†a− b†aa†b = a†a− b†b+ 2b†ba†a,

which does not close into the original set {a†a, b†b, a†b, b†a}. The inclusion of the cross

terms does not lead to a classical Lie algebra since the bilinear operators b†a and a†b do
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not behave like bosons but rather as fermions, in contrast to a†a and b†b, both of which

have bosonic character. This suggests the separation of the generators in two sectors, the

bosonic sector {a†a, b†b} and the fermionic sector {a†b, b†a}. Closure is maintained by

considering anti-commutators among the latter operators and commutators otherwise.

This leads to the graded or superalgebra is U(6/Ω), where 6 and Ω are the dimensions

of the boson and fermion algebras.

By embedding UB(6) ⊗ UF(Ω) into a superalgebra U(6/Ω), the unification of the

description of even–even and odd-mass nuclei is achieved. Formally, this can be seen

from the reduction

U(6/Ω) ⊃ UB(6) ⊗ UF(Ω)

↓ ↓ ↓
[N} [Nb] [1Nf ]

.

The supersymmetric irreducible representation [N} of U(6/Ω) imposes symmetry in the

bosons and anti-symmetry in the fermions, and contains the UB(6)⊗UF(Ω) irreducible

representations [Nb]× [1Nf ] with N = Nb +Nf [96]. A single supersymmetric irreducible

representation therefore contains states in even–even (Nf = 0) as well as odd-mass

(Nf = 1) nuclei.

Finally, if a distinction is made between neutrons and protons, it is natural to

propose a generalized dynamical algebra Uν(6/Ων) ⊗ Uπ(6/Ωπ) where Ων and Ωπ are

the dimensions of the neutron and proton single-particle spaces, respectively. This

algebra contains generators which transform bosons into fermions and vice versa,

and furthermore are distinct for neutrons and protons. The supermultiplet now

contains a quartet of nuclei (even–even, even–odd, odd–even and odd–odd) which

are to be described simultaneously with a single hamiltonian. The predictions of

Uν(6/12)⊗ Uπ(6/4) have been extensively investigated in platinum (Z = 78) and gold

(Z = 79) nuclei, where the dominant orbits are 3p1/2, 3p3/2 and 2f5/2 for the neutrons,

and 2d3/2 for the protons. Probing the properties of the odd–odd member of the quartet

proved to be a challenge and it took many years of dedicated experiments to establish

a convincing case of a complete supermultiplet [100] which is shown in figure 8.

6. Beyond exact solvability

The exact solutions discussed in this review are restricted to particular hamiltonians

of the nuclear shell model, the geometric collective model and the interacting boson

model. This concluding section contains a succinct and qualitative discussion of model

hamiltonians that are not exactly solvable for all eigenstates but only for a subset of

them.

It is well known that only a limited number of potentials in quantum mechanics

are analytically solvable, meaning that the entire energy spectrum of eigenvalues and

corresponding eigenfunctions can be obtained as exact solutions. A wider class of

potentials can be constructed, with an exact solution for a finite (or possibly infinite) but

not complete part of the eigenvalue spectrum. Models with such potentials are called
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Figure 8. Example of a Uν(6/12)⊗Uπ(6/4) supermultiplet.

quasi-exactly solvable (QES). This is a rich field of research that has been studied since

many years (see, e.g., reference [49] and references therein). Very few QES applications

were considered up to now in nuclear structure, one of which was cited in the context

of the Bohr hamiltonian [47].

A related generalization concerns dynamical symmetries. The conditions for a

dynamical symmetry are seldom satisfied in the description of complex quantum many-

body systems. A more realistic description requires the breaking of the dynamical

symmetry by adding, in a particular subalgebra chain, one or more terms from a



Exactly solvable models of nuclei 31

different chain. This, in general, results in the loss of complete solvability. Nevertheless,

hamiltonians with a partial dynamical symmetry (PDS) can be constructed, such that

a subset of its eigenstates is characterized by a subset of the labels of a particular

dynamical symmetry. The generic mechanism is layed out precisely by Alhassid and

Leviatan [101] and extensively discussed in the review of Leviatan [102]. Three types

of PDS exist depending on whether all (or part) of the eigenstates carry all (or part) of

the quantum numbers associated with the dynamical symmetry.

Many nuclei can be described as exhibiting a transition between two dynamical

symmetries (e.g., in IBM from U(5) to SU(3) or from U(5) to O(6), or a transition from

pairing SU(2) to rotor SU(3), etc.). Although the transitional hamiltonian in general

does not have a dynamical symmetry, it turns out that, except for a very narrow region

before (or after) the transition point, the initial (or final) symmetry remains intact

in some effective way. This is possible because of the existence of a quasi-dynamical

symmetry (QDS) [103, 104, 105], formulated in a precise way by Rowe et al. using the

concept of embedded representations [106]. Strictly speaking a hamiltonian with QDS

is not exactly solvable. However, the concept of QDS clearly emanates from that of

dynamical symmetry, with applications in the study of atomic nuclei [61] and of more

general systems [107].

Further reading

Scientific studies covering a period of almost 80 years are difficult to summarize in

barely 30 pages and consequently most developments were only fleetingly discussed in

the present review. It is therefore appropriate to end with a list of suggestions for

further reading. Many books exist on symmetries in physics and group theory. A

standard monograph is the one of Hamermesh [108]; a more recent one in the spirit

of this review is by Iachello [109]. Nuclear structure is comprehensively covered in

the standard works by Bohr and Mottelson [110, 111] and the many-body techniques

used in the field are discussed by Ring and Schuck [112]. Details on the shell model

can be found in references [113, 114] while the interacting boson model is covered in

references [114, 115, 116]. A recent monograph [117] gives an overview of symmetries

encountered in the description of atomic nuclei. Finally, a discussion on embedding

algebraic collective models within a shell-model framework can be found in the book of

Rowe and Wood [118].
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