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Abstract—In this paper, we propose the use of the graphics
processor unit (GPU) to accelerate a ray-tracing method in the
framework of X-ray tomographic image reconstruction. We first
describe an innovative iterative reconstruction method we have
developed based on a tetrahedral volume with conjugate gradient.
We do not use voxels here but instead tetrahedrons to increase
the quality of reconstruction and the reduction of data as thus we
need less resolution of the volume to fit the object reconstructed.
This is an important point to use the GPU. We present here
the algorithms adapted to the GPU and the results obtained
compared to CPU.

I. INTRODUCTION

Tomography reconstruction from projections data is an
inverse problem widely used in the medical imaging field.
With sufficiently large number of projections over the required
angle, the FBP (Filtered Back-Projection) algorithms allow
fast and accurate reconstructions. However in the cases of
limited views (low dose imaging) and/or limited angle (specific
constrains of the setup), the data available for inversion are not
complete, the problem becomes more ill-conditioned and the
results show significant artifacts. In these situations, an alter-
native approach of reconstruction, based on a discrete model
of the problem, consists in using an iterative algorithm or a
statistical modelisation of the problem to compute an estimate
of the unknown object. These methods are classicaly based
on a volume discretization into a set of voxels and provide
3D maps of densities. High computation time and memory
storage are their main disadvantages. Moreover, whatever the
application is, the volumes are segmented for a quantitative
analysis. Numerous methods of segmentation with different
interpretations of the contours and various minimized energy
functions are offered with results that can depend on their use
by the application.

This work presents a novel approach of tomographic re-
construction simultaneously to segmentation of the different
materials of the object to reconstruct. The process of re-
construction is no more based on a regular grid of voxels
but on a mesh composed of non regular tetraedra. After an
initialization step, the method runs into three main steps:
reconstruction, segmentation and adaptation of the mesh, that
iteratively alternate until convergence. For that purpose, we
have adapted and optimized two iterative algorithms of re-
construction (OSEM and Conjgate Gradient) usually used in
a conventionnal way to be performed on irregular grids of
triangular or tetraedric elements. For the segmentation step,
a geometrical approach (level set) was implemented. The

adaptation of the mesh to the content of the estimated image
is then constrained by the contours segmented the step before
that makes it progressively coarse from the edges of the object
to the limits of the domain of reconstruction. At the end
of the process, the result is a classical tomographic image
in gray levels, whose representation by an adaptive mesh
to its content provides a corresponding segmentation. The
results show that the method provides reliable reconstructions
and leads to drastically decrease the memory storage. In this
context, both the 3D operators of projection and backprojection
were implemented on parallel architectures namely the graphic
processor units (GPU). These operators are based on the ray-
tracing method used in image rendering.

II. X-RAY TOMOGRAPHY

X-rays tomography is a non invasive technique which
provides 3D reconstruction of an object. Its principle is based
on the interaction of the X-ray beams with the materials
composing the object, and the counting of the transmitted
photons by detectors placed in front of the X-ray tube. The
acquired data are collected according to multiple orientations
(angles) of the source-detector system over the object. The
number of projections and the rotation step vary according to
the application and the type of devices. By means of these
data, an image in grey levels is mathematically reconstructed
representing the internal density of the object.

Commonly, the algebraic algorithms used for reconstruc-
tion are based on a representation of the volume by a reg-
ular lattice of voxels. However, the spatial resolution of the
detectors increases and consequently the number of voxels
too to preserve the high spatial resolution. The number of
unknowns to estimate can thus be very important, and the
algebraic methods of reconstruction very time consuming.

The algebraic methods model the inverse problem by a
discrete approach: the projections are interpreted as samples of
a function with discrete variables, and the object is represented
as an unknown function f defined as a linear combination
of basic functions (commonly characterizing voxels). So the
inverse problem is written as a linear system:

p = H f (1)

where the vector p contains the measures of the projections.
The size of the vector p is equal to ND × Np, where ND

is the number of the pixel detector and Np the number of



projections. H is the matrix system ; it depends on the geom-
etry of acquisition. The value of its elements hij represents
the contribution of element j to X-ray beam projection i.
Commonly, hij is equal to 1 if pixel j is intersected by X-ray
beam i, otherwise 0, but other expressions of contribution can
be used as, for example, the length or the surface of the X-ray
beam intercepted in the pixel. Matrix H is very sparse : most of
its elements are zero. Nevertheless, the computation of matrix
H is very time consuming. In the case of small data sets, H can
be pre-calculated and stored in memory. Although, as the size
of the data sets enlarge, matrix H cannot be stored in memory
and several approaches have been proposed to make it more
compact. For example, [1] proposed a list-mode approach to
only store the non-zero elements of the matrix. A more efficient
solution is to calculate the coefficients of matrix H on the
fly using ray-tracing methods. The optimization of matrix H
computation improve the performances of both the projection
and the back projection which are the main operators of
algebraic algorithms of reconstruction. The approaches used
to compute projection and backprojection are classified as [2]:

• ray-driven: the X-ray beams are centered on the pixels
of the detector

• pixel-driven: the X-ray beams are centered on the
pixels of the volume of reconstruction.

In this work, the two approaches were implemented and op-
timized on GPU (Graphic Processor Unit, multi-threaded par-
allel architectures), to study the parallelisation and optimisation
characteristics of both the projector and the back projector (the
latest being the transposed operator of the first one). In the
case of the ray-driven implementation, the projector performs
gather operations by reading the data and writing the result
to a specific memory address (corresponding to the thread
IDs), while the backprojector performs scatter operations by
updating the values of the estimated image shared by several
threads. On the contrary, in the case of the pixel-driven
implementation, the projector performs scatter operations by
... while the backprojector performs gather operations by ... .
For more efficiency, gather operations are prefered to ensure
no memory writing conflicts. In this way, we implemented a
ray-driven approach for the two operators [3], the projection
requiring more operations than the backprojection. The small
number of detectors induced a limited amount of exploitable
parallelism but a sufficient one for a single GPU.

Table I: Memory write operations.

ray-driven voxel-driven

Projector Gather Scatter

Backprojector Scatter Gather

III. PROPOSED METHOD

In this work, we proposed a method of tomography recon-
struction combined with a stage of segmentation, that results to
a classical image of reconstruction in grey levels paired with an
image of segmentation of the studied object. In this method, we
adopted a mesh representation based on tetrahedral elements
to discretize the volume of reconstruction in order to obtain a
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Figure 1: Diagram of the proposed method.

better representation of convex objets and to drastically reduce
the number of elements during the process of reconstruction
(the mesh being adapted to the content of the estimated image).
Thus, as we do not consider anymore a three-dimensional
volume described by voxels but a set of irregular tetrahedra,
common used algebraic algorithms of reconstruction as EM
and Conjugate Gradient were implemented and optimized to
be used on irregular grids of tetraedra.

The proposed method, we refer as ATM (Adaptive Tri-
angular Mesh reconstruction), is composed of three main
stages after initialization : reconstruction, segmentation and
adaptation of the mesh which successively alternate until
convergence (see Figure 1). At the end of the process, the
estimated volume is represented by an optimized number of
elements in the mesh, what drastically reduces the size of the
reconstructed data and consequently turns down the problems
of memory storage.

Among the three stages, only the reconstruction one is
here concerned with a GPU implementation (through both
the projection and the backprojection operators) because of its
high time consuming and its large memory load. By the way,
classical algorithms with a regular parallelism (independent
nested loops) can be used for the two other stages.

In this work, the hi,j elements of matrix H represent the
intercepted length of the X-ray beam i with the mesh element j
(see Figure 2). Contrary to the conventional case of a fixed grid
(common voxel discretization), the hi,j elements can not be
stored throughout the process of reconstruction because each
time the mesh is modified the elements of the matrix H have
to be computed.

IV. IMPLEMENTATION OF THE PROJECTION AND THE
BACKPROJECTION OPERATORS ON GPU

Both the projection (ALGORITHM 1) and the backprojec-
tion (ALGORITHM 2) operators were implemented on GPU
using a ray-tracing method. Three methods designed for 3D
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Figure 2: Example of the 2D projection operator.
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Figure 3: Ray-tracing by comparison of the parameter

rendering in computer graphics and adapted for our application
were studied: one classification method (REFERENCE !!) and
two parametric ones (REFERENCES !!). The first results have
shown that one of the two parametric methods do not converge
using single-precision floating point values because of the
precision required to compute the intersection ray-tetrahedron.
Also the classification method is slowest one. So, in the case of
single-precision floating point, the second parametric method
shows the best performances. The choice of single-precision
processing is important as the ratio of performances can be
very different according the used GPU. For example, there
is a factor equal to 3 for the last Kepler GPU generation.
The second parametric method thus used (REFERENCE!!) is
based on the method of comparison of the parameters with the
storage of the plane equations of the faces of the tetrahedra
(see Figure 3):

• compute the normal vector ~n of the face, for example
~AB × ~BC

• compute s1 = ~BD · ~n and s2 = ~d · ~n
if s1 and s2 have opposed signs, the ray ~r goes out

of this face, and thus parameter t =
~s0B · ~n
~d · ~n

The outgoing face is identified by t = min{ti} and the
intercepted length is computed as ` = t1 − t0.

The used 3D data structures are the following ones:

• ith vertex: vertices[3 · i, · · · , 3 · i+ 2]

• vertex indexes of ith tetrahedron: tetrahe-
dron corners[4 · i, · · · , 4 · i+ 3]

• neighbor opposite to corner of overall index j: tetra-
hedron neighbors[j]

• uniform density of ith tetrahedron: tetrahe-
dron densities[i]

Algorithm 1 Projection operator
1: for all n : 1→ Nrays do
2: ray ← Ray(n) // read the coordinates of the ray
3: tetra← Tetrasinitial(n) // read the entry tetrahedron
4: told ← param ent(ray, next)
5: intes← 0
6: while (tetra! = −1) do
7: den← Dens(tetra) // read the density value
8: t← param(ray, tetra) // compute the parameter of

the next tetrahedron
9: intes ← intes + (t − told) × den // weight the

intercepted length by the density value and update
the projection value

10: told ← p
11: end while
12: projection(n)← intes // write the results
13: end for

Algorithm 2 Backprojection operator
1: for all n : 1→ Nrays do
2: ray ← Ray(n) // read the coordinates of the ray
3: tetra← Tetrasinitial(n) // read the entry tetrahedron
4: told ← param ent(ray, next)
5: intes← projection(n)
6: while (tetra! = −1) do
7: node← tetra
8: t← param(ray, tetra) // compute the parameter of

the next tetrahedron
9: Dens(node) ← Dens(node) + (t − told) × intes //

weight the intercepted length by the projection bin
value

10: told ← t
11: end while
12: end for

This method requires a initialization stage of the rays to
identify the input tetrahedron into the tetrahedral volume. This
stage is very expensive in terms of time consuming when
compared to a CPU execution time of one projection. In order
to speed up this stage of initialization, a quad-tree hierarchical
structure was implemented on each face of the volume. A
regular tetrahedral volume is then considered, and a leaf of
the quadtree only contains the index of two tetrahedrons (see
Figure 4).

To optimize the performance of the quad-tree hierarchical
structure, the following subdivisions of the faces of the tetra-
hedral volume were used:

• 16 x 16 (512 peripheral tetrahedrons)

• 32 x 32 (2048 peripheral tetrahedrons)



Figure 4: Decomposition of the surface of the tetrahedral
volume.
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Figure 5: Execution time of the stage of initialization of the
rays using a hierarchical structure.

• 64 x 64 (8192 peripheral tetrahedrons)

We observe that the execution time only depends on the
number of rays to initialize (see Figure 5). The stage of
initialization of the rays with a hierarchical structure is 700×
faster than without (see Figure 6). This optimized initialization
step is thus now less time consuming than the projection itself.

V. RESULTS

Both the projection and backprojection algorithms were
executed using 2D thread blocks. The size of the thread blocks
was chosen in order to maximize the number of threads with
respect to the material resources (registers) of the graphic card.

Each thread reads the first tetrahedron vector by its ID: if
the value is equal to −1 the execution stops, otherwise the
operator is performed. The latter is achieved when the next
index of the tetrahedron is equal to −1.

A. Validation of the 3D projection operator

The validation of the projector was performed considering
the object described in Table II (see Figure 7). A regular object
was chosen to be perfectly described by the mesh so that it has
no influence on the results. The results are shown in Figure 8.
The 3D tetrahedral mesh is generated by using the library
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Figure 6: Gain between the stage of initialization without and
with the hierarchical data structure.

Figure 7: Object described to validate the 3D projector

Table II: Description of the test object used for the validation
of the projector

Object xmin, xmax ymin, ymax zmin, zmax

Externe cube -0.25, 0.25 -0.25, 0.25 -0.25, 0.25
1st hole -0.1875, -0.03125 -0.1875, -0.03125 -0.078125, 0.078125
2nd hole 0.046875, 0.085938 0.046875, 0.085938 -0.019531, 0.019531
3th hole 0.082031, 0.09375 0.144531, 0.15625 -0.117188, 0.117188
4th hole 0.160153, 0.167969 0.128906, 0.136719 -0.003906, 0.003906

Tetgen [4]. The configuration of acquisition is described in
Table III.

We studied the error introduced by a mesh which not per-
fectly describes an object. The test object is here an ellipsoid
(see Figure 9) whose surface is discretized by a increasing
number of points from 867 to 1622456. The error, expressed
in percentage, is defined as:

Err =
pT − pA
pA

· 100% (2)

where, pT is the vector of the tetrahedral projections and pA
is the vector of the analytical projections. Figure 10 shows the
error, Err, according to the number of points describing the



(a) Analytical projection (b) Tetrahedron projection CPU

(c) Tetrahedral projection GPU (d) Error between the projections (b) and
(c)

Figure 8: Projections of the objet at θ = 0 using (a) an
analytical projector (intersection equations of the rays and the
cubic elements) and a tetraedral projector (b) implemented on
CPU and (c) implemented on GPU. The maximun error is
about 10−15 (d).

Figure 9: Ellipsoid surface described by 14011 points.

surface of the ellipsoid. We observe that the error decreases
when the number of points describing ellipsoid increases, up
to 357612 points. After what, the error remains constant at
1%.

B. Performance CPU/GPU

The performance were estimated by calculating the pro-
jection of the numerical phantom previously described (see
Figure 7). The hardware used for these experiments are:
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Figure 10: Error between the analytical projections and the
tetrahedral ones with respect to the density of the tetrahedral
mesh.

Table III: Configuration used for the validation of the projector
on GPU.

Parameter Value

source-object distance 98 mm
object-detector distance 132 mm
size of the detector 14.2mm × 14.2 mm
resolution of the detector (pixels) 256 × 256
number of the projections 64

• CPU: Intel Xenon E5440 @ 2.83GHz

• GPU: Nvidia-Fermi Tesla C2070

To characterize the performance obtained on GPU, com-
parisons were leaden by considering the execution time ac-
cording to the detector size and the number of tetrahedra (see
Figure 11). The memory transfert was taken into account to
compute the speed-up factor. As result, the speed-up factor is in
the range of 40× to 80×. It depends on the size of the detector
and the number of tetrahedra discretizing the volume. Large
detectors are needed to take benefit from a high degree of
parallelism. However, the sequential process of the tetrahedra
limits the benefit.

We studied the influence of the memory transfers on the
execution time of the projector implemented on GPU. Fig-
ure 12 shows that bigger is the detector, more time consuming
are the memory transfers. The memory transfer time reaches
the same value as the time of execution of the projection for
a detector size of 8192×8182 pixels. This is a main drawback
that will impact speedup for larger detectors.

VI. CONCLUSION

In this paper we explored the feasibility of using Graphic
Processor Units (GPUs) for tomographic reconstruction using
tetrahedral discretization of the volume. We demonstrated
fast projection/backprojection operators using a ray-tracing
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algorithm with low required memory size. We also demon-
strated a speedup factor between 40× and 80× in the case
of an implementation of the operators on GPU over the CPU
implementation with a low impact on the precision (error less
than 1%).

Compared with a classical voxel-based method, the ATM
method implemented on GPU suffers from a loss of memory
locality and element regularity. Indeed, the voxel-based ap-
proaches discretize the volume into a set of regular elements,
and GPU implementations can take benefit of that by using for
example the texture memory to get data locality that results
in divergence free and bank conflict free memory operations.
Besides, all the ray beams across the same number of voxels
that balances the work load among all the threads in the warp
[5].

In our sutdy, an irregular discretization of the volume
was chosen in order to fit the objet shape with a tetrahedral

mesh. Because of the irregularity of the elements, two main
disadavantages limit a highyield informatic optimization : the
locality of the memory is lost (or almost), and the number of
the tetrahedron processed by each thread belonging to the same
warp can be different. That induces an unbalanced work load
over a warp which means that threads still run while others
remain idle. The minimization of the unbalanced work load is
an important perspective to this work.
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