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Abstract: High-content cellular imaging is an emerging technology for studying many biological phenomena. statistical

analyses on large populations (more than thousands) of cells are required. Hence classifying cells by experts

is a very time-consuming task and poorly reproducible. In order to overcome such limitations, we propose

an automatic supervised classification method. Our new cell classification method consists of two steps: The

first one is an indexing process based on specific bio-inspired features using contrast information distributions

on cell sub-regions. The second is a supervised learning process to select prototypical samples (that best

represent the cells categories) which are used in a leveraged k-NN framework to predict the class of unlabeled

cells. In this paper we have tested our new learning algorithm on cellular images acquired for the analysis

of changes in the subcellular localization of a membrane protein (the sodium iodide symporter). In order to

evaluate the automatic classification performances, we tested our algorithm on a significantly large database

of cellular images annotated by experts of our group. Results in term of Mean Avarage Precision (MAP) are

very promising, providing precision upper than 87% on average, thus suggesting our method as a valuable

decision-support tool in such cellular imaging applications. Such supervised classification method has many

other applications in cell imaging in the areas of research in basic biology and medicine but also in clinical

histology.

1 INTRODUCTION

High-content cellular imaging is an emerging technol-

ogy for studying many biological phenomena. Re-

lated cellular image analysis generally requires to

classify many cells according to their morphological

aspect, staining intensity, subcellular localization and

other parameters. Studied biological phenomena can

be heterogenous. For example, protein subcellular

localisation could depend on the expression of other

proteins or the cell states. In this case, statistical anal-

yses on large populations (more than thousands) of

cells are required. Furthermore, if time-lapse exper-

iments or drug screenings have to be performed nu-

merous different conditions have to be tested. New

powerful fully motorized microscopes are now able

to produce thousands of multiparametric images for

several experimental conditions. Consequently, large

numbers of cell images have to be analysed.

Unfortunately, humans are limited in their ability

to classify due to the huge amount of image data and

this makes the classification a burdensome task.

To circumvent this, we developed a new classifica-

tion method for the analysis of the staining morphol-

ogy of thousands (millions) of cells. First a fast mul-

tiparametric image segmentation algorithm extracts

cells with their nucleus. Next, our cell classifica-

tion method consists of two steps: The first one is an

indexing process based on specific bio-inspired fea-

tures using contrast information distributions on cell

sub-regions. The second is a supervised learning pro-

cess to select prototypical samples (that best represent

the cells categories) which are used in a leveraged k-

NN framework to predict the class of unlabeled cells.

Such classification method has many applications in

cell imaging in the areas of research in basic biology



and medicine but also in clinical histology.

In the present work, we used our classification

method to study the pathways that regulate plasma

membrane localization of the sodium iodide sym-

porter (NIS for Natrium Iodide Symporter). NIS is the

key protein responsible for the transport and concen-

tration of iodide from the blood into the thyroid gland.

NIS-mediated iodide uptake requires its plasma mem-

brane localization that is finely controlled by poorly

known mechanisms. For decades, the NIS-mediated

iodide accumulation observed in thyrocytes has been

a useful tool for the diagnosis (thyroid scintiscan) and

treatment (radiotherapy) of various thyroid diseases.

Improvements in radioablation therapy might result

from promoting targeting of NIS to the plasma mem-

brane in the majority of thyroid cancers or metas-

tases. NIS has also been described as a promiss-

ing therapeutic transgene promoting metabolic radio-

therapy (i.e., 131I uptake by cancer cells ectopically-

expressing NIS) in many different studies. An im-

portant improvement of this approach should benefit

from a better understanding of the post-transcriptional

regulation of NIS targeting to the plasma membrane,

Previously, we observed that mouse NIS catalyses

higher levels of iodide accumulation in transfected

cells compared to its human homologue. We showed

that this phenomenon was due to the higher density of

the murine protein at the plasma membrane. To reach

this conclusion, biologists classified several hundreds

of cells (Dayem et al., 2008). We have also demon-

strated, using a set of monoclonal antibodies, that hu-

man NIS is not expressed intracellularly in thyroid

and breast cancer (Peyrottes et al., 2009), as was pro-

posed by other groups. Our team is now focussing on

the analysis of NIS phosphorylation that most proba-

bly plays an important role in the post-transcriptional

regulation of the NIS. Using site-directed mutagene-

sis of previously-identified consensus sites, we have

recently shown that direct phosphorylation of NIS al-

ters NIS targeting to the plasma membrane, as well

as NIS recycling, causing retention of the protein in

intracellular compartments such as the Golgi appa-

ratus, the endoplasmic reticulum or the early endo-

somes. We used a high-content cellular imaging to

study the impact of the mutation of several putative

phosphorylation sites on the subcellular distribution

of the protein.

2 CLASSIFICATION METHOD

Our method for automatic classification of cell im-

ages is depicted as a block diagram in Fig. 1. The first

step is a pre-processing segmentation of cells from the
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Figure 1: Block diagram of the proposed method for auto-
matic cell classification: (a) cell segmentation step and (b)
descriptor extraction and classification process.

images. The database consist of two distinct paramet-

ric fluorescence images. The first one, called nucleus

image shows the nucleus and the second called global

image, shows the staining of the proteine. Nucleus lo-

cations are detected from the nucleus image and used

as a prior for cell segmentation of the global image.

An example of both images and their segmentation

is shown in Fig. 2. Once cells are extracted, we ap-

ply our classification method ; First we compute bio-

inspired region descriptors, extracting contrast-based

features for each of the segmented cells. These de-

scriptors are then used in a supervised learning frame-

work where the most relevant prototypical samples

are used to predict the class of unlabeled cells.

We split this section in two parts: the first de-

scribes our feature extraction approach, whereas the

latter is focused on our prototype-based learning al-

gorithm.

2.1 Region based bio-inspired

descriptor

For better level of performance in differentiating be-

tween cells, it can be useful to get inspiration from the

way our visual system operates to analyze and repre-

sent the visual input. The first transformation under-
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Figure 2: Image of the nucleus-staining of representative cells (a), NIS-specific immunostaining of the corresponding cells
(b) and their segmentation (c).

gone by a visual input is performed by the retina. In-

spired by the basic step of a retinal model, we define

bio-inspired features for image representation.

The basic idea is to use a descriptor inspired from

visual system model and specially from the main

characteristics of the retina processing. In fact, the

retinal cells are in a first stage sensitive to local dif-

ferences of illumination. This can be modeled by the

luminance contrast as for the BIF descriptors in (Bel

haj ali et al., 2011). Such descriptor is well adapted in

the case of our cells images since the most discrimi-

native visual feature between categories is the contrast

intensity of each region of the cell. Thus, we define

cell descriptors based on the local contrast in regions

of interest of each cell (nucleus, membrane and cyto-

plasm). The local contrast is obtained by a filtering

with Differences of Gaussians (DoGs) centered at the

origin. So that the contrast CIm for each position (x,y)
and a given scale s in the image Im is as follows:

CIm(x,y,s) =∑
i

∑
j

(Im(i+x, j+y) ·DoGs(i, j)). (1)

We used the DoGs described by (Field, 1994) where

the larger Gaussian has three times the standard de-

viation of the smaller one. After computing these

contrast coefficients in (1), we apply a non-linear

bounded transfer function, named neuron firing rates,

used in (Van Rullen and Thorpe, 2001). This function

is written as:

R(C ) = G ·C/(1+Re f ·G ·C ), (2)

where G is named the contrast gain and Re f is known

as the refractory period, a time interval during which

a neuron cell reacts. The values of those two param-

eters proposed in (Van Rullen and Thorpe, 2001) to

best approximate the retinal system are G = 2000Hz ·
contrast−1 and Re f = 0.005s.

To extract our descriptors, we need to define

masks on cell images on which we encode firing rate

coefficients R(C ). According to the visual aspect of

cells, we split each cell into two regions of interest

as shown in Fig. 3, corresponding to nucleus and ex-

ternal part, by using simple morphological operators.

For both of them, firing rate coefficients are quanti-

fied into normalized L1 histograms of 32-bins then

concatinated, thus giving our global descriptor with a

dimension equal to 64.

(a)

(b)

Figure 3: An Mb (a) and an ER (b) extracted cells and their
two segmented regions of interest.

Note that state of the art classical methods such as

SIFT descriptor encode gradient directions on square

blocks (Lowe, 2004) and Gist features encode aver-

age energies of filters coefficients on square blocks

too (Oliva and Torralba, 2001).



2.2 Prototype-based learning

We consider the multi-class problem of automatic cell

classification as multiple binary classification prob-

lems in the common one-versus-all learning frame-

work (Schapire and Singer, 1999). Thus, for each

class c, a query image is given a positive (negative)

membership with a certain confidence (classification

score). Then the label with the maximum score is as-

signed to the query.

We suppose given a set S of m annotated images.

Each image is a training example (xxx,yyy), where xxx is the

image feature vector and yyy =
{

− 1
C−1

,1
}C

the class

vector that specifies the category membership of the

image. In particular, the sign of component yc gives

the positive/negative membership of the example to

class c (c = 1,2, ...,C), such that yc is negative iff the

observation does not belong to class c, positive other-

wise.

In this paper, we propose to generalize the classic

k-NN rule to the following leveraged multiclass clas-

sifier hhhℓ = {hℓc}:

hℓc(xxxq) =
T

∑
j=1

α jcK(xxxq,xxx j)y jc , (3)

where hℓc is the classification score for class c, xxxq de-

notes the query image, α jc the leveraging coefficients,

which provide a weighted voting rule instead of uni-

form voting, and K(·, ·) is the k-NN indicator func-

tion:

K(xxxi,xxx j) =

{

1 , xxx j ∈ NNk(xxxi)
0 , otherwise

, (4)

with NNk(xxxi) denoting the set of the k-nearest neigh-

bors of xxxi.

Training our classifier essentially consists in se-

lecting the most relevant subset of training data, i.e.,

the so-called prototypes, whose cardinality T is gen-

erally much smaller than the original number m of an-

notated instances. The prototypes are selected by first

fitting the coefficients α j, and then removing the ex-

amples with the smallest α j, which are less relevant

as prototypes.

In order to fit our leveraged classification rule (3)

onto training set S , we should try to directly minimize

the multiclass surrogate1 (exponential) risk, which

is defined as the actual misclassification rate on the

training data, as follows:

εexp
(

hℓc,S
)

.
=

1

m

m

∑
i=1

exp
{

−ρ(hℓc, i)
}

. (5)

1We call surrogate a function that upperbounds the risk
functional we should minimize, and thus can be used as a
primer for its minimization.

where:

ρ(hℓc, i) = yichℓc(xxxi) (6)

is the multiclass edge of classifier hℓc on training ex-

ample xxxi. This edge measures the “goodness of fit” of

the classifier on example (xxxi,yyyi) for class c, thus being

positive iff the prediction agrees with the example’s

annotation.

In order to solve this optimization, we propose

a boosting-like procedure, i.e., an iterative strategy

where the classification rule is updated by adding a

new prototype (xxx j,yyy j) (weak classifier) at each step t

(t = 1,2, . . . ,T ), thus updating the strong classifier (3)

as follows:

h
(t)
c (xxxi) = h

(t−1)
c (xxxi)+δ jK(xxxi,xxx j)y jc . (7)

( j is the index of the prototype chosen at iteration t.)

Using (7) into (6), and then plugging it into (5), turns

the problem of minimizing (5) to that of finding δ j

with the following objective:

arg min
δ j

m

∑
i=1

wi · exp
{

−δ jri j

}

. (8)

In (8), we have defined wi as the weighting factor,

depending on the past weak classifiers:

wi = exp
{

−yich
(t−1)
c (xxxi)

}

, (9)

and ri j as a pairwise term only depending on training

data:

ri j = K(xxxi,xxx j)yicy jc . (10)

Finally, taking the derivative of (8), the global mini-

mization of surrogate risk (5) gives the following ex-

pression of δ j :

δ j =
1

2
log

γ ·∑i:rc
i j>0 wi

∑i:rc
i j<0 wi

, (11)

where γ is a coefficient that compensates for the class

imbalance.

We provided theoretical details and properties of

our boosting algorithm in (Piro et al., 2012), as well

as an extension of UNN to inherent multiclass classi-

fication in (Piro et al., 2010).

We also tried a “soft” version of the UNN classi-

fication rule, called UNNs, which considers a logistic

estimator for a Bernoulli prior that vanishes with the

rank of the neighbors, thus decreasing the importance

of farther neighbors:

p̂( j) = β j =
1

1+ exp(λ( j−1))
. (12)

This amounts to redefining (3) as follows:

hℓc(xxxq) =
T

∑
j=1

α jcβ jK(xxxq,xxx j)y jc . (13)

(Notice that k-NN indexed by j are supposed to be

sorted from closer to farther.)



(a) (b)

Figure 4: A sample Mb cells image (a) and ER cells image (b).

3 EXPERIMENTS

The images at 40-fold magnification were ac-

quired by means of a fully fluorescence microscope

(Zeiss Axio Observer Z1) coupled to a monochrome

digital camera (Photometrics cascade II camera). The

images have a resolution of 1024x1024 pixels,

In our biological experiments, we individually ex-

pressed different NIS proteins mutated for putative

sites of phosphorylation. The effect on the protein

localization of each mutation was studied after im-

munostaining using anti-NIS antibodies as previously

described (Dayem et al., 2008). Immunocytolocaliza-

tion analysis revealed three cell types with different

subcellular distributions of NIS: at the plasma mem-

brane; in intracellular compartment (mainly endo-

plasmic reticulum); throughout the cytoplasm (with

an extensive expression).

For this purpose, we collected 489 cell images of

such biological experiments and manually annotated

them according to the three classes, that are denoted

in the following as Mb protrusion and Mb (389 cells),

ER (100 cells) and Round (8 cells).

Since round cells are very easy to classify (very

high contrast everywhere in the cell), we focus on the

two category classification: Membrane (Mb) and ER.

An example of Mb and ER cells is given in Fig. 4.

We start by extracting our features on cells im-

ages. An important parameter for our bio-inspired

descriptors is the scale on which we compute the

local contrast. In fact, the standard deviations of

the DoG are dependant of this parameter as follows:

σ1 = 0.5 ·2scale−1 and σ2 = 3 ·σ1. We study first the

more relevant scale space and the evaluations on 100

experiments are reported in the curve of the Fig. 5.

Thus, according to those experiments the following

evaluations are performed using the scale 5 for de-

scriptors.

Once we get descriptors of all the cells in the

Figure 5: Average classification rate as a function of the
descriptors scale using UNNs.

database, we ran our UNN algorithm by training on

50% of the images, while testing on the remaining

50%. In order to get robust performance estimation,

we repeated the evaluation 100 times over different

random training/testing folds. Note that we used a

fast and effecient tool for the k-NN search provided

in the Yael toolbox2.

Our classification algorithm UNNs was evaluated

in a first step using a uniform regularization by the

mean of the parameter γ that compensates the class

imbalance. In a second step, we focused in an adap-

tive regularization according to majority and minority

classes and we denote this approach by UNNs adaptive.

This approach allows to have automatically a balance

number of trained prototypes per class (see Tab. 1)

and visibly decrease misclassification.

We report the average classification results and the

classification rate of each class in Tab. 2. Remark that

we achieve a mean average precision (MAP) greater

than 87.5% when using UNNs adaptive, which is a very

2Source code can be downloaded in the following link:
https://gforge.inria.fr/projects/yael



mAP AP for Mb AP for ER

µ(mAP) σ(mAP) µ(AP) σ(AP) µ(AP) σ(AP)
k-NN 84.22 2.56 94.81 2.02 73.64 5.63

UNNs 86.04 2.54 94.48 1.90 77.60 5.46

UNNs adaptive 87.67 1.93 89.27 2.26 86.08 3.78

SVM 76.46 4.55 95.58 2.38 57.34 10.67

Table 2: Global average precision (MAP), average precision for Mb and average precision for ER for different classifiers.

Nt NMb NER

UNNs 69.24% 50.20% 19.03%

UNNs adaptive 47.69% 28.58% 19.11%

Table 1: This table shows the percentage of prototypes
number selected from the training set by both UNNs and
UNNs adaptive : We report the total number (Nt ), the one in
the class Mb (NMb), and in the class ER (NER). The distribu-
tion of selected prototypes on both classes is more balanced
using UNNs adaptive.

promising result for our cell descriptor and classifi-

cation method. Our classification approach improves

the MAP of the k-NN classifier of more 3% and the

SVM one of more than 11%. Moreover some mis-

classification arises on the minority class (ER) using

k-NN , thus giving an average precision (AP) of about

73% (see Tab. 2). Using UNNs adaptive classification

improved MAP of the minority class up to 86% thus

13% better than k-NNḞor the SVM classification, the

result in Tab. 2 shows that there is an important classi-

fication error on ER cells where the AP is about only

57%.

4 CONCLUSIONS

In this paper, we have presented a novel algorithm for

automatic segmentation and classification of cellular

images based on different subcellular distributions of

the NIS protein. First of all, our method relies on

extracting highly discriminative descriptors based on

bio-inspired histograms of Difference-of-Gaussians

(DoG) coefficients on cellular regions. Then, we

propose a supervised classification algorithm, called

UNN, for learning the most relevant prototypical

samples that are to be used for predicting the class of

unlabeled cellular images according to a leveraged k-

NN rule. We evaluated UNN performances on a sig-

nificantly large database of cellular images that were

manually annotated. Although being the very early

results of our methodology for such a challenging ap-

plication, performances are really satisfactory (aver-

age global precision of 87.5% and MAP of the mi-

nority class up to 86%) and suggest our approach as a

valuable decision-support tool in cellular imaging.
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