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INTRODUCTION

Positron Emission Tomography (PET) is one of the
most popular technique for the study of brain functional
activity. Several studies as in Fox et al (1), Neelin et al
(2) show that PET is an in-vivo examination technique
able to produce real images of cerebral activity, and is
also neither destructive nor invasive. Unfortunately,
PET images offer low resolution and signal-to-noise
ratio. Moreover, they do not reflect the anatomy of
patients. Accurate and reproducible analysis of PET
images requires other informations, coming from atlases
or other images such as Magnetic Resonance Image
(MRI) of the same patient (Evans et al (3)). According
to Rademacher et al (4), MRI offers accurate in-vivo
localisation of anatomical landmarks. It has been used to
estimate individual variations and left-right asymmetries
of sulci and gyri. Hence, it is of great interest to
superimpose functional PET data and anatomical MRI
data.
One approach to this problem is to use the stereotactic
proportional grid of Talairach and Tournoux (5). It
defines spatial co-ordinates of brain sulci and gyri, and
of cytoarchitectonic fields. Despite the application of
scaling factors, the accuracy of standard brain atlas
superimposition onto any given examination is about
one to two centimetres at the cortical level, because of
inter-individual variations described in Greitz et al (6).
Another approach, used by Jouandet et al (7),
determines cortical maps based on the topography of
sulci and gyri. Our work is based on this method and
our objective is to automatically recognise cortical sulci
of any brain MRI examination, with respect to an
anatomical atlas. Individual recognition of those
structures is relevant to the general problems of image
registration and search for a set of objects among a set
of reference. It can be summarised by looking for the
largest common structure in two different graphs, and
can be performed using several methods as templates
and springs described in Ballard and Braun (8), maximal
cliques in Miclet (9), tree search in Vausselman (10) or
relaxation techniques in Hummel and Zucker (11).
The main problem is the large variation of dimensions
and patterns of patients' brains and sulci. Classical
features (length, orientation...) cannot be directly used to
identify sulci and are very difficult to be determined.
In this paper, we deal with representation and
identification of sulci. A first step is to choose and to
automatically extract anatomical knowledge from a
database, in order to adapt it to any image where the

recognition has to be performed. Then, we introduce a
stochastic method using these features to recognise
human cerebral sulci.

DATA AND FEATURE EXTRACTION

In a previous work, Desvignes et al (12) have
established a heuristic search based on spatial location
and relations among neighbouring sulci. Localisation,
global and local orientations, local depth (depth of
sulcus from cortical surface) and continuity are the main
features of one sulcus. Connections with other sulci are
also necessary relations for sulci identification.
Data are issued from 3D MRI images (120x256x256
voxels, SPGR sequence, Signa 1.5T General Electrics
Medical Systems unit). Brain is extracted and
segmented into Cerebro Spinal Fluid (CSF), White
Matter and Grey Matter as shown in Allain et al (13).
Sulci are cerebral structures filled with CSF. 3D
skeletonization and 3D curve thinning are applied to
CSF. Sulci are then described by 3D digital curves on
the cortical surface (Figure 1).
Six sulci have been identified on a training set of nine
brains. For each sulci, principal axis, centre of gravity,
middle point, continuity (number and position of parts),
localisation and connections with others sulci are
computed. For each point, depth of the sulci is
computed using a tangent vector method. Localisation,
orientation and pattern are described by a search
window. All the sulci of the training set are
superimposed to obtain a cloud of points. 3D
morphological operators are used to obtain a compact
zone (dilation, hole filling) and to smooth its edge
(conditional dilation). A 3D conditional thinning
algorithm transforms this search window into a graph of
segments, which is a close approximation of the iconic
drawing used in medical atlases (Figure 2).

Figure 1: Lateral projection of a MRI image (left),
polygonal description of sulci (right)



Not all of these features are used during the matching
process. At this stage, we introduce depths of sulci and
search windows.

METHODS: RELAXATION PROCESS AND
OPTIMISATION

Continuous relaxation (11) is an iterative algorithm
which correspond to a probabilistic approach of graph
matching. We applied this process to match a graph of
segments coming from a brain image, with another
examination where sulci have already been identified.
Each assignment i→  I between elements i and I from

two sets is referred to a real coefficient p
i

t
(I ) , that

depends on all the coefficients p
j

t−1
(J )  computed at

the preceding step.
This process is based on the propagation, along the
graphs, of constraints Rijk...(I,J,K...) that quantify the
similarity between two structures of nodes (i,j,k...) and
(I,J,K...).
Li (14) explains that this technique offers the advantage
of a global combinatorial solution, achieved through
local propagation, which does not require any threshold
to judge acceptance of individual matches .
Let n  and N  be the numbers of nodes from the two
graphs to be matched, and r the number of nodes (i,j,k..)
and (I,J,K..) considered in the constraints. The main
characteristic of the relaxation process is its complexity
in O(n

r
.N

r
 ). Hence, the polygonal description into

segments allows the use of binary constraints Rij(I,J)
(equation IV), leading to a reduced CPU time.
Unfortunately, continuous relaxation describes a
homomorphism from one set onto the other, that suffers
from the ambiguous matching and 'Nil class' problems:
if each segment from the set of objects has only one
assignment in the set of labels, one label can be assigned
to several objects or can remain unassigned.
During a relaxation process, a consistent labelling     p    ,

defined in Rosenfeld et al (15), is computed at each step
t by maximising an average local consistency G

t
(    p    ),

called the gain of relaxation (equation I).

    G
t
(p) = Rij (IJ ).pi

t
(I ).p j

t
(J )

J =1

N

∑
j=1

n

∑
I =1

N

∑
i=1

n

∑  (I)

This maximum gain is obtained by updating the
assignments p

i

t
(I )  according to a gradient ascent

method, where each p
i

t
(I )  is moved towards the

direction of this gradient (equations II and III).
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i

t+1
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p
i

t
(I ) 1+ q

i

t
(I )⎡⎣ ⎤⎦

p
i

t
(I ) 1+ q

i

t
(I )⎡⎣ ⎤⎦( )

I

∑
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q
i

t
(I ) =

J =1

N

∑
j=1

n

∑ R
ij
(I , J ).p

j

t
(J ) (III)

( denominator of equation II insures that p
i

t

I =1

N

∑ (I )=1 )

Update leads, in the ideal case, to an individual labelling

assignment (p i(I)=1 and p i(J)=0 ∀ I###J),

corresponding to a constant gain G
t
.

We now present a bi-relaxation method, which ensures a
unique labelling, and is based on a relaxation algorithm
where CPU time is reduced.

Optimisation

An experimental study (Figure 3) emphasises common
properties from variations of the gain and variations of

p
i

t
(I ) . We can notice that from the time where ΔG

t
/G

t

(=1-G
t-1

/G
t
) comes up to a maximum value, each

Δ p
i

t
(I ) / p

i

t
(I )  reaches a limit with always the same

sign. Starting from any value, since our objective is to
determine every individual assignment, it thus becomes

useless to expect a constant gain. Decreasing p
i

t
(I )  are

deleted, while increasing ones are kept for the same

Figure 3: Relative variations of the gain G and of the
probabilities pi  versus number of iterations
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lateral sulcus point cloud



process, starting again with a reduced number of
segments. Individual labelling assignment is inevitably
reached, through only a few iterations. Reduced CPU
time then allows shape matching between sets of larger
sizes in less time.

Bi-relaxation

Previous problems of ambiguous matching and 'Nil
class' have been solved as in Legoupil et al (16). Two
relaxation processes are applied, one from one set onto
the other and conversely. The isomorphism defined
allows assignments from each node of both two sets
with at most one label, that is to say only one or none.
The main principle of bi-relaxation is to apply a
symmetrical processing of the two graphs, and to delete
all the elements that do not respect the constraints.
However, deletions require to achieve another bi-
relaxation, in order to make sure that assignments are
exactly the same as those obtained between the two
initial sets (Figure 4). In the opposite case, the operation
is iterated until no more suppressions are needed.

APPLICATION

3D MRI images of the head stem from clinical exams of
sane patients. Each brain hemisphere is described by a
graph where nodes are segments, and arcs are 3D
geometrical relations between segments.
To apply relaxation process to sulci matching, we first
have to define similarity functions, that map geometrical
difference between two pairs of segments (i,j) and (I,J)
from two sulci. Then these functions have to be
weighted and combined in the constraint function
Rij(IJ), so as to define their relative influence. Finally,
since the process is iterative, suitable initial values must
be set for  pi(I) and pI(i).

Similarity functions

Similarity functions required by the graph labelling
process represent the main properties of sulci which are
continuity and relative orientation of their segments. We
selected the minimum distance between two segments,
and a function representative of both the absolute angle
defined by two segments i and j and the difference
between the angles of two couples of segment (i,j) and
(I,J).
Due to our two original sets defined in the same volume,
it must be noticed that one of our similarity functions
has to be dependant on scale changes.
Another imposed restriction is to detect rotations, in
order to respect orientations of sulci, and to get rid of
cross-assignments problems (Figure 5).
As each sulcus is characterised by its continuity along
segments, the first relation, which depends on scale
changes and takes this feature into account, lies on the
smallest distance between two segments. It is defined as
S1 = | dmin(i,j) - dmin(I,J) |.
This relation being invariant to rotation, a second
similarity is defined, based on the angles between
segments. Because the mere difference between angles
is not an invariant feature, two bisecting vectors are
computed as follows:

The four segments i,j,I,J are considered as four vectors

OA
→

i , OA
→

j , OA
→

I  and OA
→

J , normalised to K  and

placed at the origin. Bisecting vectors are given by

OM
→

1  = OA
→

i  + OA
→

j  ( F i g u r e  6 ) ,  a n d

OM

→

2  = OA

→

I  + OA

→

J .

S2 is defined through expression:

S2 = |M
1
M

2

⎯→⎯

| = (x
1
− x

2
)
2
+ (y

1
− y

2
)
2
+ (z

1
− z

2
)
2

Using the notations θ1 = _(θi+θj), θ2 = _(θI+θJ),   ϕ1

=  _(ϕi+ϕj), ϕ2 = _(ϕI+ϕJ), k1= 2K cos[_(θi+θj)] and

k2= 2K cos[_(θI+θJ)], S2 becomes:

S
2
= k

1

2
+ k

2

2 − 2k
1
k
2
sinθ

1
sinθ

2
1+ cos(ϕ

1
−ϕ

2
)( ) + cosθ1 cosθ2⎡⎣ ⎤⎦

This shows that S2 depends on the difference between
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absolute angles between (i,j) and (I,J), and is also a
factor of a difference between relative positions of the
two pairs. Nevertheless, two couples of segments can
have the same bisecting vector, provided that they are
located on the surface of the same cone (Figure 6). So a
null value of S2 simply means  that (i,j) and (I,J) define
two cones of same direction and same opening angle.
The next step is to combine S1 and S2 functions in order
to control the relative influence of S1  and S2.

Constraints

The function R ij(IJ) denotes an estimation of the
constraints that assignments p j(J)  perform on an
assignment pi(I) (equation III). To express it, we
introduce a function ρij(I,J) ∈ [  0,+∞ [ that measures the
difference between the pairs (i,j) and (I,J). The function
R(ρ) has to satisfy:

    lim
ρ  →  ∞

R(ρ) = 0 and  lim
ρ  →  0

R(ρ) = 1  

      R(ρ) monotonically decreases in the range [0,1].

A typical choice for R(ρ) is e
−ρ

, which presents the
maximal decrease and so allows the best discrimination
of ρ ij(I,J) values ( similar values of ρij(I,J) yield
different values of R(ρ) ). However, for a simple
computation time problem, we prefer the following
function:

    Rij(IJ) = [ 1 + ρij(IJ) +[ρij(IJ)]
2
  ]

-1
           (IV)

The easiest way to express ρ as a function of S1  and S2
is to use the linear combination: ρ = α S1 + β S2, as in
our previous work in 2D (16), where a set of tests were
performed, and a standard set of parameters (α ,β)
calculated. Further matching always used these standard
parameters. Here we propose a more flexible approach,
by automatically pre-computing parameters as functions
of the two sets to match.
First of all, ρ should have a mean value around 1, which
is the sharpest zone of R(ρ) function.

Furthermore, S1 and S 2 should have the same
distribution in ρ expression. An example for gaussian
variations would give:

    ρ =
1

2
e

−
(S1 −S1 )

2

2σS1

2

+
1

2
e

−
(S2 −S2 )

2

2σS2

2

Unfortunately, experimental studies did not allow to
attribute any analytical expression to the behaviour of
these variables. So the best thing we can do is set that
their average variations must be the same, by using the
function:

    ρ =
S
1

2S1

+
S
2

2S2

Initialisation

We have used two methods to initialise the bi-relaxation
process:
The first one consists in assigning an equal probability
of assignment to every segments:

###  i,I, p
i

0
(I ) = N

−1
 and p

I

0
(i) = n

−1
.

In the second one, we use prior knowledge from the
database, such as mean depth and search window. The
search window allows to diminish the number of
segments involved in the process. Depth is used the
following way:

###  i , I ,

pi
0
(I ) =

depth(I )

depth(I )
I

∑
 and  pI

0
(i) =

depth(i)

depth(i)
i

∑
.

RESULTS AND PROSPECTS

The eighteen hemispheres of our training set came from
3D MRI examinations of sane patients, without any
distinction of sex or age. Each sulcus is isolated from
the hemisphere using an appropriate cloud of points.
Atlas is simulated with 3D MRI images where six main
sulci are already identified (lateral, central, postcentral,
precentral, superior frontal, superior temporal).
Tests have been performed on two kinds of sets. The
first one was composed of isolated sulci, including 10 to
50 segments, matched with their corresponding sulci of
the atlas. The second one was composed of whole
hemispheres, including  200 to 500 segment, where one
hemisphere is matched with another whole hemisphere.
We have found experimentally that using prior
knowledge during the initialisation step was minimising
probability variations, but also that gains were
converging on their limits quite slowly. Therefore we
choose to assign an equal probability of assignment toFigure 6: Construction of the bisecting vector
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every segments, which seems to lead faster to the same
result.
Results are estimated through attributing a mark from 0
to 4 to each matching. It takes into account the relative
position of segments as well as their orientation,
compared to a hand-made matching with the reference.
The 216 matchings lead to a global mark of 83.3/100.
Bad results are essentially due to a connectivity
problem, inherent to the deletions done during the bi-
relaxation process.
Statistics on CPU time summarised in table 1 were
performed on a Sun Sparc 10 workstation. Optimisation
of the relaxation reduced CPU time up to a factor 20.
The main interest of this method is its numeric and
systematic representation of spatial relations among
sulci, which is a solution to the large inter-individual
variabilities of brain sulci.
Our first objective is now to use more of this extracted
knowledge, for a global validation of the relaxation
process. It can be the perfect complement to our
previous works (12, 17), sometimes insufficient to
differentiate neighbouring sulci such as central, pre-
central and post-central.
Another improvement is also planned in the building of
a real atlas.

TABLE 1 - Typical CPU times.   

Number of segments Calculation time

24x12 88''

44x12 240''

38x16 221''

415x277 19 420''
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