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CHAPTER 1.               

Project Background and State of the Art 





Résumé en français du chapitre 1  

Contexte du projet et état de l’art 

 
Les travaux menés au cours de cette thèse trouvent leur fil conducteur dans le développement 

et l’exploration des applications d’une langue électronique innovante et performante. Il est donc 

pertinent de commencer par introduire les concepts de base liés à ce type de système d’analyse, 

ainsi que l’état de l’art actuel du domaine. 

Basés sur le puissant système olfactif des vertébrés, les langues et nez électroniques sont des 

capteurs chimiques qui ne reposent pas sur le principe classique de reconnaissance spécifique 

sonde-cible, mais sur le concept d’utilisation des capteurs à réactivité croisée. Dans cette 

approche, la réponse individuelle de chaque récepteur n’est pas suffisante pour la reconnaissance 

d’un analyte, et c’est la réponse globale d’une collection de récepteurs proprement traitée qui 

permet d’identifier le, ou les, échantillons.  

Avec cette approche, les propriétés de base que doivent respecter les récepteurs se simplifient 

énormément par rapport aux capteurs spécifiques, qui ont besoin d’être spécifiques et sélectifs de 

façon individuelle. En effet, les trois caractéristiques principales des récepteurs à réactivité croisée 

sont : 

1- Chaque récepteur peut reconnaitre plusieurs analytes 

2- Chaque analyte peut être détecté par plusieurs récepteurs 

3- Différents analytes sont reconnus par différentes combinaisons de récepteurs 

Ce design permet d’obtenir des motifs de reconnaissance  pour des analytes contenant un ou 

plusieurs composants, y compris pour des analytes pour lesquels le système n’a pas été conçu 

initialement. Les échantillons peuvent être en phase gazeuse ou en phase liquide, ce qui fait la 

différence entre les nez électroniques et les langues électroniques.  

 Une infinité d’applications peuvent être trouvées pour ce type de système notamment dans les 

milieux où l’analyse en routine d’échantillons est nécessaire. Cela a suscité un intérêt croissant 

envers les langues et nez électroniques, de la part des chercheurs et des industries, durant les 20 

dernières années. Cet intérêt a permis de faire progresser rapidement le développement de ces 

systèmes, auparavant mis de coté par rapport aux systèmes mimétiques d’autres sens comme la 

vision, l’audition ou le toucher. 
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Les différentes approches de fabrication de ce type de système sont détaillées dans la section 

1.3 de ce chapitre. Elles varient principalement selon le système de transduction employé, ainsi 

que selon les matériaux sensibles utilisés pour l’obtention des récepteurs à réactivité croisée.  

On prêtera un intérêt particulier aux langues et nez électroniques dédiés à la détection de 

protéines. Ces systèmes sont souvent limités par l’irréversibilité des réponses, les longs temps de 

récupération du système, dus à des interactions trop fortes entre analyte et récepteur, et la courte 

durée de vie de certaines puces, causée par le photoblanchiment des fluorophores employés.  

Dans ce contexte, l’objectif de cette thèse est ainsi le développement et l’exploration des 

applications d’une langue électronique qui comporte des améliorations par rapport aux systèmes 

existants, et notamment, qui simplifie la création et l’obtention des récepteurs à réactivité croisée. 

Il est en effet possible de réduire les efforts dédiés à la création d’une librairie de matériaux 

sensibles en mélangeant un nombre restreint de briques de base (BBs). Les briques de base sont 

définies comme des petites molécules, faciles à obtenir, ayant différentes propriétés 

physicochimiques. En mélangeant ces briques de base selon différents ratios et en les laissant 

s’auto-assembler, il est possible d’obtenir une collection de surfaces combinatoires appelées 

récepteurs combinatoires à réactivité croisée (CoCRRs). Les propriétés physicochimiques de ces 

récepteurs combinatoires dépendent bien sûr des propriétés physicochimiques des briques de 

base, ainsi que du ratio des mélanges à partir desquels ils sont réalisés. Cette approche permet 

l’obtention facile et rapide d’un grand nombre de CoCRRs, en ajoutant par exemple de nouvelles 

briques de base, ou en augmentant le nombre de ratios de mélange effectués. De plus, même si 

les CoCRRs ont des compositions variables, la différence entre deux CoCRRs successifs peut être 

très faible, aboutissant à une représentation continue des données obtenues sur chaque CoCRR, 

ce qui permet l’identification rapide des artefacts et données incohérentes. Cette dernière 

caractéristique établit une différence avantageuse par rapport aux langues électroniques actuelles, 

qui présentent leurs résultats de façon discrète et non corrélée. 

La langue électronique « modèle » fabriquée était initialement conçue pour la différentiation de 

protéines interagissant avec les héparanes sulfates. Néanmoins, au cours de ces travaux, sa 

capacité de discrimination a été évaluée non seulement pour l’analyse de protéines pures ou des 

mélanges de protéines, mais également pour l’analyse de mélanges complexes. La langue 

électronique développée offre également d’autres fonctionnalités. D’un coté, elle peut mimer les 

capacités de reconnaissance des l’héparanes sulfates. Ceci peut être utile pour une meilleure 

compréhension de la nature des interactions héparane sulfate-protéine. D’un autre coté, elle peut 

être utilisée en tant qu’outil de criblage de surfaces combinatoires possédant des propriétés 

bioactives, utiles à la fabrication de nanovecteurs biomimétiques qui ciblent de manière spécifique 

des protéines d’intérêt thérapeutique.  
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Sensory systems of living organisms are responsible for generating an internal representation of 

the outside world. They are capable of perceiving and analyzing stimuli, and hence, they can 

induce consequent reactions towards them. Taste and smell, the two chemical senses of the 

human being, enable people to interact with the chemistry around and contribute critically to their 

experience of the environment, from the pleasure of eating food to the formation of childhood 

memories. Despite this, research into chemical sensing historically took a back seat to vision, 

audition and touch, challenged by the complexities of indefinable stimuli that are often not even 

consciously processed, and by difficulties in understanding even basic mechanisms of transduction 

and representation. It was not before 1991, when Buck and Axel [1] identified the genes of odorant 

receptors (ORs), throwing some light on the issue and launching chemical sensing research to the 

forefront.  

Nature has always been the principal source of inspiration for human technological research 

and development. Therefore, intelligent sensing machines acquire and process signals in a very 

similar way as living organisms (Figure 1.1). For this reason, understanding the mechanisms 

through which humans and other animals interact with the chemistry of the environment is highly 

interesting for the development of new generations of chemical sensors.  
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Figure 1.1. Similarities between signal processing in living organisms and intelligent machines. 

 

Human taste is made up just of a handful type of sensations that researchers have agreed on at 

least five: sweet, umami, bitter, salt and sour tastes [2]. Although this repertoire may seem modest, 

it has satisfactorily covered the evolutionary need for an effective and reliable platform to help 

recognize and distinguish key dietary components [3].  
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In the case of smell, odors are made up of mixtures of baic odorants. However, the olfactory 

system shows a much more impressive discrimination power than the gustatory. It is not only able 

to detect thousands of different odorants, but also participates in a large part of what we call flavour 

[4]. The sense of taste detects if the eaten substance is sweet, sour, bitter, umami or salty, but it is 

thanks to the complexity of the sense of smell that we are able to identify the combination of 

sensations that leads to flavour.  

This introduction will reveal the way the sense of smell works in humans and what are the 

important features that have inspired the development of alternatives to classical sensing 

approaches. Afterwards, the work will be focused on smell sense-based sensors applied to liquid 

and gaseous sample analysis, making a special focus on their application to the analysis of 

proteins. 

1.1. Human sense of smell: a source of inspiration 

The sense of smell is mediated by the olfactory system, a system that is characterized by 

exquisite sensitivity and discriminatory power. It is estimated that the humans can sense as many 

as 10.000 to 100.000 chemicals as having distinct odors. All of these odorants are small, volatile 

molecules. However, they have diverse structures and somehow those different structures are 

perceived as having different odors. 

Odorants are initially detected by olfactory sensory neurons, which are located in the olfactory 

epithelium lining the nasal cavity (Figure 1.2). These neurons transmit signals to the olfactory bulb 

of the brain, which then relays those signals to the olfactory cortex. From there, olfactory 

information is sent to a number of other brain areas [5]. These include higher cortical areas, 

thought to be involved in odor discrimination, as well as deep limbic areas of the brain which are 

thought to mediate emotional and physiological effects of odors.  
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Figure 1.2. Vertebrate olfactory system. Odorants reach the olfactory epithelium in the nasal cavity and 
interact with odorant receptors (ORs) in the fine cilia of olfactory sensory neurons. The axons of the olfactory 

sensory neurons project to the olfactory bulb, where they synapse with the dendrites of the second-order 
neurons, which in turn project to the olfactory cortex. A schematic representation of 3 populations of olfactory 

sensory neurons, each expressing 1 different type of OR, is shown in different colors. The axons in the 
olfactory sensory neurons expressing the same type of OR converge to the same glomerulus in the olfactory 

bulb [6]. 

1.1.1. Odorant Receptors 

In 2004, the Nobel Prize in Physiology or Medicine was awarded jointly to Richard Axel and 

Linda B. Buck (Figure 1.3) "for their discoveries of odorant receptors and the organization of the 

olfactory system". An overview of their work is reported in Linda Buck’s Nobel Lecture [5] whose 

reading I highly recommend. The objective of the present work not being to enter into details of 

history and chronology of the discoveries made in this field, I will just take advantage of the efforts 

to unravel the sense of smell made by these two, as well as many other scientists, to make a small 

recapitulation of the present knowledge in the field. Understanding the key features of olfaction 

mechanisms is essential for understanding the principle of bioinspired sensors developed in the 

last few decades. 

 
Figure 1.3. The Nobel Prize laureates in Physiology or Medicine 2004: Richard Axel and Linda B. Buck for 

their discoveries on ORs and the organization of the olfactory system. 
 

ORs are located at the membrane of cilia of olfactory sensory neurons. They belong to the 

superfamily of G protein-coupled receptors and have the same general structure with seven 

hydrophobic membrane-spanning regions. They differ in their amino acid sequence, especially in 

the third, fourth and fifth transmembrane regions, which may form the ligand-binding pocket of 

odorant molecules (Figure 1.4) [7, 8]. Studies indicate that humans have about 350 different ORs 

and mice have about 1000 [5]. 

 
Figure 1.4. General structure corresponding to the superfamily of G protein-coupled receptors. [6] 
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The binding of odorants to ORs in the cilia causes, via G protein activation of adenyl cyclase, 

the production of a cyclic nucleotide, cAMP, which directly opens ionic channels in the plasma 

membrane (Figure 1.5) [6].  An inward transduction current is carried by Na+ and Ca2+ ions. 

Olfactory sensory neurons maintain an unusually high intracellular concentration of Cl- ions, and 

the increase in the internal concentration of Ca2+ causes the opening of Ca2+-activated Cl- channels 

that produce an efflux of Cl- from the cilia, contributing to the olfactory neuron depolarization. The 

depolarization spreads passively to the dendrite and soma of the olfactory neuron, triggering action 

potentials that propagate along the axon to the olfactory bulb [9]. 

 
Figure 1.5. Olfactory transduction takes place in the cilia of the olfactory sensory neurons. Odorant 

molecules bind to ORs and trigger the transduction of the signal. [6] 
 

The discovery of ORs not only explains how the olfactory system detects a vast array of 

chemicals in the external world, but also provides a set of molecular tools to explore how the 

nervous system translates chemical structures into odor perception. The first thing studied was how 

information from different ORs is organized in the olfactory epithelium. The studies provided two 

important findings:  

- First, input from one type of OR is highly distributed in the epithelium. Therefore, neurons with 

receptors for one odorant are interspersed with neurons that have receptors for another odorant. 

- Second, each neuron expresses only one OR gene, thus, the information that each neuron 

transmits to the brain is derived from a single receptor type.  

1.1.2. Combinatorial Receptor Codes for Odors 

Later studies were devoted to understanding how the OR family encodes the identities of 

different odorants [10]. This was made by exposing mouse olfactory neurons to four different 

classes of linear aliphatic odorants (19 in total) with different functional groups and carbon chains 

ranging in length from four to nine carbon atoms. Each neuron was imaged as it was exposed 

sequentially to different odorants. In response to odorants; olfactory neurons exhibited transient 

increase in intracellular calcium that could be detected by calcium imaging. If a response was seen, 

the neuron was retested with a lower concentration of the same odorant. Figure 1.6 shows the 
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response profiles of 14 neurons, and therefore the recognition properties of the ORs expressed in 

those neurons.  

 
Figure 1.6. ORs were used combinatorially to detect odorants and encode their identities. The recognition 

profiles of individual ORs to a series of odorants were determined by calcium imaging and single-cell RT-PCR. 
The size of the circles reflects response intensity [5]. 

 
Based on the obtained data, three key conclusions were made: 

1- Each OR can recognize multiple odorants. 

2- Each odorant can be detected by multiple different ORs. 

3- Different odorants are recognized by different combinations of ORs. 

 

ORs are thus used combinatorially to encode odor identities. Different odors are detected and 

thereby encoded by different combinations of ORs, as illustrated in Figure 1.7. Given the number of 

combinations of 1000 different ORs, this combinatorial coding scheme should allow the 

discrimination of an almost unlimited number of odorants. Studies also showed that a change in the 

concentration of an odorant can also change its receptor code. This may explain why changing the 

concentration of an odorant can alter its perceived odor. 
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Figure 1.7. Combinatorial receptor codes for odorants. In this model proposed by Linda Buck [10], the 

receptors shown in color are those that recognize the odorant on the left. The identities of different odorants 
are encoded by different combinations of receptors. However, each receptor can serve as one component of 

the combinatorial receptor code for many odorants. 
 

1.2. Bioinspired arrays of sensors  

1.2.1. Electronic noses and electronic tongues 

The superb performance of biological olfactory systems in odor detection, identification, 

tracking, and location tasks has inspired an alternative to traditional selective chemosensing 

techniques: the use of cross-reactive or differential sensor arrays. Named after their source of 

inspiration, these alternative systems are commonly designated as artificial or electronic noses (e-

noses) and tongues (e-tongues), but can also be found under the appellation mechanical noses, 

odor sensors, cross-reactive sensor arrays, differential sensor arrays or pattern-based sensors.  

In this alternative sensor architecture, the strict “lock-and-key” design criterion of traditional 

sensing devices is abandoned. Instead, an array of differential receptors is used. In an analogue 

way to the previously described ORs (the source of inspiration of this approach) cross reactive 

sensors possess three key features: 

1- Each receptor can recognize multiple analytes. 

2- Each analyte can be detected by multiple different receptors. 

3- Different analytes are recognized by different combinations of receptors. 

 

 As the elements of such an array do not need to be individually specific and highly selective 

toward any given analyte, sensor design becomes an easier task. Instead, sensors for e-

noses/tongues should possess stable analytical behavior, the collection of sensors should contain 

as much chemical diversity as possible in order to target the largest possible cross-section of 

analytes, and sensors should have high cross-reactivity, which is considered as the reactivity 

towards several components of the solution analyzed at the time. There are many terms describing 
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the very same effect as cross-reactivity that are used as synonyms, like unselectivity, cross-

sensitivity, low selectivity, partial specificity and even global selectivity. [11].  

In this design, as it happens for the olfactory system, identification of an analyte cannot be 

accomplished from the response of a single sensor element. Instead, the distinct pattern of 

responses produced over the collection of cross-reactive receptors (also called differential 

receptors) in the array allows classification and identification of the analyte, which is called pattern 

recognition. This can be applied both when the sample contains a single analyte and when it 

contains multiple analytes, see Figure 1.8. One of the main advantages of this approach is that it 

can yield responses to a variety of different analytes, including those for which the array was not 

necessarily originally designed to detect [12, 13]. 

a)

c)

b)

a)

c)

b)

 
Figure 1.8. Schematic representation of host-guest interactions.  a) A specific binding event (lock-to-key 

paradigm) which exhibits a large degree of complementarity between the host and the guest.  b) An array of 
cross-reactive/differential receptors interacting with one analyte. The identification results from the pattern of 

responses obtained from the entire array. c)   An array of cross-reactive/differential receptors interacting with a 
complex sample. The identification results from the pattern of responses obtained from the entire array [13]. 

 

The difference between electronic noses and electronic tongues 

Although mainly inspired by the sense of smell, this approach can be applied both to the 

analysis of gaseous samples and liquid samples, differentiated by the terms “electronic nose” in the 

case of gaseous media analysis and “electronic tongue” in the case of liquid media analysis.  

The e-tongue system can thus, be defined as an analytical device comprising an array/set of 

chemical sensors with not very high selectivities, exhibiting reactivity towards several components 
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of the analyzed solution simultaneously (cross-reactivity), in which the appropriate multivariate 

methods are used for processing of the data [14].  

The e-nose, similarly, is defined as an instrument which comprises an array of chemical sensors 

with partial specificity and an appropriate pattern recognition system for processing the data [15]. 

Such systems, often associated with an adequate calibration/learning method are suitable for 

recognition (identification, classification) of various liquid and gaseous media and multicomponent 

quantitative analysis of organic and inorganic compounds.  

The difference between electronic tongues and taste sensors 

Sometimes in the literature the reader can find ambiguities with respect to the differences 

between an e-tongue and a taste sensor. The origin of this ambiguity is the existence of devices 

which are not clearly classified in one or the other class and the similarity of the samples studied 

with both devices. However, the fundamental concepts of the taste sensor and the e-tongue are 

different.  

The taste sensor, also called taste system or taste chip, is designed in such a way that it 

responds to taste chemical substances and can be used to quantify the taste of foods on the basis 

of the five basic tastes of the tongue (see Figure 1.9). Toko’s group, for instance, works on the 

development of lipid/polymer membranes that respond specifically to sodium chloride (salty), 

hydrochloric acid (sour), monosodium glutamate (umami), and quinine hydrochloride (bitter) 

molecules to assess the taste of analyzed substances [16]. Taste sensors find, thus, applications in 

the cosmetic, perfume, pharmaceutical and food industries for instance, to quantify bitterness of 

drinks or dissolved compounds, or to quantify taste masking efficiency of formulations in the 

pharmacological domain. 

  
Figure 1.9. Results issue of a taste sensor. The shape of the displayed data gives the user an idea of the 

taste of beer (in green) and soy sauce (in red). From reference [17] 
 

On the other hand, e-tongues aim to discriminate and analyze samples using sensor arrays with 

different specificity properties coupled to a statistical analysis. The application domains of e-

tongues are much broader than taste quantification based on the five basic tastes. They can be 

used for analysis of some other quality property of the sample, not necessarily applicable to the 

taste sensation of humans [18]. 
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1.2.2. Potential applications of electronic noses and  tongues 

E-noses and e-tongues find potential applications in all the areas where routine analysis are 

needed and, thus, they attract the interest of experts in many fields; from biomedical and 

pharmaceutical industries, environment monitoring, food industry, and energy engineering, to 

artificial intelligence.  

Monitoring industrial processes, for instance, controlling the quality of industrial waste water is 

one of the applications found for these devices. Gutes et al. employed a voltammetric e-tongue to 

the characterization of wastewater coming from the paper mill industry [19]. Kranz-Ruckler et al. 

were able to monitor the process of a drinking water production plant, see Figure 1.10 [20]. 

Concretely, they were able to differentiate the water at the different stages of the cleaning process.  

 

 

 
Figure 1.10. Schematic of a drinking water production plant (arrows indicate sampling points) and principal 

component analysis showing different clusters for samples taken at different stages of the cleaning process. 
The raw, untreated water was cleaned and transported to a filter where all the firm particles were removed. 

After, there was a slow filter, where the water was cleaned biologically from germs and flavors. Finally, 
chloride and sodium hydroxide were added to the water to kill germs and to adjust the pH value. The cleaned 
water was stored in a reservoir before transported out to the distribution net for fresh water. From reference 

[20]. 
 

Along the same lines, several applications of e-noses and tongues are related to environmental 

protection, concretely to toxic and pollutant monitoring and air quality control [21].  Some 

companies propose commercial devices for air quality and odor control. Odowatch for instance, is a 

patented e-nose from Odotech, an American environmental company specialized in the 

measurement and monitoring of odors at waste water treatment plants, composting sites, landfills, 

rendering plants and industrial odor producing plants. The Odowatch devices are positioned near 

the odor sources on a site and they communicate with each other over a wireless network. The 

analysis of the obtained data and other parameters generates a map of the real-time odor plume, 

overlaid on a map of the site and the surrounding area (see Figure 1.11). 
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Figure 1.11. Odor map generated by the Odowatch device. 

 
Due to their capacity to monitor air contaminants and control air quality, e-noses are also 

currently studied by the NASA as a way to ensure the health and safety of the astronauts, as well 

as equipment integrity inside the International Space Station (see Figure 1.12) [22, 23]. 

 
Figure 1.12. Illustration of the electronic nose (e-nose) device that was integrated in the International 

Space Station. 
 

The use of e-nose/tongue devices for the systematic quality control of liquids could serve as a 

way to check batch to batch consistency, to detect contamination, spoilage or adulteration of 

products and to monitor storage conditions. This is interesting for biomedical applications such as 

haemodialysis control [24], and also for an enormous variety of applications in food processing and 

quality control. These include process monitoring (fermentation monitoring [25]), authenticity 

assessment, foodstuff recognition, quantitative analysis, or freshness evaluation and shelf-life 

investigation. [26-28]. For illustration, El Babri et al. employed a portable e-nose system to classify 

the states of freshness of Moroccan sardine samples stored at 4 °C, as it can be seen in the PCA 

score plot in Figure 1.13[29] . 
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Figure 1.13. Sardines from Morocco and PCA score plot on sardine data using a 6-element gas sensor 

array. 
 

The ability of the e-noses to detect not only odors but also odorless chemicals makes them 

ideal for use for crime prevention and security purposes, such as drug odor detection despite of the 

presence of other masking odors capable of confusing police dogs. It may also be used as a bomb 

detection method in airports. Through careful placement of several e-noses and effective computer 

systems, it is expected to locate bombs within a few meters of their position in less than a few 

seconds. Woodka et al. developed an e-tongue system consisting on a fluorescent polymer sensor 

array which showed an excellent ability to discriminate between explosives and explosive related 

compounds in aqueous solution with a low false alarm rate [30]. 

 More recently, it has been demonstrated that the e-noses/tongues can be applied for medical 

diagnosis [31, 32]. Human exhaled breath consists of numerous volatile compounds, which can 

provide information on a patient’s physical condition, such as infections, intoxications, or metabolic 

diseases and can be used as biomarkers. Professor Haick has developed an e-nose by analyzing 

exhaled air of patients, which has been successfully used to diagnose different cancers including 

lung cancer at a very early stage with 95% reliability. In the future they expect to assess the exact 

stage of the disease during treatment and to adjust the treatment [33].  

1.2.3. Development perspectives for electronic noses  and 

tongues 

The outlook for the development of e-nose and tongue devices is highly positive and promising. 

Important research centers like IBM have expert scientists working in computer development who 

predict that in five years, computers and smart phones will integrate the senses of smell and taste 

[34].  This, together with the interest that e-noses and e-tongues present for other multiple 

applications, has made these devices a subject of increasing interest in the scientific community, 

as it is reflected by the increasing number of publications in this area over the past 20 years (see 

Figure 1.14 and Figure 1.15) as well as by  different important international conferences like ISOEN 
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(International Symposium on Olfaction and Electronic Nose) dedicated to the development of e-

nose and tongue systems and ISOT (The International Symposium on Olfaction and Taste). 

 
Figure 1.14. Publications found using the key word “electronic nose”. On the left, published items in each 

year since 1994 and on the right, citations in each year. Source: Web of Science ®, July 2013. 

 
Figure 1.15. Publications found using the key word “electronic tongue”. On the left, published items in each 

year since 1994 and on the right, citations in each year. Source: Web of Science ®, July 2013. 
 

1.3. State of the art on electronic noses and tongu es 

In general, biosensors and chemical sensors are composed of three parts: a sensing element 

that interacts with the analyte, a transducer that is able to convert the interaction into a measurable 

signal, and a signal processing system; see Figure 1.16. In a similar way, e-noses and e-tongues 

are also composed of these three parts.  

 
Figure 1.16. Main components of a biosensor and chemical sensor. 
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Herein we present a review of the literature on the principal research carried out in the domain 

of e-noses and e-tongues, classified by the transduction method employed. Some transduction 

methods have been mostly developed for e-nose applications while some others have been found 

more interesting for e-tongue applications.  

1.3.1. Electronic noses and tongues based on electro chemical 

transduction 

Electrochemical is definitely the most developed transduction system both for e-noses and 

tongues. Most examples of e-noses classified in this section are based on conducting polymers 

and metal oxide semiconductors (MOS), as well as the small MOSFET devices. E-tongues, on the 

other hand, have been classically based on potentiometric sensor electrodes and find their 

miniaturized version in ChemFET devices. 

 

a) Chemoresisitive/conductivity sensors 

Chemoresistive/conductivity sensor-based devices have been developed mainly in the frame of 

gaseous analysis. They work on the principle that a change in some property of the material 

resulting from interaction with a gas/odor leads to a change in resistance in the sensor. The 

mechanisms that lead to resistance changes are different for each material type; however, the 

structure and layout of conductivity sensors prepared using these materials are essentially the 

same. A scheme of a typical conductivity sensor design is shown in Figure 1.17. Two types of 

materials have been mainly developed for such devices: conducting polymers and metal oxide 

semiconductors. 

 
Figure 1.17. Typical structure of a chemoresistive/conductivity sensor. [35] 

 

Conducting polymers are widely used for odor sensing in the form of arrays. The interaction with 

volatile compounds affects several properties of conducting polymers such as conductivity, work 

function, optical absorption spectra and others. Among these, conductivity variations, which can be 

easily detected, are a linear function of the analyte concentration and are therefore often used as 

actual signals in conducting polymer-based e-noses. Since all these changes are largely reversible, 

interactions between the polymer and the volatile chemical are supposed to be weak [36]. Main 

drawbacks of these sensors are their sensitivity to temperature changes, that result in 

expansion/contraction and thus in resistance changes and their chemical instability face to strong 

oxidizers such as chlorine and ozone. 

Wilson et al. developed an e-nose which was able to characterize the aroma profiles of volatiles 

released from excised woody samples. The instrument measured electrical-resistance changes 
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generated by adsorption of volatiles to the surface of electroactive, polymer-coated sensors. 

Unique digital electronic fingerprints of wood aromas, derived from multisensor-responses to 

distinct mixtures of wood volatiles, were obtained from woods of individual tree species. A 

reference library containing aroma signature patterns for 23 tree species was constructed for 

identifications of unknown samples using pattern-recognition algorithms [37]. 

Another basic choice of sensors is metal-oxide semiconductor sensors (illustrated in Figure 

1.18), which are the most commercially extended ones. Certain metal-oxides behave as 

semiconductors at high temperatures. MOS sensors are designed as having a heater element and 

a sensor element (sintered metal-oxide with or without catalyst). Both elements are separated by a 

very thin isolating membrane. Redox-reactions occurring at the sensor surface result in changes in 

resistance which can be measured. These redox-reactions depend on the nature of the metal-

oxide/catalyst, the reacting gases, and the temperature.  

 
Figure 1.18. Illustration of a MOS sensor. 

 
The Odowatch commercial e-nose mentioned previously is based on the use of MOS. The gas 

sensors used in the gas detection chamber are differently doped SnO2-type sensors. Large number 

of sensors (15 for example) enable the device to sense given classes of odorant gases that are 

perceived by the human nose: alcohols, aldehydes and ketones (e.g. acetaldehyde), carboxylic 

acids and fatty acids (e.g. butyric acid), amines (including NH3, R•NH2, indole, methylamine, etc), 

sulfurous-compounds (including H2S, DMS, DMDS, Mercaptans, etc.), aromatics (BTEX, terpenes, 

etc.) [17].  

b) Potentiometric sensors 

 In 1985, the first system for liquid analysis based on a cross reactive receptor array, the first e-

tongue, was presented by Otto and Thomas [38] and it was based on potentiometric sensors. 

Potentiometric sensors, and especially ion-selective electrodes (ISEs), see Figure 1.19, are the 

most commonly employed sensors for the development of e-tongues. The principle of operation of 

ion-selective electrodes is based on the measurement of their potential changes against a 

reference electrode in zero-current conditions. The potential of the ISE is a function of the activity 

of the ionic species in a sample solution and is formed in the ion-sensitive membrane, where the 

selective complexation (ion recognition) of the analyte molecule occurs. ISEs are considered good 
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sensors for e-tongues since they can be considered broadly selective sensors; able to respond in 

varying degrees to other ions rather than specifically to a single ion. The main advantages of 

potentiometric sensors are a well-know working principle, the possibility of obtaining sensors 

selective to many various species, and the relative low cost. Nonetheless, they present some 

disadvantages like the temperature dependence and big size. 

Most research in the field is devoted to the development of suitable electrodes. Semi-permeable 

membranes of various types have demonstrated varying degrees of selectivity and specificity 

suitable to be combined with pattern recognition techniques and have found an infinity of 

applications particularly in food analysis [39-41]. Solid-state potentiometric sensors have been 

reported for heavy metal ions [42], while chalcogenide glass membranes have been reported for 

food and environmental analysis [21, 43-45].  

 
Figure 1.19. Photography of a potentiometric electronic tongue (e-tongue) composed of an array of ISEs. 

From reference [17]. 

c) Voltammetric Sensors  

In contrast with potentiometric methods, voltammetric measurements are performed when 

equilibrium is not reached, and the signal obtained is the measure of the current as the potential is 

varied. The simplest measurement set-up employs three electrodes: reference, working and 

auxiliary electrodes, see Figure 1.20. The potential of the reference electrode is assumed to be 

constant and between the working and auxiliary electrodes the current flows. However, although 

very robust, as it happens for potentiometric electrodes, electrodes must be calibrated and cleaned 

regularly. Since 1997 [46], voltammetric e-tongues have been developed for several applications in 

industrial applications and in the food industry [47].  
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Figure 1.20. Common configuration of a voltammetric e-tongue with four working electrodes. From 

reference [47]. 
 

d) Field-effect transistors (FET) 

Metal Oxide Semiconductor Field Effect Transistors (MOSFET) are also employed as sensors 

for e-noses. These transistors comprise three layers, a silicon semiconductor, a silicon oxide 

insulator and a catalytic metal (Pd, Pt, Ir, Rh) called the gate. This kind of transistors operates by 

means of three contacts, two of them allow the current in (source) and out (drain), and the third one 

acts as the gate and regulates the current through the transistor. The structure of a MOSFET 

sensor is given in Figure 1.21. Molecules interacting with the metal gate produce a change in the 

MOSFET signal that can then be interpreted by pattern recognition computer systems. Polymers 

have also been used as gate material for MOSFET devices, and are usually called PolFETs.  

 

 
Figure 1.21. Schematic illustration of a MOSFET transistor. 

 
The current leader in the area of MOSFET e-noses is the French company Alpha Mos, which 

develops e-noses like FOX or GEMINI, both based on MOSFET technology. They have also 

developed an e-tongue, called ASTREE. This e-tongue uses sensors based on the ChemFET 

(chemical field effect transistor) technology for liquid sample analysis; see Figure 1.22. ChemFET 

is a structural analogue of a MOSFET transistor, where the change on the gate electrode is 

produced by a chemical process. In this case, each sensor’s gate has a specific organic 
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membrane, which interacts with ionic and neutral chemical compounds present in the liquid sample 

in a specific manner. Any interaction at the membrane interface is detected by the sensor and 

converted into an electronic signal.  

 
Figure 1.22. The ASTREE e--tongue system fabricated by Alpha Mos and the ChemFET employed for the 

measurements. 
 

More recently, nanomaterials have been used in combination with FET to fabricate more 

sensitive e-nose devices. Goldsmith et al. immobilized mouse ORs on carbon nanotubes and 

succeeded in detecting a number of odorants based on FET, as shown in Figure 1.23 [48]. The 

idea of immobilizing ORs as sensing materials is not new and has already been widely studied by 

Pajot et al [49-52]. Park’s group has integrated conducting polymer nanotubes, on which ORs were 

immobilized, into a FET platform and the field induced sensitivity derived from odorant recognition 

was observed even at a 10 fM concentration. [53, 54]. 

 
Figure 1.23. Scheme of a carbon nanotubes transistor functionalized with mouse ORs. From reference 

[48]. 
 

1.3.2. Electronic noses and tongues based on gravime tric 

transduction 

In 1880, Jacques and Pierre Curie discovered that certain crystals generate an electrical 

potential proportional to an applied mechanical stress, termed the piezoelectric effect. Inversely, 

the converse piezoelectric effect, which is the basis of piezoelectric sensors, is a phenomenon in 

which when a voltage is applied across the piezoelectric quartz crystal the material oscillates at its 

resonance frequency [31]. There are two principal types of piezoelectric sensors: the surface 

acoustic wave (SAW) device and the quartz crystal microbalance (QCM). The main difference 

between them is that SAW device produces a surface wave that travels along the surface of the 

sensor, while the QCM produces a wave that travels through the bulk of the sensor. Both types of 
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devices work on the principle that a change in the mass of the piezoelectric sensor coating due to 

analyte absorption results in a change in the resonant frequency. 

a) Quartz Crystal Microbalance (QCM) Sensors 

In a QCM, an increase on the mass of the sensitive material deposited on the surface of the 

crystal alters the resonant frequency of the quartz crystal and, this change in the resonant 

frequency, is therefore used for the detection of the analyte. The sensitive materials or chemically 

active surfaces employed for e-nose applications are usually polymers or modified polymers, see 

Figure 1.24. Micromachining is used to fabricate the QCM devices, which makes the fabrication of 

small sensor structures possible. [35] Arrays of this type of sensors can be used for both e-noses 

and tongues [55]. 

 

 
Figure 1.24. QCM sensor is composed of a quartz disc coated with the absorbing polymer layer and a set 

of gold electrodes evaporated onto either side of the polymer/quartz structure.  
 

Di Natale et al. analyzed body odors by an e-nose composed of an array of seven quartz 

microbalance sensors, in which quartz was coated with different kinds of metalloporphyrins, used 

as sensing materials. To do that, they collected human body odors from a population of patients 

affected by different mental disorders and from a population of healthy people as reference 

controls. The response of the e-nose was detected in Hz when the surface of the sensor was 

exposed to body odors. The result of this experiment showed that body odor changes are so 

complex that none of the compounds could be regarded as a specific chemical marker of disease. 

Rather, a disease like schizophrenia could be diagnosed by analyzing their combination [56]. 

 

b) Surface Acoustic Wave Sensors 

A SAW sensor also works on the principle of frequency shifts. The SAW device is composed of 

a piezoelectric substrate with an input (transmitting) and an output (receiving) transducer deposited 

on top of a substrate. The sensitive membrane is placed between the transducers (see Figure 

1.25), and an electrical signal is applied across the input transducer creating an acoustic two-

dimensional wave that propagates along the surface of the crystal. SAW e-noses and tongues 

have been applied in fields like food industry [57] or household appliance industry [58], amongst 

others. 
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Figure 1.25. Structure of a SAW sensor [35]. 

 

c) Micromecanical Sensors  

Alternative devices proposed for e-nose/tongue applications are microelectromechanical 

systems (MEMS) and nanoelectromechanical systems (NEMS) which find their application mainly 

in e-nose applications [59-61] although some examples of e-tongue applications can be found [62]. 

The classical design for these applications is the use of an array of cantilever sensors [63], see 

Figure 1.26a [59]. The cantilevers are individually coated, and transform the physical and chemical 

reactions of the analyte with the sensor layers to a mechanical response. The cantilevers are 

optically read out by recording the position of an incident light spot reflected off the cantilever’s 

apex by using a position-sensitive detector, as shown in Figure 1.26b. 

a) b)a) b)

 
Figure 1.26. E-nose developed by Lang et al. a) The cantilever sensor array. b) Beam deflection technique 

to read out the cantilever bending using a position-sensitive detector. [59] 
 

Apix Technology, a start-up founded by Leti and Caltech in 2011, is developing multi-gas 

emissions analyzers based on combination of miniaturization of gas-phase chromatography and 

NEMS sensors. Targeted applications include gas analysis for industrial processing in the 

petrochemical and natural gas distribution industries, analysis of ambient air quality, as well as 

medical diagnosis through the analysis of biomarkers in a patient’s breath.  

1.3.3. Electronic “noses” and “tongues” based on opt ical 

transduction  

Despite optical transduction is not very extended in the case of gas sensing, some examples 

can be found, for instance, the use of optical fiber sensors [35]. In contrast, optical transduction for 

e-tongue-type applications is quite extended and diverse. Even if these type of systems, also 
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known as  cross-reactive sensor arrays, have not still been explored as much as electrochemical 

ones, they appear to be specially popular for biological sample analysis applications [64].  

The most popular optical detection method is the colorimetry/fluorimetry. Professor Eric V. 

Anslyn is a pioneer in the field of cross-reactive receptor array development for molecular 

recognition coupled with optical transduction systems. In 1998, his group developed an e-tongue 

taking advantage of the advances in micromachining techniques at the time and efficient charge-

coupled devices (CCDs) [65]. Poly-(ethylene glycol)-polystyrene resin beads derivatized with a 

variety of indicators were deposited in micromachined wells (see Figure 1.27) and the absorption 

property changes upon analyte exposure were measured with a CCD camera. A further 

improvement of this system was the addition of temporal dimension to the measurements to follow 

the kinetics of the binding [66].  They developed several resin-bound synthetic receptors with 

functionalities targeted toward certain analyte classes, leading to customizable differential sensor 

arrays. Studies made by this system include recognition and discrimination of nucleotide 

phosphates, tripeptides, tripeptide mixtures, proteins and glycoproteins. A variation of this system 

was the derivatization of the core of the beads with a colorimetric indicator and the periphery with 

metal ligands. This variation was used for making pattern responses of various metallic cations 

[67]. 

 
Figure 1.27. Multicomponent sensor array on a silicon chip used for e-tongue system by Anslyn’s group. 

[13] 
 

Also for metal ion determination, arrays of unselective indicators arranged in a micro titer plate 

[68], and fluorescent self-assembled monolayers [69] have been used. 

The response of a molecularly imprinted polymer (MIP) array can also be coupled to an optical, 

colorimetric response, using a dye displacement strategy. MIPs are highly crosslinked polymer 

matrices developed in the presence of a template analyte molecule. After templating, the analyte 

molecule is removed leaving a binding cavity functionally suitable to the target analyte [70, 71]. 

Moreover, porphyrins and metalloporphyrins can be used in both fluorescent and colorimetric 

signaling arrays by measuring fluorescence quenching of the receptors upon interaction with the 

analytes. Both are readily modifiable, stable and have large surface areas for binding. Kenneth S. 

Suslick has exploited these molecules, as well as other dyes, for making patterns of organic 

molecules in water, as well as common drinks [72-74]. In Figure 1.28, we show the results obtained 

by this group for beer discrimination. These sensing molecules were also employed by Hamilton et 

al. for the differentiation of proteins, as it will be described later [75, 76]. 
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Figure 1.28. Patterns of 18 commercial beers for their discrimination obtained with the system developed 

by Suslick. [74] 
 

Other tailored biomolecules that have also been used as cross-reactive receptors in 

colorimetric/fluorescence devices include three-way junctions [77], gold nanoparticle-fluorophore 

complexes [78], aptamers [79, 80], metal-dye complexes [81, 82] and fluorescent dyes embedded 

in a hydrogel matrix [83]. One example is given here. By using a hydrogel-based fluorescent micro 

array containing different combinations of eight dyes, researchers succeeded in the differentiation 

of common alcoholic beverages like white wine, German and Indian beer, dry wine or vodka. The 

remarkable advantage of this design is the use of combination of dyes for obtaining a wider 

diversity of cross-reactive receptors in an easy way (see Figure 1.29).  

a) b)a) b)
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Figure 1.29. a) Map of the 64 micro spots produced from eight different dyes, by binary combination. b) 
Array responses for some alcoholic beverages. Reference mage subtraction was used to visualize the spot 

pattern differences [83]. 
 

1.4. Electronic noses and tongues based on optical 

detection for protein recognition  

The identification of protein species and quantification of their concentrations are important 

processes and have many applications in proteomics, medical diagnosis and pathophysiological 

studies, including the detection of toxic pathogens. Traditional methods for the identification and 

quantification of proteins include generally protein separation in a first step and then identification 

and quantification, for example, using combination of electrophoresis/mass spectroscopy or liquid 

chromatography/mass spectroscopy. These procedures are often tedious and time-consuming. 

Besides, protein-detecting arrays remain under-developed due to the lack of highly selective and 

specific binding agents that interact with proteins through complementary interactions (aptamers, 

antibodies, mimetics...). Currently, antibodies are the most used type of such ligands, but their 

application is limited by difficult preparation procedures and by their instability.  

These are the reasons why enormous effort has been made in searching for alternative protein 

binders that, similar to antibodies, could recognize protein surfaces. In this context, about ten years 

ago the e-tongue approach revolutionized protein recognition methods. With the conviction that this 

alternative approach to antibody mimetics could circumvent difficulties associated with the design 

of potent and selective protein binders, many groups have developed methods for protein surface 

recognition that, when combined with pattern-based detection arrays, result in a novel class of 

diagnostic devices capable of high throughput protein identification and analysis. [84]. The most 

popular transduction method for this purpose is the optical one, permitting direct, simultaneous and 

real-time detection.  

In optical protein sensing arrays, non-specific interactions between the receptors and proteins 

induce a change in the intensity of the signal generated by the receptors, leading to a unique 

optical fingerprint for each protein. Although visualization of the results is sometimes sufficient for 

differentiating between the proteins, in the case of classification of all the samples with a large set 

of data, some mathematical methods are usually applied, such as principal component analysis 

(PCA), as illustrated in Figure 1.30.  
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Figure 1.30. Simplified scheme for a protein sensing array in which each of the proteins (1-3) is incubated 
with each of the receptors (a-d). Non-specific interactions between the receptors and proteins induce a 
change in the receptors’ signaling, resulting in unique optical fingerprints. PCA is used for classification 

purpose. [84] 
 

There is a variety of systems that have been developed in the past few years proposing 

different approaches to protein sensing by varying sensing materials and optical detection 

methods. Herein, we describe the most relevant ones. 

As mentioned in section 1.3.3., porphyrin and porphyrin derivatives are popular alternative to 

build differential receptors. Hamilton’s group [75, 76] modified porphyrins with amino acids. The 

hydrophobic core of the porphyrin primarily contributes to binding affinity, and the periphery can be 

modified with a mixture of hydrophobic and hydrophilic groups to enhance selectivity towards 

different proteins. Labeling of sample proteins was not required since the recognition patterns were 

made thanks to the changes in fluorescence of the porphyrin receptors (Figure 1.31). This system 

was able to discriminate up to 10 proteins. 

a) b)a) b)

 
Figure 1.31. a) Synthetic tetra-meso-carboxylphenylporphyrin conjugated with amino acids or amino acid 

derivatives. b) Fingerprints obtained for protein samples by an 8-porphyrin array. [75] 
 

Following with their previously mentioned work in e-tongues, Anslyn’s group designed and 

synthesized a library with 6859 unique members of receptors using combinatorial chemistry (Figure 

1.32). In this model, resin-bound peptide arms provided sites for molecular recognition of proteins 

by means of ion pairing, hydrogen bonding, and the hydrophobic effect. The patterns created by 

the array of receptors were obtained by measuring the intensity of transmitted red, blue and green 

light for each bead using a charge-coupled device attached to a customized reader. This system 

was conceived to be able to differentiate proteins from glycoproteins. [85, 86].  
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Figure 1.32. The structure of the resin-bound receptor collection synthesized by Anslyn’s group. [85] 

 
A great synthetic effort was also done by Thomas Kodadek’s group. [87] They constructed a 

Small Molecule Microarray (SMM) consisting on an array of 7680 peptoids that bind fluorescently 

labeled proteins. The results were displayed in form of fingerprints that permitted an easy 

identification of the proteins (Figure 1.33). 

 
Figure 1.33. Protein fingerprints generated with the system developed by Kodadek’s group. [87] 

 
These approaches described above are very promising, although limited by the relatively high 

analyte concentrations needed for efficient sensing (above ten µM).  

Thayumanavan et al. introduced a new method in which they played with the assembly and 

disassembly of supramolecular polymers (a complex between a polyelectrolyte and a surfactant) 

caused by the interaction with the protein analyte. The disassembly of the complex could be 

quantified for fluorescent reporting when a non-covalently sequestered fluorescent guest molecule 

was released. By varying the structure and charge of the surfactant and the polyelectrolyte 

structures they were able to generate analyte-specific patterns for proteins. This method appeared 

to be more sensitive for the detection of metalloproteins (limit of detection 80 nM) than for non-

metalloproteins (limit of detection 80 μM) (Figure 1.34). [88, 89] 



1.4.Electronic noses and tongues based on optical detection for protein recognition  

 

43 

 
Figure 1.34.  a) The principle based on polymer-surfactant complex assembly and protein-induced 

disassembly. b) Structures of the polymer, surfactant and dye molecules used in this system. [89] 
 

A major improvement for this kind of device was achieved by Rotello’s group. In their earlier 

study, they used highly fluorescent polymers as cross-reactive receptors. These materials can bind 

protein surfaces through multivalent interactions. Moreover, their optical properties are sensitive to 

minor conformational or environmental changes, enabling efficient signal transduction of binding 

events. Using six functionalized poly(p-phenyleneethynylene)s (PPEs), which possessed various 

charge characteristics and molecular scales with important binding diversity upon interaction with 

protein analytes, an array was constructed and generated distinct patterns for proteins (Figure 

1.35). The array was able to discriminate at least 17 protein analytes in the nanomolar range. [90] 

b)a) b)a)

 
Figure 1.35. a) PPE-based protein sensor array. b) Chemical structures of PPE polymers used in the 

study.  [90] 
 

Later on, to increase the sensitivity of the system, they conjugated an anionic fluorescent 

polymer to different cationic functionalized gold nanoparticles. As illustrated in Figure 1.36, 

electrostatic complexation of Au NPs and polymer results in fluorescence quenching of the polymer 

(fluorescence “OFF”) through energy transfer. Addition of protein analytes then disrupts the 

quenched polymer/Au NPs complexes via competitive binding, causing fluorescence recovery of 

the polymer (fluorescence “ON”). The protein-nanoparticle interactions are differential thanks to 
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different physicochemical properties of terminal groups of the functionalized nanoparticles, 

hydrophobic, hydrophilic, or aromatic [91]. This system was not only able to detect and identify 

proteins in the low nanomolar range, but also to differentiate normal cells from their cancerous and 

metastatic counterparts [92], as well as to detect and identify bacteria [93].  

a) b)a) b)

 
Figure 1.36. Schematic illustration of the sensor array based on Au NP-fluorescent polymer conjugates. a) 

The competitive binding between the protein and quenched polymer-Au NP complexes leads to the restoration 
of fluorescence. b) Structural features of cationic gold nanoparticles and the anionic PPE. [91] 

 

Based on the same principle, by replacing the fluorescent polymer with biocompatible green 

fluorescent protein (GFP), the sensor array was able to discriminate different concentrations of the 

same protein, as well as a mixture of proteins in human serum at physiologically relevant 

concentrations, see Figure 1.37. This last result illustrates the potential of e-Tongues in profiling 

real samples for diagnosing disease states. [94] 

a)

b)

a)

b)

 
Figure 1.37. a) Schematic illustration showing that the competition binding between proteins and quenched 

Au NP-GFP complexes, whose aggregation leads to fluorescence ‘turn on’ or further quenching using a library 
of cationic nanoparticles. b) Structural features of cationic gold nanoparticles used in the study. [94] 

 
More recently, they further improved their system in order to overcome the restrictions caused 

by the inherent emissivity of the used fluorophores. They developed an enzyme-amplified array 
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sensor approach, which was able to sense and identify a range of biomedically relevant proteins at 

1 nM in both buffer and desalted human urine (Figure 1.38). [95, 96] 

 
Figure 1.38. Enzyme-amplified sensing array. a) Functionalized cationic AuNPs electrostatically bind to the 

anionic β-Galactosidase (β-Gal), reversibly inhibiting the enzyme. b) Displacement of the particles by the 
analyte restores β-Gal activity toward a fluorogenic substrate, generating a readout signal that is amplified 

through enzymatic catalysis. [95] 
 

In summary, the results obtained with the e-nose an d e-tongue systems described above 

for protein recognition are very promising. However , these approaches may be limited by 

irreversible responses or long recovery times due t o the strong interaction between 

analytes and receptors or short lifetimes of some d ye-arrays due to fluorescence bleaching. 

In addition, the array preparation usually requires  the design and synthesis of a set of 

differential receptors whose structures are often c omplex. There is thus an identified and 

current need for the development of new strategies and sensing materials to promote a 

more widespread use of eN/eT systems .  

1.5. Presentation of the PhD project 

The main objective of this thesis is to develop a n ovel approach that greatly simplifies 

the design and production of sensing materials for the construction of electronic tongues.  

In this regard, we reasoned that the design and synthetic efforts could be drastically reduced if 

the cross-reactive receptors are prepared by self-assembly of a restricted set of building blocks 

(BBs), ideally small and easily accessible molecules displaying different physicochemical 

properties. Upon combination of such BBs in varying and controlled proportions, a collection of 

combinatorial cross-reactive receptors (CoCRRs) with evolutive properties could be obtained. A 

major advantage of this approach is to allow a very quick growth of the diversity: eleven CoCRRs 

can be prepared by mixing only two BBs with concentration varying from 0 to 100% in 10 % 

increment, while 66 can theoretically be accessed by adding a third BB. Such growth can be 

generalized to n BBs and i % concentration increment, leading to an impressive number of 

[(100/i)+n-1]!/(n-1)!(100/i)! potential different CoCRRs. 
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In order to assure both a good match between the CoCRRs precursor mix and their 

reproducible assembly, we further reasoned that the BBs should be designed to allow self-

assembly on a surface. In addition, such chemistry should allow arraying the BB mixtures on a 

surface with spatial encoding of their composition. In this new e-tongue approach, surface plasmon 

resonance imaging (SPRi) seems to be the ideal tool for protein sensing on the CoCRR array. 

Indeed, the gold surface of the SPRi prism should allow easy formation of SAMs through thiol or 

disulfide chemistry, while recording the changes in reflectivity of all the spots upon infusion of 

protein solutions, should provide label free, synchronous, parallel and real-time observation of 

binding events on the CoCRRs array. 

In this thesis, a model e-tongue, initially designed for differentiation of heparan sulfates binding 

proteins, was constructed using only two small modified disaccharides as BBs. Its discrimination 

capacities as an e-tongue were evaluated by analyzing not only pure protein analytes but also 

complex mixtures (beverages). More interestingly, the developed e-tongue offers other innovative 

features. On one hand, it was capable of mimicking the recognition properties of heparan sulfate 

(HS), being useful for understanding the nature of HS/protein interactions, On the other hand, it 

offered a medium throughput screening capacity for bioactive 2D combinatorial surfaces to 

fabricate 3D biomimetic nanovectors that are able to target specifically proteins of therapeutic 

interest.   



CHAPTER 2.      
Construction of an Electronic Tongue 

Using Combinatorial Cross-Reactive 

Receptors 





Résumé en français du chapitre 2   

Construction d’une langue électronique avec des 

récepteurs combinatoires à réactivité croisée.  
 

Ce chapitre est dédié à l’explication détaillée de la construction d’une langue électronique  

basée sur l’exploitation d’une collection de CoCRRs comme matériaux sensibles (récepteurs) 

couplée à un système de transduction en temps réel et sans marquage : l’imagerie par résonance 

des plasmons de surface (SPRi). 

Les CoCRRs sont préparés à partir de deux BBs dérivées du lactose que nous appelons 

lactose (BB1) et lactose sulfatée (BB2). Ces deux molécules ont un groupe dithiol  permettant leur 

auto-assemblage sur des surfaces d’or. Elles sont toutes les deux hydrophiles ; néanmoins, BB1 

possède une charge neutre tandis que BB2 est négativement chargée. Pour la préparation des 

CoCRRs, les BBs sont mélangées selon 11 proportions contrôlées où BB1% varie de 0 à 100% 

par incréments de 10%. Une fois les mélanges effectués, les solutions sont déposées sous forme 

de plots circulaires sur un prisme de verre recouvert d’une fine couche d’or d’environ 45 nm, à 

l’aide d’un appareil piézoélectrique d’éjection de nanovolumes. L’auto-assemblage des BBs se 

déroule au cours d’une nuit entière, après laquelle la puce ainsi réalisée est prête à être utilisée. 

L’instrument SPRi nous permet de suivre en temps réel tout changement d’indice de réfraction 

ayant lieu près de la surface d’or. Cela veut dire qu’une perturbation provoquée par l’attachement 

de molécules sur l’un des plots CoCRR est détectable en temps réel et sans besoin de marquage, 

ce qui est extrêmement intéressant pour le fonctionnement de notre langue électronique.  

Le montage expérimental est constitué d’un système optique permettant la détection des 

événements de reconnaissance ayant lieu entre la surface du prisme et l’échantillon, et d’un 

système microfluidique qui permet le transport et la mise en contact des échantillons avec les 

CoCRRs situés à la surface du prisme. 

Grâce a une caméra CCD, il est possible de suivre l’augmentation locale de masse à la surface 

due aux interactions entre l’analyte et les CoCRRs via l’augmentation de l’intensité lumineuse 

réfléchie qu’elle provoque ; de telle manière que l’image globale du prisme permet de voir quels 

CoCRRs sont très réactifs face à l’analyte et lesquels ne le sont pas. On obtient pour chaque plot 

l’évolution du changement de réflectivité en fonction du temps, alors appelée «sensogramme».  

Le fait que les CoCRRs aient des compositions différentes mais quue la différence entre deux 

CoCRRs successives soit très faible permet une répresentation continue des données ; un axe 
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représentant l’incrément de BB1%, un autre représentant le temps, et l´axe vertical correspondant 

à la réflectivité mesurée par plot. Ce type de représentation 3D est appelé image  d’évolution 

continue (CEL – Continuous Evolution Landscape) et est caractéristique de l’échantillon analysé. 

Une coupe de ce graphe à un temps donné permet d’obtenir un profil d’évolution continue (CEP - 

Continuous Evolution Profile) 2D, qui reste caractéristique de l’échantillon analysé. L’ensemble des 

données obtenues peut être traité par une analyse statistique en composantes principales (ACP) 

afin de regrouper et éventuellement d’identifier les analytes ainsi détectés.  

En conclusion, une méthode simplifiée d’obtention de récepteurs à réactivité croisée à été mise 

au point et couplée à une méthode optique de transduction pour obtenir une langue électronique 

innovante et performante. Ce procédé permet l’enregistrement en temps réel des événements de 

reconnaissance qui ont lieu sur les surfaces sensibles. Les données obtenues peuvent ensuite être 

représentées de façon simplifiée par rapport aux langues ou nez  électroniques existants grâce aux 

CEP et CEL. La différentiation des échantillons peut également être obtenue par une méthode 

statistique telle que l’ACP. 
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For proof of concept, we designed a model array inspired by the way cell surface heparan 

sulfates recognize HS binding proteins (HSbps), an important group of extracellular mediators 

involved in many physiological and pathological processes. HS are negatively charged 

polysaccharides displaying a high degree of molecular diversity arising from the regulated 

generation of various epimerization and sulfation patterns during biosynthesis. According to cell 

type and activation state, HS chains with different negative charge topologies are expressed, with 

the presumed aim of promoting selective interactions with HSbps. We hypothesized that a cross-

reactive receptor array able to differentiate HSbps could be prepared from modified lactose (BB1), 

neutral, and sulfated lactose (BB2), negatively charged. We anticipated that variation of the BB2 to 

BB1 ratio in the spotted solutions should provide, after self-assembly, CoCRRs displaying different 

charge densities and thus susceptible to promote the differential binding of HSbps.  

In this chapter, we present the construction of the electronic tongue based on the CoCRR array 

and SPRi detection. 

2.1. Preparation of the CoCRR array  

2.1.1. Building blocks  

The choice of the building blocks was a critical step in the design of sensing materials.  In this 

thesis, modified lactose (BB1) and sulfated lactose (BB2) were used as building blocks. They were 

derived from lactose (a disaccharide obtained from the condensation of galactose and glucose by 

the formation of a β-1 4 glycosidic linkage, see Figure 2.1). 
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Figure 2.1. Chemical structure of lactose molecule. 

 
The building blocks were synthesized following the process described here: the β-lactoside 1(1 

in Figure 2.2) was first converted to the lactosylated disulfide, used as BB1 using HATU mediated 

amide bond formation between amine 1 and acid 2. Further sulfatation in standard conditions lead 

to incomplete sulfation, as evidenced by 1H and 13C NMR. Gratifyingly, further treatment of this 

mixture with sulfurtrioxyde•pyridine complex in DMF at 60 °C allowed to complete the sulfation 

leading to the fully sulfated disulfide, used as BB2. In order to increase solubility in organic solvent 

compound BB2 was conditioned as tetrabutylammonium salt. These two molecules were provided 

by Professor David Bonnaffé, Université Paris-Sud, Orsay, France. 

 

  
Figure 2.2. Synthetic pathway to prepare the two building blocks BB1 and BB2. 

 

The structure of the obtained BBs is shown in Figure 2.3 and their 1H and 13C NMR spectra in the 
Appendix B. They are composed of three main parts: the functional terminal group lactose and sulfated 
lactose, for BB1 and BB2, respectively, the spacer chain, and the head group which consists of a disulfide 
moiety for self-assembly of BBs on a gold surface. Both molecules are hydrophilic, but BB1 is neutral while 
BB2 is highly negatively charged.  
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Head
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Figure 2.3. Chemical structures of BB1 and BB2. In this thesis, schematic representations of the BBs will 

be colored in blue for BB1 and in green for BB2. 
 

2.1.2. Preparation of the CoCRR array  

For the preparation of the CoCRR array, the two building blocks were mixed in 11 controlled 

proportions with [BB1]/([BB1]+[BB2]) ratios of 0, 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100%. In the 

table below (Table 2.1), the detailed composition of each mixed solution is given. The standard 

volume prepared for each ratio was 50 μL. The total final concentration of BBs was 0.1 mM. These 

mixed solutions were deposited on the gold surface of a prism in the following step. 5% of glycerol 

was added in order to prevent solvent evaporation and consecutive evolution of BB concentrations 

in the drops after deposition on the prism.  

 

 
100% 
BB1 

90% 
BB1 

80% 
BB1 

70% 
BB1 

60% 
BB1 

50% 
BB1 

40% 
BB1 

30% 
BB1 

20% 
BB1 

10% 
BB1 

0% 
BB1 

BB1 0.2mM in 
HEPES (μL) 

25 22.5 20 17.5 15 12.5 10 7.5 5 2.5 0 

BB2  0.2mM in 
HEPES (μL) 

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 

H2O+10% 
Glycerol (μL) 

25 25 25 25 25 25 25 25 25 25 25 

Table 2.1. The composition of the 11 mixed solutions needed for the preparation of the CoCRR array. 
 

The prisms used as support were provided by GenOptics (Horiba-Scientific-GenOptics, Orsay, 

France). They are made of high refractive index glass coated with a thin gold film (45 nM). 48h 
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before use, they were cleaned by plasma treatment (0,6mBar, 75% Oxygen, 25% Argon, power 40 

W, 3 min) using a Femto plasma cleaner (Diener Electronic, Germany).  Cleaning was made 48h 

before spotting in order to obtain more reproducible self-assembly of the CoCRRs. 

Droplets of 8 nL of the 11 mixed solutions were deposited on the prism surface using a non-

contact piezoelectric spotter (Siliflow, France) with four duplicates for each ratio. This automatic 

spotter permits the non-contact deposition of drops of a minimum volume of 4 nL in the desired 

configuration thanks to a piezoelectric mechanism, see Figure 2.4. This spotting design, containing 

four randomly distributed replicates of each CoCRR is given in the Appendix C. 

 
Figure 2.4. a) Schematic representation of the spotting process. b) Photography of the prism after spotting. 

c) SPRi differential image of a prism surface after self-assembly of the BBs. 
 

Afterwards, the prism was placed inside a Petri dish containing 1 mL of water to ensure a humid 

ambient and it was left overnight (18h) at room temperature for self-assembly of BBs. Then, the 

prism was washed thoroughly with ultrapure water and dried under a flow of argon. In each spot, 

the ratio of the two BBs anchored on the gold surface was assumed to be equal to the molar ratio 

in the parent solution [97]. A schematic illustration of the array containing 11 CoCRRs is shown in 

Figure 2.5.  

 

10% BB1
90% BB2

0% BB1
100% BB2

90% BB1
10% BB2

80% BB1
20% BB2

70% BB1
30% BB2
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50% BB1
50% BB2

100% BB1
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30% BB1
70% BB2

40% BB1
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Figure 2.5. The array consisting of eleven CoCRRs made by mixing and self-assembly of two BBs at 
different ratios and at a constant total concentration.  
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Finally, the prism was fixed on a metallic support (see Figure 2.6) and placed together with the flow 

cell for sample analysis using SPRi. To avoid leakage, the prism was pressed against the flow cell 

using a clamping handle. 

 
Figure 2.6. Positioning the prism on the support for sample analysis using SPRi. 

 

2.2. Detection method: surface plasmon resonance 

imaging 

The detection of the binding events occurring on the CoCRRs was performed using SPRi, which 

allows label-free and real time monitoring of molecular binding events at a metal/dielectric interface 

[98-104]. 

2.2.1. Surface plasmon resonance phenomenon  

According to Snell-Descartes law, when light arrives to an interface between two media, 1 and 

2,  with refracting indexes of n1 and n2 respectively, n1 being bigger than n2,  if the incident angle 

of light is superior to the critical angle, the incident light is totally reflected and no light is refracted 

in medium 2. This phenomenon is called total internal reflection (see Figure 2.7). When this occurs, 

a non-propagating evanescent wave is created in the interface. The intensity of the evanescent 

wave decays exponentially with the distance to the interface (see Figure 2.7) 
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Figure 2.7. When a light ray passes from a highly refractive media to lower one, three phenomena can 

occur depending on the incident angle and the refraction indexes of the media. Incident light is refracted until it 
arrives to a critical angle where it is not refracted nor reflected. After the critical angle light suffers total internal 
reflection, a phenomenon causes evanescent waves. In blue, plot of the evanescent waves field intensity vs. 

the distance from the interfacial surface. Figure adapted from reference [105]. 
 

Because the evanescent wave remains confined to the interface between the two media, it is 

only sensitive to perturbations occurring at the vicinity of the interface. [106] 
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If a golden surface is between a glass and a liquid, surface plasmons of the metal, which are 

collective oscillations of conduction electrons, can interact strongly with light to produce a surface 

plasmon wave. In a total internal reflection situation, surface plasmons can couple with the 

evanescent wave and resonate. The conditions to reach the resonance of the surface plasmons 

depend not only on the wavelength, polarization and incident angle of the incoming light, but also 

on the properties of the metallic layer and the medium above the surface.  

  The intensity of the reflected light after a biochip at a total reflection configuration can be 

measured with a CCD camera for different incident angles. The resulting curve is called a plasmon 

curve and goes through a minimum of intensity called resonance angle. It corresponds to the 

resonance of surface plasmons of the gold layer, which is traduced as a complete attenuation of 

the reflected light. The position of the resonance angle is characteristic of the metal surface and the 

medium above. For example, changes of refractive indexes of the medium above the biochip will 

induce changes of the position of the resonance angle (see Figure 2.8).   
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Figure 2.8. Effect of a binding event (or mass accumulation) between ligands immobilized on a gold 

surface and analytes flowing on the surface. The binding event induces a change of refractive index and, thus, 
a change of the position of the resonance angle. This shift can be measured in real time. 

2.2.2. Surface Plasmon Resonance Imaging 

The instrumental formats used in SPR experiments can be globally categorized into three types 

of measurements: scanning angle SPR, scanning wavelength SPR and SPR imaging [107]. For all 

SPR formats, the reflectivity of incident light on the metal/dielectric interface is monitored and 

correlated to changes on the local index of refraction of the dielectric adjacent to the metal film. The 

most widely used format for an SPR experiment is the scanning angle technique, in which the 

reflectivity of monochromatic incident light on a metal film is monitored as a function of the incident 

angle. The popularity of the scanning angle technique can be partially attributed to the existence of 

commercially available instrumentation from Biacore [108], which has made it possible to use SPR 

as a detection method for many applications. 
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However, both scanning angle and scanning wavelength measurements typically provide only 

one or a few data points at a time. In contrast, SPR imaging, sometimes called SPR microscopy, 

adds an imaging capacity to SPR. It combines the strength of SPR to monitor label-free 

biomolecular interactions with the high throughput of microarrays. It is thus possible to measure 

several dozens to several hundreds of interactions in parallel (multiplexing).  

Imaging allows monitoring simultaneously the resonance conditions on the whole surface of the 

array. If the array contains different immobilized molecules (array of spots), potential interactions 

on those different molecules can be monitored in parallel. In addition, the real time image of the 

array surface is also retrieved. The “difference image” shows interacting spots when the analyte 

solution is injected. The spots light up at different grey level according to different affinity between 

the receptors and samples. Meanwhile, these images are registered and treated by imaging 

software. In this way, SPR images are converted into variations of reflectivity (expressed as R%) 

versus time for each spot, which generate a series of kinetic binding curves called sensorgrams.  

In Figure 2.9 a classical sensorgram is presented. On the first stage, the ligands or receptors 

are immobilized on the gold surface and running buffer flows through the system, giving the 

baseline which is stable upon time. When the sample solution enters the flow cell, molecular 

binding can occur. This induces a shift of the plasmon curves and an augmentation of reflectivity, 

see association phase. After the sample injection is completed, the ligand-analyte complex 

dissociates. This induces a diminution of the reflectivity versus time, see dissociation phase. 

Afterwards, the surface of the array is usually regenerated using an appropriate regeneration 

solution for re-use.  

 

  

 
Figure 2.9. Scheme of a classical sensorgram showing the variation of reflectivity during an analysis cycle: 

1; buffer is in contact with the array (baseline); 2 sample injection (association step); 3, injection of buffer 
(dissociation step); 4, regeneration step. (www.biacore.com) 
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2.2.3. SPR imaging instrumental set-up 

The used SPRi instrument was provided by Horiba-Scientific-GenOptics. It consists of two main 

parts that will be exhaustively described in the following two sections: the optical system and the 

microfluidic system (see Figure 2.10).  
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Figure 2.10. SPRi set-up, consisting of two main parts: optical system and microfluidic system.  

 

The optical system 

In Figure 2.11 a photography of the optical system is included. The incident light wave (660 nm) 

was generated by a light-emitting diode (LED) and collimated by a biconvex lens. Further optical 

pathway was equipped with a rotating polarizer providing TM (SPR detection) and TE (total 

reflection used as reference) polarization modes. The incident light was reflected on the biochip 

surface and the resulting light was detected by an 8-bit CCD camera connected to a computer 

provided with adapted software for signal treatment.  
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Figure 2.11. Photography of the optical SPRi system. Main components are highlighted. 

 

The microfluidic system 

The microfluidic system allows the samples to get in contact with the CoCRR array on the prism 

surface. As depicted in Figure 2.10, the buffer solution is constantly injected by a remotely 

controlled 5 mL syringe pump (Cavro XLP 6000, Cavro scientific instruments, USA) and degassed 

with a degassing system (Alltech, France). Samples (500 µL) were injected using a 6-channel 

medium pressure injection valve (Upchurch Scientific, USA) at a 100 µL/min flow rate and 

transported to the flow cell. The sample charge and injection positions of the valve are depicted in 

Figure 2.12. 

 

Position 1: Sample Load Position 2: Sample Injection

Buffer Buffer

Position 1: Sample Load Position 2: Sample InjectionPosition 1: Sample Load Position 2: Sample Injection

Buffer Buffer

 
Figure 2.12. Schematic illustration of the two positions of the injection valve. Position 1: The running buffer 

flows through the valve and enters directly the flow cell. The injection loop can be filled with the sample (in 
red) and the excess goes directly to the waste beaker. Position 2: The running buffer flows through the 

injection loop pushing the sample to the flow cell.  
 

All the connections were done by PEEK tubes. The injection valve was connected to a 10 µL 

PEEK flow cell with hexagonal configuration (see Figure 2.13). Before use, the flow cell was 

cleaned by 10 min immersion in ethanol and 5 min immersion in ultrapure water in an ultrasonic 

bath. The flow cell’s exit tube goes directly to a waste beaker.  
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Figure 2.13. Photography of the two sides of the flow cell. On the left, the hexagonal reaction chamber with 
the entrance and exit holes. On the right, the upper side of the flow cell where the connection tubes are 

placed.  

2.3. Electronic tongue 

Based on the CoCRR array and SPRi, an electronic tongue was constructed, as illustrated in 

Figure 2.14.  
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Figure 2.14.The schematic illustration of the e-Tongue based on the CoCRR array and SPRi. 
 

Sample sensing was monitored at 25 °C with the SPRi apparatus placed in a temperature 

regulated incubator (Memmert, Germany) to avoid refractive index changes due to temperature 

oscillations. The working angle is selected within the highest slope range of the plasmon curves in 

order to have the best sensitivity. In this way, all the refractive index changes provoked by binding, 

dissociation or rinsing events occurring at the proximity of the prism surface result in a shift on the 

plasmon curve (and on the position of the resonance angle) that was recorded in form of SPR 
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images at intervals of 0.05 minutes with the help of the CCD camera. Using Imaging software 

(Horiba Scientific-GenOptics, Orsay, France), all SPR images were analyzed and then converted to 

variations of reflectivity (expressed as R%) versus time, which generated a series of kinetic binding 

curves, sensorgrams.  

Masks were defined in order to separate individual signals coming from each spot. These 

masks allow the user to define the areas occupied by the spots (CoCRRs) and to automatically 

calculate the average reflectivity of each spot upon the time. In all the experiments, in addition to 

the CoCRR spots, three spots on bare gold surface were also defined and used as control 

surfaces, see Figure 2.15.  

 
Figure 2.15. An example of defined masks on a CoCRR array surface using circles with same diameter. 

 

2.3.1. Recognition patterns generated by the electr onic tongue: 

CELs and CEPs 

Based on SPR images and sensorgrams, a recognition pattern for each analyte can be 

generated. Interestingly, from the concept, the composition of each CoCRR is close to those of its 

neighbors, therefore, the signal obtained with each CoCRR is correlated and close in intensity to 

those of its neighbors. Consequently, the series of signals generated upon interaction between 

CoCRRs and analytes can be considered as continuous. As illustrated in Figure 2.16, the obtained 

standard sensorgrams can be advantageously combined in a 3D continuous evolution landscape 

(CEL) by adding an axis describing the BB1% evolution ([BB1]/[BB1]+[BB2]). The CEL offers an 

accurate representation of the time-dependent recognition patterns of the 11-CoCRR array. 

Moreover, from such a 3D CEL we can derive 2D continuous evolution profiles (CEPs), which are 

sections of CELs at a fixed time. The CEP offers a more direct way to evaluate the binding affinity 

between all the CoCRRs and each analyte. 
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Figure 2.16. Data processing for analysis of samples using our electronic tongue: SPR images are 

converted into sensorgrams, based on which two types of recognition patterns were generated: 3D CEL and 
2D CEP. 3D CEL was obtained by plotting the variation of reflectivity (R%) versus the ratio 

[BB1]/([BB1]+[BB2]) in BB1% and time. 2D CEP corresponds to the section of the CEL at a fixed time.  
 

A major advantage of 3D CELs or 2D CEPs is that abnormal signals can be easily identified in a 

similar way as our brain is capable of reconstructing an image from a screen even when defective 

pixels are present. For example, the brain is still able to reconstruct and recognize the image of a 

tree even when 20% of defective pixels are present, as illustrated in Figure 2.17. Similarly, in a 2D 

CEP, a defective signal can be easily identified and corrected if necessary thanks to the continuity 

of the pattern. In addition, in case of doubt, more intermediate points could be added to the array to 

better define the profile. Such “auto-corrective” behavior contrasts favorably with the sets of 

uncorrelated discrete data obtained via traditional eN/eT approaches, providing an unprecedented 

reliability for our system. 

  
Figure 2.17. Illustration of the auto-corrective behavior of the continuous evolution profiles. a)  Images of a 

tree presenting different percentages of defective pixels. b) 2D CEP corresponding to the injection of a protein. 
On the left, the 2D profile obtained with an array containing a defective CoCRR. On the right, normal 2D 

profile obtained with an array without any defect.   
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2.3.2. Classification of samples using principal co mponent 

analysis 

Data containing high dimensionality can be studied using several mathematical methods. One 

of the most popular ones is Principal Component Analysis (PCA). In this thesis, it was used for 

classification purposes. It takes data in n dimensions and reorients the axes along which the data 

are represented. The axes are chosen such that PC1 contains the majority of the response 

variance from the data; PC2 is orthogonal to PC1 and contains the second most response 

variance, etc. This mathematical approach is extremely useful for convenient visualization by re-

expressing the original data along a truncated number of principal components, thus elucidating in 

two dimensions the natural response clustering of higher-dimensional data, see Figure 2.18 for 

illustration [109, 110]. In this work, PCA was performed using the appropriate package within 

Mathematica 8.0 software.  

Data from different measurements

Classification

Data from different measurementsData from different measurements

Classification

 
Figure 2.18. Classification of samples by PCA. Figure adapted from reference [26].





CHAPTER 3.   
Differentiation and Identification of Pure 

Proteins and Complex Mixtures Using 

the Electronic Tongue 





Résumé en français du chapitre 3 

Différentiation et identification de protéines pure s et de 

mélanges complexes avec la langue électronique 
 

Le but principal du chapitre 3 est d’explorer les capacités de la langue électronique développée 

pour des tâches de différentiation et/ou d’identification d’échantillons  par rapport à des références 

connues. La première étape de cette exploration consiste à calibrer le système ; pour cela des 

tests sont réalisés afin de vérifier que la réponse des plots est due à leur interaction avec l’analyte 

et non à des différences de sensibilité intrinsèque. La sensibilité globale du système est également 

vérifiée afin de s’assurer qu’il est utilisable en pratique pour l’analyse d’échantillons réels. 

Une fois cette vérification réalisée, la langue électronique est utilisée pour la différentiation et 

l’identification de protéines pures. Pour cela, trois protéines sont sélectionnées : CXCL12α, 

CXCL12γ et ECL. Les deux premières protéines sont des isomères de la même protéine, connue 

pour son affinité envers l’héparane sulfate, un polysaccharide présent sur les surfaces cellulaires. 

La structure de l’héparane sulfate est très variable étant donné la quantité de variantes structurales 

des sucres qui le composent, ainsi que la diversité de répartitions de charge qu’il peut présenter. 

Nous estimons que la composition des BBs, en particulier leur nature disaccharidique chargée ou 

non, utilisées pour la fabrication de notre langue électronique peut donner lieu à des 

caractéristiques de surface mimant les différentes densités de charges de l’héparane sulfate. Les 

raisons du choix des protéines CXCL12α et CXCL12γ reposent ainsi sur notre volonté de vérifier, 

d’une part, qu’elles sont bien détectées par le système, et d’autre part, que le système est, en effet, 

capable de faire la différence entre deux protéines de structure proche. Enfin, le choix de l’ECL est 

dicté par son interaction bien connue avec le lactose. 

Les trois protéines ont donc été successivement analysées avec la langue électronique. Les 

résultats obtenus, sous forme de profil CEP, montrent que le système est non seulement capable 

de détecter la présence des protéines en solution mais également que les profils obtenus pour les 

trois protéines sont différents. Le système s’est ainsi montré apte à différentier deux protéines dont 

l’une est affine à l’héparane sulfate et l’autre non, ainsi qu’à identifier deux isomères de la même 

protéine. 

L’injection de mélanges de protéines a aussi été étudiée. Les résultats montrent que l’injection 

conjointe de deux protéines génère un CEP que l’on peut décomposer en deux CEPs 
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correspondant aux deux protéines pures composant le mélange. Ces résultats sont très 

encourageants pour la suite et la complexification des échantillons à analyser.  

Une grande quantité des systèmes de langues et nez électroniques qui ont été développés à ce 

jour ont trouvé leur application dans le domaine alimentaire. Nous avons donc ensuite voulu mettre 

à l’épreuve notre système avec des échantillons de ce domaine, tels que du vin, de la bière et du 

lait. Après l’injection de ces échantillons, l’analyse des résultats sous forme de CEP et CEL ainsi 

que l’analyse ACP nous ont montré que les trois types d’échantillons étaient différentiables. Dans 

le même esprit, des analyses d’échantillons de lait en cours de vieillissement ont été faits afin de 

distinguer l’état du lait après 48 et 72 heures de conservation à 25 ºC ou juste après ouverture. 

Les bonnes performances de différentiation et d’identification d’échantillons nous ont conduits à 

considérer le point faible d’une grande quantité de systèmes de langues électroniques : la 

reproductibilité et la stabilité. Les résultats obtenus à ce sujet sont très satisfaisants. Suite à 

l’injection répétée d’une même protéine sur le même prisme, une corrélation supérieure à 98% 

entre deux profils est obtenue. Cette valeur diminue légèrement lorsque les injections comparées 

sont effectuées sur des prismes différents (>93%), ce qui indique qu’une meilleure fiabilité peut 

être obtenue lors d’une expérience réalisée entièrement sur un même prisme. La stabilité à long 

terme d’un prisme a par ailleurs été évaluée. La comparaison de profils obtenus lors d’injections 

d’une même protéine sur un même prisme au cours d’une période de 5 mois donne une corrélation 

supérieure à 95%, ce qui signifie une excellente stabilité à long terme du système développé de 

langue électronique.   

En conclusion, l’approche choisie pour le développement d’une langue électronique se montre 

très prometteuse pour l’élaboration de systèmes d’analyse dans plusieurs domaines. D’une part, 

ce système est suffisamment sensible pour la détection de molécules biologiques et est même 

capable de différentier celles qui sont structurellement très proches. D’autre part, quand il est 

exposé à des mélanges complexes comprenant des centaines de composants, il est capable de 

donner une réponse qui permet, non seulement la classification selon la nature du mélange, mais 

aussi le suivi de l’état du vieillissement de l’échantillon. Ces résultats, accompagnés d’une bonne 

reproductibilité et stabilité du système, nous ont encouragés à poursuivre l’exploration des 

applications de ce système et en particulier à l’utiliser pour l’étude détaillée d’interactions sucre-

protéine. 



Differentiation and Identification of 

Pure Proteins and Complex Mixtures 

Using the Electronic Tongue 

 

In this chapter, preliminary experiments were carried out in order to evaluate discrimination 

capacities of our system as an electronic tongue. For this, samples of varying complexities were 

analyzed, including single-component samples, such as pure proteins with both HSbps and non-

HSbps, dual-component samples by mixing two pure proteins, as well as real-world complex 

samples, such as beer, wine and milk. The objective was to explore potential applications of the 

developed electronic tongue in different domains 

3.1. Calibration of the electronic tongue 

First of all, calibration procedures were performed on the array to see if there is intrinsic 

sensibility difference between spots. To do so, a classical procedure was used by injecting a NaCl 

solution (8.57 mM) on the array [98]. Under such a condition, the contribution of signal changes are 

dominated by changes in bulk solution’s refractive index and not by changes in any adsorbed film. 

As shown in Figure 3.1, the sensibility of the different BB% spots towards NaCl was very similar 

with a variance of <5%. This means that the change on each spot upon analyte injection is not 

related to CoCRR intrinsic sensibility differences but to the affinity of the CoCRRs for the analyte. 
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Figure 3.1. Reflectivity change induced by the injection of an aqueous solution of NaCl 8.57 mM on the 

CoCRR array. 
 

Then, in order to verify if the CoCRR array functions correctly as sensing system, a calibration 

curve was established using a protein Erythrina cristagalli lectin (ECL), which is known to be a 

lactose-binding protein  [111]. Injections of ECL were made at various concentrations, 200 nM, 400 

nM, 800nM and 1.6μM.  

The obtained reflectivity data of all the CoCRRs after the end of complete ECL injection (t = 

8min) were averaged and plotted versus the injected protein concentration. This led to a curve (see 

Figure 3.2), that fits a Langmuir adsorption profile, from which a KD with a value of 300 +/- 50 nM 

could be extrapolated [112]. This confirms the capacity of the e-tongue system to function as a 

detection array.  
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Figure 3.2. Calibration curve obtained with the electronic tongue (e-tongue) by plotting reflectivity signals 
for ECL injections at different concentrations. 

3.2. Differentiation and identification of pure 

proteins  

For preliminary tests, two HSbps, the α and γ isoforms of the chemokine CXCL12, were 

analyzed. They were provided by Dr. Hugues Lortat-Jacob (Groupe Structure et Activité des 

Glycosaminoglycanes, Institut de Biologie Structurale, Grenoble, France).  ECL was also analyzed 

since it is a non-HSbps and should represent a negative control for binding onto CoCRRs 

containing a low BB1%. In addition, as it is a lactose-binding protein, ECL could be used as a 

positive reference for the CoCRRs rich in BB1. The structures of these three proteins are shown in 

the following part. 

3.2.1. Characteristics of the tested proteins  

CXCL12α and CXCL12γ 

Chemokines represent a family of small proteins (8-12kDa) comprising over fifty members. 

These proteins bind to and trigger the activation of G-protein coupled receptors and ultimately 

promote the directional kinesis of a large array of cells [113]. Interestingly, most, if not all, 

chemokines bind to heparan sulfate, a glycosaminoglycan (GAG) present ubiquitously at the cell 

surface and in the extracellular matrix. HS is thought to affect the local concentration, 

compartmentalization, stability, structure or activity of its ligands. Chemokines are traditionally 

classified into four groups (CC, CXC, CX3C, and C) depending on their structure [114, 115]. They 

all have very similar tertiary structures, organized around a core domain with a triple stranded β-

sheet overlaid by a C-terminal α-helix. Upstream of the β-sheet is the N-terminal region. The 

overall structure is stabilized by disulfide bonds involving N-terminal and core domain cysteines.  

CXCL12, a chemokine highly conserved among mammalian species and also called SDFα, is 

constitutively expressed within tissues during organogenesis and adult life. Its biological activities 

are mainly mediated by the G-protein coupled receptor CXCR4, to which the chemokine binds. The 

CXCL12/CXCR4 signaling axis is critically involved in a wide variety of physiological functions. 

These include margination of neutrophils into the site of infection, embryonic development, 

mobilization and direct migration of stem cells, and neurological function [116, 117].  Most 

information on this chemokine has been obtained from two isoforms (CXCL12 α and β). 

Nevertheless, a novel isoform, CXCL12γ, was identified more recently [118], and is characterized 

by a distinctive 30 amino acids long C-terminal peptide. This peptide contains three HS-binding 

domains and is characterized by an important flexibility and high disorder in solution, while the first 

68 residues of CXCL12γ have a very similar structure to that of CXCL12α with a typical chemokine 

fold. It has been demonstrated that the C-terminus extension is strongly involved in GAG 

recognition. This, in combination with the heparin (HP, a highly negatively charged GAG) binding 

site of the core domain, provides the chemokine with the highest affinity for HP ever observed: KD = 
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0.9nM for CXCL12γ (93nM for CXCL12α) [113]. In Figure 3.3, structures of the α and γ isoforms of 

CXCL12 are presented. 

  
Figure 3.3. GAG Binding surfaces of the CXCL12 α and γ isoforms. The GAG binding sites on both 

CXCL12α and CXCL12γ are shown in blue. The γ isoform is characterized by an extended GAG binding 
surface that provides the chemokine an unprecedented high affinity for HS. [113] 

Erythrina cristagalli lectin (ECL) 

Erythrina cristagalli lectin (ECL) is a galactose-specific legume lectin. With a molecular weight of 

54 kDa, ECL is biologically active as a dimer, where both of the subunits contain a functional 

carbohydrate binding site [119].  The crystal structure of native ECL has recently been determined 

in complex with lactose and frucosyllactose [120]. Protomers of ECL adopt a jelly-roll fold 

characteristic of legume lectins (Figure 3.4). The binding site is located in a shallow cleft on the 

surface of ECL and accommodates the galactose moiety of bound carbohydrates.  ECL binds 

lactose through a set of structural water molecules, which mediate indirect hydrogen bonds 

between the lectin and the O2, O3 and O6 of galactose and the O2 of glucose. Hydrophobic 

stacking interactions are also observed between the lactose and lectin [119]. 
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Figure 3.4. Structure of ECL dimer, which is stabilized by two hydrogen bonds and a series of contacts 

between side chains in four strands of the flat, six-stranded β-sheet. Each protomer adopts the conserved 
jelly-roll fold characteristic of legume lectins. The N-linked carbohydrates, lactoses bound at the binding site 

and HEPES molecules (from the crystallization medium) are shown. The manganese and calcium ions bound 
in the vicinity of the combined site are shown as small spheres. [119] 

 

3.2.2.  Analysis of pure proteins 

The e-tongue was first used to analyze pure proteins, concretely to differentiate HSbps from 

non-HSbps by injecting sequentially solutions of CXCL12α, CXCL12γ (both 100 nM) and ECL (200 

nM). For regeneration of the CoCRR array after each protein injection, different solutions were 

tested. The optimal conditions for complete regeneration of the array without any damage on the 

chip surface are: NaCl (1M) after CXCL12γ injection, SDS (1%) after CXCL12α injection and NaOH 

(0.02M) after ECL injection.  

After protein injections, analysis of the sensorgrams revealed that the different CoCRRs 

displayed different reflectivities for a given protein. More importantly, the individual response of 

each protein on a given CoCRR is dependent on the composition of the parent BB mixture. In other 

words, for a given CoCRR composition, the intensity of the response is dependent on the protein 

injected, indicating that the CoCRRs array responds differently toward each protein. For easier 

visualization, a 2D continuous evolution profile was generated for each protein sample, as 

illustrated in Figure 3.5.  

The resulting CEPs for the three proteins were clearly differentiable. We thus further explored 

whether the CEP obtained for each protein could be used for reliable identification. ECL, as 

expected, displays a higher affinity for CoCRRs rich in BB1, reaching a maximum for the CoCRR 

containing 70% of BB1. In contrast, the HSbps have higher affinity for CoCRRs with higher content 

in BB2, reaching a maximum for the CoCRR containing 90% of BB2.  
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Figure 3.5. CEPs corresponding to a) ECL injection, b) CXCL12α injection, and c) CXCL12γ injection. 

 
 

More importantly, it is noteworthy that the response obtained from a CoCRR for a given protein 

is not a simple linear addition of the responses obtained on the pure BB1 and BB2 spots. This non-

linear behavior allows each combinatorial receptor to generate additional information relative to its 

neighbors, justifying a posteriori the use of a set of CoCRRs instead of spots of pure BB1 or BB2. It 

can be evidenced by the comparison of the CEPs obtained for the CXCL12α and γ. Indeed, even 

though they display similar behavior towards pure BB1 or BB2 receptors, they differ notably in their 

binding on receptors of mixed compositions: the reflectivity for CXCL12α is almost zero when BB1 

content in the CoCRR is 50% or higher, whereas CXCL12γ still binds significantly on CoCRR 

containing up to 70 % BB1.  

The difference in the CEPs of the two isoforms could be explained by their structural 

differences. As described previously, both CXCL12 isoforms share the same first 68 amino acids, 

which are similarly folded and display a typical HS binding site (K24-K27-R41) located in a highly 

structured domain. Moreover, the CXCL12γ contains additional HS binding sites in its unfolded C-

terminal extension, which displays high conformational flexibility. This flexibility could maximize 

contact points with the ligands at low energetic cost through conformational fluctuations. In 

contrast, the single HS binding domain of CXCL12α is located in a rigid domain that may limit the 

adaption of the conformation of basic residues to low charge density CoCRRs. 

These results proved that 2D CEPs generated by the e-tongue can be used as recognition 

patterns for both differentiation and identification of different pure proteins, even for the two isomers 

of the same protein. In addition, these results reveal that the designed CoCRR array is very 

sensitive to the charge topologies of HSbps and offers an unprecedented and simple tool to 

investigate the overall organization of the HS domains (charge density and distribution along the 

chain), independent of the fine structure found in the polymer. [121, 122] This will be discussed in 

more detail in chapter 4. 

3.3. Analysis of protein mixtures   

Beyond the differentiation and identification of pure samples, another goal of this work was to 

analyze complex samples. The preliminary study made in this direction was the injection of dual-

component samples by mixing proteins ECL (200nM) and CXCL12α (100nM) (Mix1). 
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Figure 3.6. 2D CEPs of pure protein ECL (200 nM) in green, CXCL12α (100 nM) in red and their dual-

component mixture (Mix1) in blue.  
 

The CEP of the Mix1 is given together with those of ECL and CXCL12α in Figure 3.6. 

Gratifyingly, a simple visual examination of the three CEPs established that the CoCRR array was 

able to discriminate between Mix1 and the individual proteins. Moreover, the Mix1 CEP indicates 

additive behavior with respect to the signals obtained from the pure proteins. A simple linear 

decomposition of the CEP into pure analytes showed the potential of the system for identification of 

components in this kind of relatively simple mixtures.  

In addition, 3D recognition patterns, continuous evolution landscapes, were generated for ECL, 

CXCL12α and Mix1, as given in Figure 3.7. Such CELs, where time evolution is added to the 2D 

CEP analysis, illustrate the added value of real-time SPRi interaction measurements. Simple visual 

examination reveals that desorption of ECL is much faster than that of CXCL12α. Such kinetic 

information is supplementary and could facilitate further differentiation and identification of 

analytes. The third CEL, corresponding to the infusion of Mix 1, shows that CEL follows the additive 

behavior found for CEP.  
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Figure 3.7. 3D continuous evolution landscapes obtained with the electronic tongue for pure proteins ECL 

and CXCL12α, and their dual-component mixture (Mix1). 
 

3.4. Analysis of complex mixtures  

In the last decade, e-noses/tongues have emerged as promising alternatives for analysis of 

complex mixtures in the domain of food and beverages, particularly when a full component-by-

component analysis is unnecessary, such as for comparisons against a standard, discrimination of 

subtle differences among mixtures, or detection of changes in the mixture as a function of time or 

conditions. [27, 123].  

 In this part, the feasibility of our e-tongue system for analysis of real-world complex samples 

and its potency for applications in the domain of food and beverages will be evaluated.  

3.4.1. Differentiation and identification of complex  samples 

For this study three types of complex mixtures, wine, beer, and milk, were tested. In Table 3.1, 

all details about tested samples as well as their pre-treatment protocol are given.  

 

Sample Type  Name Origin  Sample Pre -treatment  

Wine Côtes du Rhône France Two filtrations through a 0.2 µm 

syringe filter and dilution to 1% (v/v) in Wine Bordeaux France 
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Wine Bourgogne France HEPES buffer. 

Beer Stella Artois Belgium Degassing by filtration under vacuum 

through a 22 µm sintered glass filter, 

filtration through a 0.2 µm syringe filter 

and dilution to 10% (v/v) in HEPES 

buffer. 

Beer Leffe Belgium 

Beer Pelforth-dark France 

Milk Casino UHT France 
Dilution to 0.125% (v/v) without any 

other pre-treatment 

Table 3.1. Tested complex samples and their corresponding pre-treatment protocol. 
 

They were all bought in a local supermarket and freshly opened before treatment and injection 

on the system. At least three replicated injections and measurements were performed for each 

sample in a random order during the experiment. After each injection, the array was regenerated 

with 2% SDS (w/w) dissolved in ultrapure water, which permits complete regeneration of the 

system without any damage.  

Upon the injection of the complex mixtures, the resulting sensorgrams revealed that the CoCRR 

array was sensitive to all these three kinds of complex samples. More importantly, it responded 

quite differently toward each beverage species. Figure 3.8 shows examples of the unique CEL and 

CEP recognition patterns generated by the CoCRR array for each species. The CEPs correspond 

to the section of the corresponding CELs at the 13th minute after sample injection, which is 6 

minutes after the end of injection. This time was chosen to avoid the strong refractive index 

changes systematically induced by complex mediums. Our studies showed that, at the 13th minute 

after sample injection, the intensity of signal on the CoCRRs for each beverage species is more 

related to the binding affinity rather than to the changes of refractive index.  

Clearly, the three CELs and CEPs were very different from each other. The CELs offered an 

accurate representation of the time-dependent recognition patterns of the CoCRR array, while the 

CEPs offered a more direct way to evaluate the binding affinity between all the CoCRRs and each 

beverage species. Gratifyingly, the CEP of red wine reached a maximum for the CoCRR containing 

100% BB1 and was completely different from the ones obtained for beer and milk, which displayed 

maximal signals at 100% BB2. Moreover, the signal intensity upon injection of milk was much 

higher than those following injections of beer or wine, permitting its differentiation. Remarkably, for 

the milk sample the signal intensity on the CoCRRs rich in lactose BB1 was very low, probably due 

to the competition of lactose present in abundance in milk. In a word, their CELs and CEPs showed 

remarkable differences between each other and could thus behave both as “fingerprints” for rapid 

differentiation and identification of each species. 
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Figure 3.8. 3D CELs and 2D CEPs generated by the e-tongue for complex mixtures: A) Red wine 

(Bourgogne); B) beer (Leffe) and C) UHT milk. Each error bar represents the standard deviation of four 
duplicates of the CoCRRs on the same array. 

3.4.2. Classification of complex samples  

The capacity of the e-tongue for classification of complex mixtures was then studied using a 

larger number of samples, including three different brands of red wines (Côtes du Rhône, 

Bordeaux and Bourgogne) and beers (Stella Artois, Leffe and Pelforth-dark), as well as UHT milk. 

For easier visualization, the data based on CEPs were analyzed by PCA to classify these samples 

in a 2D single plot. PCA was performed using the experimental data of 33 complex mixture 

injections where the 11 ratios of the BB were considered as independent variables. 

Triplicate measurements for each brand of wine and beer were plotted together with fifteen 

replicated measurements for the UHT milk sample, as shown in Figure 3.9. Excellent separation of 

the three species was obtained using the two principal component axes to present 97% of the 

variance in the original data set. This attested to the significant degree of success in the 

discrimination of these real-world complex mixtures using the model e-tongue system. However, 

there is no clear distinction between different brands of wines and beers. More building blocks with 

different physicochemical properties are needed to obtain more efficient discrimination between 

different brands of the same species. 
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Figure 3.9. PCA score plot using two principal components representing 97% of the variance from the 

original data for the analysis of complex mixtures wine, beer, and milk. 

3.4.3. Monitoring the spoilage of milk by the e-ton gue 

Food shelf life, especially that of diary products such as milk, varies with the age and the type of 

ingredients, the process, the packaging, the environmental conditions during distribution, and 

consumer holding. The control of the first three factors is carried out by manufacturers, which can 

ensure the initial quality of the product. However, the quality of beverage products depends not 

only on the manufacturers, but also on existing distribution, marketing systems and consumer food 

storage habit [124]. Thus, quality control of food and beverages is extremely important for both 

industrial and personal concerns. Traditional methodologies (e.g., gas or liquid chromatography), 

though accurate and reliable, are often time-consuming and laborious to perform. Consequently, 

there has been an increase in demand for new technologies able to provide reliable, inexpensive 

and rapid analysis. E-noses/tongues have emerged as promising alternatives in such contexts.  

To demonstrate the potential of our e-tongue system for quality control in the food and beverage 

industry, a set of preliminary experiments were conducted to monitor the deterioration of UHT milk 

over time.  Immediately upon opening, undiluted aliquots of milk samples were stored at 25°C in an 

open tube and measurements were taken 1, 24, 48, and 72 hours after exposing the sample to air. 

The resulting 3D landscapes are shown in Figure 3.10A.  

The pattern of the milk after the 1st hour of storage was barely distinguishable from that 

obtained after 24 hours but easily distinguishable from those collected in the 48th and 72nd hours, 

which may be attributed to milk spoilage. Moreover, the array allowed imaging the changes in the 

complex milieu with increasing storage time. The signals of the CoCRRs rich in BB 2 increased for 

storage time up to 48 hours, then decreased: the CoCRR containing 100% of BB 2 displayed 4% 

reflectivity after 1 hour of aging, 5.5% after 24 hours and 11.8% after 48 hours. Then, the signal 

decreased to 1.5% after 72 hours of aging, which was even lower than that of fresh milk and was 

associated with casein precipitation in the spoiled milk. These preliminary results demonstrated 

that the CoCRRs-SPRi e-tongue system is quite sensitive to the changes associated with the 

deterioration of the milk.  
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The PCA derived from the data obtained using these milk samples, each with at least six 

replicates, is shown in Figure 3.10B. Two principal components accounted for 99.2% of the total 

variance and corroborate the visual examination of the CELs. The absence of clear separation 

between the clusters representing patterns of the milk samples after 1 hour and 24 hours storage 

may be attributed to a lack of major changes in the complex mixtures between the two stages. 

Importantly, excellent discrimination was achieved between these samples and those stored for 48 

and 72 hours, illustrating that the e-tongue is able to discriminate between different aging phases of 

milk and thus confirming the potential of the CoCRRs-SPRi e-Tongue system for quality control of 

milk. 

 

A)
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Figure 3.10. A) 3D CELs of the milk samples at the 1st, 24th, 48th and 72nd hour after opening. B) PCA 
score plot of the two most important principal components representing 99.2% of the variance from the original 

data for the milk samples at the 1st, 24th, 48th and 72nd hour after opening. 

3.5. Repeatability and stability 

For any e-nose/tongue system, there are two important features: repeatability and stability. 

Evaluating the repeatability and stability is much more complicated for systems incorporating 

multidimensional sensor arrays than for devices based on single sensors. In this thesis, the 

repeatability and stability of the CoCRR arrays was not evaluated for each cross-reactive receptor 

separately but for the correlation between the overall 2D CEP patterns obtained with replicated 

measurements. The continuous evolution profiles must be evaluated holistically to provide an 

accurate assessment of repeatability since the relationship between each ratio and neighboring 

points is crucial to understanding the agreement between two full patterns. The correlation 

coefficient C12 between two full patterns is defined as follows,  
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Equation 3.1. Calculation of the correlation coefficient C12 between two full patterns. R1 and R2 are the 

reflectivity values of the two CEPs to compare at a given BB1%. 
 

3.5.1. Measurement to measurement and batch to batch  

repeatability 

The repeatability of the e-tongue was evaluated both from measurement to measurement and 

from batch to batch with ECL (200 nM) as reference, due to its good stability and easy availability. 

ECL solutions were all freshly and identically prepared before injection. Systematically, for each 
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round of measurements on a CoCRR array, ECL was injected at the very beginning, several times 

in the middle and at the end of the assay to evaluate the measurement to measurement 

repeatability. Generally speaking, a “round of measurements” consists of at least 20 analyte 

injection/regeneration cycles.  

The results obtained upon different injections of ECL on the same CoCRR array during a period 

of 2-week in continuous use exhibited good repeatability between measurements. The correlation 

between two different full pattern profiles was >98% (not shown).  

As for batch to batch repeatability, five different arrays were fabricated in the same way and 

tested with same sensing assay. The correlation between two different full pattern profiles was 

>93%, although at certain points, such as at the point of the 20% BB1, larger disparities between 

measurements may appear, as shown in Figure 3.11. This confirms that more reliable analysis can 

be obtained by such an e-tongue system based on patterns with continuous evolution profiles.  
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Figure 3.11. CEP of ECL (200nM) obtained with 5 different arrays for batch-to-batch repeatability 

evaluation. 

3.5.2. Long-term stability 

We have addressed the long-term stability of the CoCRR array upon storage at 4°C by 

performing regular injections of the ECL solution (200nM) over a period of 5 months (day 1, 3, 5, 9, 

16, 23, 31, 50, 89, 116, and 157). After each measurement, the array was regenerated with 2% 

SDS, thoroughly cleaned with ultrapure water, dried carefully under an argon gas flow, and then 

stored in a small closed bottle at 4°C for reuse.   

As shown in Figure 3.12, there is no significant variation for all patterns with respect to the 

signal intensity and profile. The coefficient C12 between any two different full patterns is >95%, 

which shows an excellent stability of the e-tongue upon prolonged storage.  
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Figure 3.12. Long-term stability of the e-tongue, evaluated by injecting ECL (200 nM) on the same CoCRR 

array on different days. The profile of each color was obtained by averaging the signals of the four duplicates 
of each CoCRR. The black line is the average profile. 

 

3.6. Main conclusions of the chapter 

We have demonstrated that the CoCRRs-SPRi electronic tongue system is able to generate 

distinct 3D continuous evolution landscapes and 2D continuous evolution profiles behaving as 

“fingerprints” for differentiation and identification of various samples of different complexity, 

including pure proteins, protein mixtures, as well as complex mixtures. In addition to its ease of 

preparation, the identification of analytes is greatly simplified and secured with the continuous 

evolution profiles or landscapes. Furthermore, the electronic tongue exhibits very good repeatability 

and stability upon prolonged storage period up to 5 months. We thus believe strongly that this new 

methodology will contribute to the design of cheaper and more reliable e-noses/tongues and 

facilitate their implementation in even broader domains of application.  





CHAPTER 4.                               
An Electronic Tongue With Biomimetic 

Properties 





Résumé en français du chapitre 4  

Une langue électronique avec des propriétés 

biomimétiques 
 

Ce chapitre est dédié à l’exploration d’une idée née de l’observation de la forte interaction 

développée entre les protéines affines à l’héparane sulfate et notre langue électronique 

préalablement développée. Cette observation laisse penser que la langue électronique pourrait 

mimer la capacité de reconnaissance des protéines par l’héparane sulfate (HS).  

Les chaînes HS sont des polysaccharides de structure très variable, qui font partie de la grande 

famille des glycosaminoglycanes (GAGs). Une propriété qui fait de l’HS une molécule intéressante 

est sa capacité d’interagir de façon spécifique avec certaines protéines. Il semblerait que cette 

spécificité dans la reconnaissance soit principalement due à deux propriétés structurales des 

chaînes HS. D’un côté, il existe des preuves qui indiquent que les micro-hétérogénéités 

provoquées par les différents motifs d’épimerisation et sulfatation des chaînes HS représentent un 

premier niveau de diversité moléculaire très importante pour la reconnaissance des protéines. D’un 

autre coté, il existe un deuxième niveau de diversité, donnée par la distribution des charges tout au 

long de la chaîne HS. En effet, les chaînes HS sont composées de domaines « A » où la charge 

globale est faible, de domaines « S » avec une forte charge négative, ainsi que de domaines 

« A/S » qui font la transition entre les domaines A et les domaines S. Tout cela forme des 

topologies SAS de charge le long de la chaîne.  

De façon similaire, le système langue électronique développé contient à la fois une 

microstructuration, donnée par les caractéristiques structurales des mélanges de BB utilisées, mais 

également une distribution de domaines plus ou moins chargés, donnée par l’ensemble des 

CoCRRs sur la surface de prisme. Ce parallélisme rend possible le mime des propriétés de 

reconnaissance de l’HS par la langue électronique, et donc, son utilisation en tant qu’outil pour 

l’étude des interactions HS-protéine. 

Les explorations menées sur ce sujet se sont basées sur l’interferon γ (IFNγ), une protéine de 

grand intérêt thérapeutique, qui contient une région C-terminale connue pour être le site 

d’interaction de l’IFNγ avec l’HS. Cette région contient deux domaines basiques, appelés D1 et D2, 

qui sont fortement impliqués dans la reconnaissance. 

Les premiers résultats montrent que le système langue électronique est capable de donner un 

profil de réponse spécifique lors de l’injection de l’IFNγ, et que cette réponse est proportionnelle à 
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la concentration de la protéine, ce qui peut être intéressant d’un point de vue quantitatif. L’affinité 

de l’interaction entre l’IFNγ et la langue électronique a pu être estimée sous forme de KD. Le KD 

calculé, de l’ordre de 0,5 μM, démontre une forte affinité qui n’est pas observée pour des protéines 

ne reconnaissant pas l’HS, ce qui prouve la capacité HS-mimétique de la langue électronique. 

Cette reconnaissance s’est révélée non seulement forte, mais aussi spécifique, car il fut possible 

de détecter de l’IFNγ dans un milieu riche en protéines, comme le sérum de veau fœtal.  

Les caractéristiques de la reconnaissance de l’IFNγ nous ont encouragés à poursuivre 

l’exploration des interactions IFNγ-HS sur la langue électronique, en étudiant plusieurs types de 

mutants d’IFNγ fournis par notre collaborateur Hugues Lortat-Jacob (IBS, Grenoble). Les résultats 

obtenus lors de l’analyse par le système langue électronique sont très intéressants. Non seulement 

le système est capable de différentier certains des mutants d’une même protéine, mais il est 

également capable de fournir des informations concernant l’implication de certains domaines dans 

le processus de reconnaissance; informations qui sont totalement en accord avec les recherches 

faites à ce sujet par l’équipe du Dr. Hugues Lortat-Jacob.  

Nous avons également montré que ce processus de reconnaissance avec la langue 

électronique est non seulement guidé par les interactions électrostatiques, mais que la structure 

moléculaire des BBs joue aussi un rôle important dans cette reconnaissance. Pour conclure, nous 

avons confirmé que les surfaces combinatoires ont des propriétés plus intéressantes que celles 

composées de BB1 ou BB2 pures, ce qui ouvre une nouvelle voie exploratoire de la langue 

électronique comme méthode de criblage de surfaces combinatoires d’intérêt thérapeutique pour la 

fabrication de nanovecteurs bioactifs. 
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In the previous chapter, it was demonstrated that the e-tongue, inspired by the way cell surface 

HS recognize HSbps, can generate distinct recognition patterns for two HSbps of the same family, 

CXCL12α and CXCL12γ, for their differentiation and identification. More interestingly, the capacity 

to bind, recognize and differentiate HSbps showed by our CoCRR-SPRi e-tongue suggests that, in 

some way, the e-tongue is able to mimic the recognition properties of HS and, thus, could be 

employed as a useful tool to study HS/protein interactions. In this chapter, a complete study will be 

carried out to explore biomimetic properties of the e-tongue.  

4.1. Introduction to GAGs 

Glycosaminoglycans (GAGs) are a family of linear, generally sulfated, polysaccharides present on 

all cell surfaces and in the extracellular matrix (see Figure 4.1). They are usually found attached 

covalently to core proteins forming the proteoglycan family. Two main types of cell surface-bound 

proteoglycan core proteins have been identified: the glypicans and the transmembrane syndecans. 

Both are thought to be expressed in high copy numbers (up to 106 per cell; [125]) [126]. 
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Figure 4.1. Illustration of cell surface glycans and their interactions with some biomolecules. From 
reference [127] 

 

GAGs are also known as mucopolysaccharides because of their viscous, lubricating properties, as 

found in mucous secretions. This is why GAGs have been long thought to have the only function of 

water retention. However, more recently it has been discovered that some of them interact with a 

wide range of proteins including chemokines, cytokines, growth factors, morphogens, enzymes, 

extracellular matrix, or adhesion molecules involved in several physiological and pathological 

processes. These include cell growth, differentiation, morphogenesis, cell migration, inflammation, 

angiogenesis or viral/bacterial infections. [113, 128-130] 

These long polysaccharides, all unbranched (with the exception of keratan sulfate), are composed 

of repeating disaccharide units; called disaccharide repeating regions. Each disaccharide is 

composed by a hexuronic acid and a hexosamine, except the keratan sulfate, which contains a 

galactose instead of the hexuronic acid. GAGs can be classified, thus, depending on the nature of 

the sugars on the basic disaccharide and their glycosidic bond, into two groups: the 

chondroitin/dermatan sulfate, containing a galactosamine as hexosamine, and the GAGs 

containing a glucosamine as hexosamine. This latter, at the same time, can be divided into three 

families: the hyaluronic acid, the heparan sulfate/heparin (HS/HP) and the keratan sulfate. All of 

them are schematized in Figure 4.2. However, this a priori simple structure leads to an extreme 

heterogeneity in GAGs due to the variations in length and different modifications that can take 

place (epimerization, sulfatation). [113, 129, 131] This structure variability seems to be the reason 

why GAGs are able to encode information to specifically interact with a number of important growth 

factors and functional proteins. These interactions are crucial to the biological functions of these 

proteins. For illustration, in Figure 4.3, we present a picture of the multiple roles of HS in cell 

physiology.  
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Figure 4.2. Schematic representation of the different GAGs. From reference [130]. 

 

 
Figure 4.3. Illustration of the multiple roles of HS proteoglycans on cell physiology. HS proteoglycans 

function as co-receptors for growth factors and their receptor tyrosine kinases, which are present either on the 
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same cell (a) or on adjacent cells (b). They transport chemokines across cells (c) and present them at the cell 
surface (d). Proteolysis can liberate HS proteoglycans from the cell surface (e) and heparanase cleaves HS 

chains (f), liberating bound ligands (such as growth factors). Cell surface HS proteoglycans are actively taken 
up by endocytosis (g) and can recycle back to the surface or be degraded in lysosomes (h). HS also facilitate 
cell adhesion to the extracellular matrix (i) and form bridges to he cytoskeleton (j). Secreted HS proteoglycans 
are involved in the in the formation of organized extracellular matrices that form physiological barriers (k) an 

sequester growth factors and morphogens for later release (l). Serglycin carrying highly sulfated heparin 
chains is packaged into secretory granules of hematopoietic cells (m). Finally, some experiments suggest that 

HS chains are present in the nucleous (n), although their function in this location is unknown. From [132]. 
 

4.1.1. Heparin and heparan sulfate 

The remarkable capacity of GAGs to specifically interact with functional proteins is particularly 

significant in HS and HP. The basic disaccharide unit of HS/HP consists in an uronic acid linked to 

a α-D-glycosaminyl moiety, linked itself to the next uronic acid residue. Structural distinction 

between HS and HP is difficult to establish and is generally performed on the basis of the 

polysaccharide sulfate content, since in HP a high proportion, generally over 80%, of the 

glucosaminyl residues is N-sulfated. The main difference between HP and HS is better established 

based on their localization in vertebrates: HP is essentially present in mast cells and is released in 

the extracellular matrix free from any core protein. HS is present linked to a core protein at the cell 

surface or in the extracellular matrix surrounding almost any type of cell [122].  

HS is one of the most heterogeneous biopolymers. In addition to the possible configurations 

that can be adopted by the uronic acid, various sulfation patterns may occur along the chain. O-

sulfation may occur on position 2 of the uronic acid and 3 and/or 6 of the aminosugar, while the 

glucosamine nitrogen may be sulfated, acetylated or, less frequently, unmodified, leading to 48 

possible disaccharides, see Figure 4.4. The diversity grows exponentially with the polymer length, 

leading to 2304 possible tetrasaccharides 110592 hexasaccharides and more than 5x106 

octasaccharides. 

 

Figure 4.4. Theoretical molecular diversity found in HP/HS. Adapted from [122]. 
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4.1.2. Heparan sulfate-protein interactions 

Early evidence for specificity in HS-protein interactions was the ATIII-binding sequence, which is 

responsible for the clinically exploited blood anticoagulant activity of HP [133]. Each one of the 

sulfate substituents of this pentasaccharide structure is essential for high affinity interaction with 

ATIII, and, thus, for anticoagulant activity [126]. However, it was recently discovered that the 

existence of hypervariable domains in HS could not account for all the regulatory effects of this 

polysaccharide and that many interactions appear to depend more on the overall organization of 

the HS domains than on their fine structure [121]. Indeed, it seems that the microheterogeneities 

resulting from the variation in sulfation and epimerisation patterns represent only a first level of 

molecular diversity in HS. In fact, the polymer, typically composed of 50-200 disaccharide units, is 

not fully heterogeneous. Quite regular N-acetylated regions (A domains) with low global charge 

separate domains rich in L-iduronic acid and N-sulfated glucosamine (S domains) which are 

hypervariable and highly charged. In between, mixed A/S regions of variable length make the 

transition between A and S domains. Thus, in addition to the first level of molecular diversity, HS 

presents a second level of diversity due to the various combinations of S, A and A/S domains 

generating multiple SAS charge topologies along the polymer chain, as illustrated in Figure 4.5. 

 

Figure 4.5. Dual molecular diversity in HS chains. a) Hypervariability resulting from various epimerisation 
and sulfation patterns generates a first level of molecular diversity. b) The charge distribution due to the 

alternation of S and A-A/S-domains of variable length, leads to different SAS charge topologies that generate 
a second level of molecular diversity. From reference [122]. 

 

The primary interaction between HS and a protein is an attraction between the highly negatively 

charged S-Domains and clusters of basic residues at the protein surface, mainly arginines and 

lysines. In some cases, a single S domain is sufficient to allow a high affinity interaction, whose 

specificity is linked to the uronic acid and sulfation pattern of the S-domain. However, with other 

proteins such as Interferon γ (IFNγ), a single S-domain is too short for high affinity binding, so a 

longer fragment, including an A-domain is needed for an efficient interaction. If the SAS domains 

whose charge topology is complementary to that of the basic clusters of the protein, a high affinity 
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binding may occur. Instead, lower affinities are obtained if the polysaccharide and protein charge 

topologies do not match. Indeed, it has been proposed that the HS chain may adapt its 

conformation in order to meet the needs of recognition of a protein. 

4.1.3. Heparan sulfate mimetics  

Despite their enormous potential, very few GAG fragments have been developed for therapeutic 

use mostly because the synthesis of such fragments is difficult. The synthetic challenges 

associated with these oligosaccharides arise from the low availability of precursors from 

commercial or natural sources, the lack of efficient synthetic routes to make sufficient amounts of 

product, the difficulties due to several protection/deprotection steps needed, or the difficulty in 

stereo-selective and efficient formation of inter-glycosidic bonds of the carbohydrate backbone. 

Certainly, the most successful example of GAG-based drug is the development of Arixtra® [134]. 

The structure of this drug is shown in Figure 4.6. The specific binding of this pentasaccharide 

sequence to Antithrombin III (ATIII) causes a conformational change within the protein allowing it to 

inhibit thrombin and other serine proteases within the coagulation cascade. This drug is employed 

as anticoagulant drug as a substitute of the traditional full-length HP (used in medicine since the 

1930s) or low molecular weight HP.  

 
Figure 4.6. Structure of Fondaparinux (trade name Arixtra ®) 

 

4.2. Structure and function of Interferon γ 

IFNγ was discovered in 1957 by Isaacs Lindenmann when he observed that some virus-infected 

cells in culture produced a protein that made them resistant to the virus. Due to its “interfering” role 

during viral infection, this protein was named Interferon. Nowadays, we know that this homodimeric 

cytokine, predominantly produced by natural killer cells and some T-lymphocytes, is a known GAG-

binding protein which coordinates a large array of cellular functions. In particular, IFNγ plays a 

central role in both adaptive and innate immune responses and it is important in early host defense 

against pathogens. [135]. IFNγ, is considered, thus, an attractive target for the treatment of a big 

number of diseases including autoimmune pathologies such as rheumatoid arthritis, systemic lupus 

erythematosus, multiple sclerosis, insulin-dependent diabetes mellitus, psoriasis, and alopecia 

areata [136] or chronic inflammatory bowel diseases such as Crohn disease and ulcerative colitis 

[137] [138]. 
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The globular V-shaped dimer (MW = 16900), is composed by two monomers each of which are 

composed by six α-helixes, see structure in Figure 4.7. The global dimensions are 60 Å per 40 Å 

per 30 Å. The protein contains a highly hydrophilic and non-structured and flexible C-terminal part 

(residues 126 to 143). This makes this part non-visible in the crystallographic structure but is highly 

important for the biological activity of the cytokine. 

The IFNγ transmits its signals by the interaction with its specific receptor present on its target 

cells. This receptor is composed of two proteins: IFNγRα and IFNγRβ The affinity between the 

IFNγ and its receptor is of about 1 to 10 nM [139].The crystallographic determination of the 

structure of the IFNγ:IFNγRα complex shows that the residues of IFNγ that take part in the 

interaction with its receptor are placed in the regions 1-42 and 108-124 [140-142]. 

 

 
Figure 4.7. IFNγ structure issue from the structure of the complex of IFNγ with the soluble extracellular part 

of IFNγRα. Red and blue colors correspond to each monomer of the homodimeric structure of IFNγ and A, B 
and C correspond to different points of view. The C-terminal region is not visible. [140] 

4.2.1. The C-terminal region of IFN γ 

The C-terminal region of IFNγ comprises two adjacent clusters of basic residues: D1 

(KTGKRKR), located between residues 125 and 131, and D2 (RGRR), located between residues 

137 and 140 (see Figure 4.8). In addition to having a role in the interaction between the IFNγ and 

its receptor, the C-terminal region of IFNγ is known to be the site for interaction between IFNγ and 

HS [143, 144] IFNγ binding to HS determines its local concentration within tissues and controls its 

biological activity [145] [146]. This interaction was discovered in 1990, and was found to be very 

strong (KD = 1.5 nM) [147], an affinity comparable to that of IFNγ towards its receptor [148]. The 

affinity of IFNγ for HS was found to be higher than the affinity of basic fibroblast growth factor 

(FGF), 610 nM, although FGF (pl = 9.8) is more basic than IFNγ (pl = 8.7). This suggests that the 

binding of IFNγ to HS is not only based on a simple electrostatic interaction [149].  

Thanks to the work done by Dr. Lortat-Jacob and his team, nowadays we have much more 

information about the role of D1 and D2 domain in the interaction of IFNγ both with his receptor and 

with HS. They demonstrated that the binding to heparin of the D1 cluster is governed by favorable 

entropic and enthalpic contributions. The second cluster, D2, appeared to kinetically drive the 

interaction. They thus proposed that the heparin binding to IFNγ is a two-step process, in which 
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close association is preceded by non-specific interactions that guide « diffusion to capture » of the 

protein. The D2 domain operates during the association phase but not in the formed complex. 
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Figure 4.8. Representation of structure of IFNγ WT including the two basic domains D1 and D2 of the C-

terminal region.  
 

On the other hand, an impressive synthetic effort was done by Sarrazin et al. who targeted 

IFNγ by synthesizing different HS-mimetic oligosaccharides and linking them using molecular 

spacers of distinct lengths. Their objective was to validate the HS structural determinants for 

IFNγ recognition and to provide a new strategy to inhibit the cytokine. The presence of the 

spacer on the HS-mimetic was found to be indispensable for efficient binding. An optimal IFNγ 

inhibiting activity was found for the HS mimetic containing two octasaccharide units bound by a 

spacer of 50 Å length (see structure in Figure 4.9) [122, 138]. 

 
Figure 4.9. Molecular structure of the 2O10 molecule developed in reference [138]. 

 

4.3. Objective of the chapter 

Finding easy ways, which avoid the complexity of GAG fragment synthesis, to understand and 

study GAG-protein interactions would be extremely helpful for future development of new GAG-

mimetic drugs. In this context, the capacity to bind, recognize and differentiate HSbps showed by 

our CoCRR-SPRi e-tongue suggests the e-tongue is able to mimic the recognition properties of HS 

and, thus, could be employed as a useful tool to study HS/protein interactions. 
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We previously explained that there are two complexity levels that determine the recognition 

capacity of a HS molecule: First, the microheterogeneities resulting from the variation in sulfation 

and epimerization patterns of the disaccharide repeating regions. Second, the overall organization 

of the HS domains generating multiple SAS charge topologies along the polymer chain. The 

combination of these two levels of polymer complexity gives the HS the specificity in the 

recognition of the targeted protein.   

Interestingly, we find two comparable levels of complexity in our e-tongue system, as illustrated 

in Figure 4.10. The first level of complexity is given by the microheterogeneities provided by the 

different charges and structures of the BBs on each CoCRR. At the same time, the whole array of 

CoCRRs presents different domains of charge, in a similar way as it happens in SAS charge 

topologies along HS chain. Obviously, the natural approach occurs at the molecular level while the 

e-tongue approach is macroscopic. However, the result of both approaches is the same: protein 

recognition.  
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Figure 4.10. E-tongue mimics HS. The microheterogeneities in the disaccharide repeating regions  are 
mimicked by each CoCRR, a combinatorial surface composed of different BBs ; the SAS charge topologies of 

HS are mimicked by the whole CoCRR array, which displays differently charged areas. 
 

The objectives of this chapter were to demonstrate that the e-tongue is able to mimic the 

biological properties of HS, on one hand; and that it could be employed as a simple tool for better 

understanding of the nature of HS/protein interactions, on the other hand.  

 

 

4.4. Study of the electronic tongue/interferon γ interactions 

4.4.1. Electronic tongue/interferon γ interaction affinity 

To study the recognition properties of the e-tongue, the chosen protein was IFNγ for several 

reasons: first, because of the well studied C-terminal region-HS interaction; second, because of 
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the availability of IFNγ mutants if further studies are desired; and finally, because of the already 

presented therapeutic interest of this protein. 

The study started with the injection of IFNγ on the CoCRR array at different concentrations 

and analysis of the obtained responses. The protein was injected at 10 nM, 30 nM, 50 nM, 100 

nM, 200 nM, 400 nM and 800 nM. The obtained CEPs are shown in Figure 4.11. Although the 

intensity of the signals varied according to the concentration, the shape of the CEP remained 

unchanged. Therefore, in principle, the CEP shape could be used for identification and its 

intensity for quantification purposes.  
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Figure 4.11. CEPs obtained for the injection of IFNγ at concentrations ranging from 10 nM to 800 nM. 

 
In order to quantify the affinity between the IFNγ and the e-tongue, the dissociation constant 

(KD) was calculated based on these results. The KD is commonly used to describe the affinity 

between a ligand and a protein. It is defined in Equation 4.1, where [P] is the protein concentration, 

[L] is the ligand concentration; and [C] is the ligand-protein complex concentration in the 

equilibrium. 

 
Equation 4.1. Definition of dissociation constant.  

 
In order to derive an affinity constant from the SPRi data a particular binding model must be 

used. The simplest (Langmuir) model (L+P↔PL) is applicable in the vast majority of cases. The 

Langmuir model, developed by Irving Langmuir in 1916 is a molecular model describing adsorption 

of molecules on surfaces. It describes the dependence of the surface coverage of an adsorbed 

inert gas on the pressure (or partial pressure) of the gas above the surface at a fixed temperature. 

Although developed for non-interacting simple gases, it is extensively employed to analyze 

macromolecular adsorption processes in biology. It assumes that the analyte (P) is both 

monovalent and homogenous, that the ligand (L) is homogeneous, and that all binding events are 
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independent. Under these conditions data should conform to the Langmuir binding isotherm 

(Equation 4.2). 

CK

MaxC
Bound

D +
⋅=  

Equation 4.2. Langmuir equation, where “bound” is the measured R %, "Max" is the maximum response at 
the equilibrium (R %). C is the concentration of injected analyte and KD is the dissociation constant. KD has the 

same units as C (normally M) 
 

The KD and Max values were obtained by non-linear curve fitting of the equation to the data 

using Origin software. The analyzed data were issue from the mean of all the R % values of each 

CEP divided by the number of values (11 CoCRRs). This leads to a single reflectivity value for 

each IFNγ concentration. The obtained curve is shown in Figure 4.12.  

 

 
Figure 4.12. Data fitting by the Langmuir model. Each point corresponds to the mean reflectivity value 

obtained with all the eleven CoCRR spots for a given concentration.  
 

A KD value of 505 ± 242 nM  was extracted from this curve. Although this value is far from the 

extremely strong affinity measured for IFNγ-HS interaction (KD = 1.5 nM) [147], we were positively 

surprised by the high affinity, in the nanomolar range, shown by the IFNγ towards the e-tongue.  

In addition, in order to verify if the e-tongue showed less affinity to non HSbps, we tested three 

non-sugar binding proteins charged differently at pH 7.4: human Serum Albumin (HSA, pI = 5.2), 

Immunoglobulin G (IgG) from rabbit serum (pI = 7.5), and cytochrome C from horse heart (pI = 
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10.7). The concentration used was 500 nM for all of them and injections were made exactly in the 

same experimental conditions as those of IFNγ. In Figure 4.13 we present the results obtained with 

these proteins. It can be observed that for negatively charged HSA, there is almost no interaction 

with the CoCRR array. For neutral IgG, the maximal signal is comparable to that for IFNγ at only 50 

nM, a concentration 10 times lower. For positively charged cytochrome C, as expected, there is 

more interaction with the CoCRR array and particularly with the CoCRR containing 100% sulfated 

lactose BB2. But still, the maximal signal is comparable to that for IFNγ at only 100 nM. Therefore, 

these results confirm that the e-tongue shows an interesting capacity to detec t HSbps with a 

special affinity not observed for non-HSbps . 
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Figure 4.13. CEPs corresponding to three non-sugar binding proteins at the concentration of 500 nM.  a) 

HSA b) IgG  and c) Cytochrome C . 

4.4.2. Electronic tongue/interferon γ interaction specificity 

In order to verify if the e-tongue is still able to detect IFNγ even when it is present in a 

protein-rich media, in this study, we have performed analysis of the protein in diluted fetal 

bovine serum (FBS). FBS is the blood fraction remaining after the natural coagulation of blood, 

followed by centrifugation to remove any remaining red blood cells. Fetal bovine serum is the 

most widely used serum-supplement for the in vitro cell culture of eukaryotic cells. The 

experiment was made as follows: FBS was diluted to 1% in HEPES buffer (FBS+ HEPES) and 

injected on the CoCRR array following the usual protocol. 7-minute FBS injection and 7 

minutes of buffer passage were made successively until the SPR signal upon FBS injection 

arrived to equilibrium where the signal loss after the injection was equivalent to the signal gain 

during the injection. This injection/rinse process was repeated five times until reaching the 

equilibrium. Then, IFNγ WT (50 nM ) diluted in FBS+ HEPES was injected to see if the 

presence of the cytokine was detectable in such conditions. The second protein injection (100 

nM ) was made after two more FBS injection/rinse steps. 

The obtained results are shown in Figure 4.14. In both cases (a and b) only the last two 

serum injections together with the subsequent injection of IFNγ in FBS+HEPES are presented. 

This is shown as a proof of the reached equilibrium, which ensures that the differences 

observed after the injection of IFNγ are entirely provoked by the presence of IFNγ in the 

injected solution. 
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Figure 4.14. Detection of IFNγ WT in a protein-rich media by the e-tongue: a) IFNγ WT at 50 nM and b) 

IFNγ WT at 100 nM. 
 

The results show that, when IFNγ is added to the injected solution, even if the protein content of 

FBS is important and varied, the presence of IFNγ is detected in form of a big increase of 

reflectivity in comparison to the increase induced by the injection of the serum. Very importantly, 

the increase of signal is related to the concentration of IFNγ. The higher the concentration of IFNγ 

in FBS + HEPES, the larger the increase of signal detected by the e-tongue.      

Thanks to Biuret’s method the total protein content of an FBS sample can be measured and it is 

estimated that the total protein content in this matrix can vary from 30 to 50 mg/mL [17]. After 

dilution to 1%, we obtained the total protein content of a standard sample between 0.3 and 0.5 

mg/mL. The volume of the injected solution containing 50 nM IFNγ is 1 mL, which gives a total 

mass of 8.45*10-4 mg/mL for the protein. Thus, in the injected solution, IFNγ represents  between 
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0.17% and 0.28% of the total protein present in the sample of 50 nM. In the case of the IFNγ at 100 

nM it is between 0.34% and 0.56%. 

These results confirm that, similarly to HS, the e- tongue has not only a good affinity 

to IFNγ, but also an impressive specificity.  

 

4.5. Analysis of  IFN γ mutants with the electronic tongue 

In the SAGAG laboratory (IBS, France), Dr. Lortat-Jacob and colleagues have devoted important 

efforts in their research to the understanding of the role of the C-terminal region of IFNγ in the 

interaction with HS. The impressive results by this group about how basic amino acid clusters 

contribute to IFNγ -HS binding and the forces that drive such interactions obtained to date have 

been recently published [135]. To carry out their studies, they engineered and employed a 

collection of IFNγ mutants that they kindly shared with our team to permit the pursuit of our 

investigations.  

The objective of this part of the work was to test if the e-tongue is capable of perceiving 

changes made in the C-terminal region amino acid se quence and making distinct 

recognition patterns for the different mutants. Thi s could demonstrate its potential as a 

simple tool for better understanding HS-protein int eraction mechanisms.   

4.5.1. Presentation of the mutants  

The structure of the wild type of IFNγ (IFNγ WT) and the C-terminal sequence of the studied 

mutants are presented in Figure 4.15. The expected and measured molecular masses are included 

too. Mutants can be classified in three groups: The first group was composed by 8 punctual 

mutants where a single basic arginine (R) amino acid was substituted by a neutral serine (S) one. 

The second group was composed of IFNγSD1 and IFNγSD2, where all the arginine units present in 

D1 and D2 were substituted by serine units, respectively. The third group of mutants, the deletion 

group, contained a mutant issue from the deletion of the D2 domain (IFNγΔ136) and another one 

issue from the complete deletion of both D1 and D2 domains (IFNγΔ124). 
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Figure 4.15. Presentation of the employed IFNγ mutants. On top, structure of IFNγ in its wild form with the 

amino acid sequence of the D1 and D2 domains of the C-terminal region included. On the table, the amino 
acid sequence of the two basic domains corresponding to IFNγ and each of the mutants and the expected and 

measured molecular masses. Replaced amino acids are shown in red color.  

4.5.2. CEPs of IFN γ WT and mutants obtained by the 

electronic tongue  

In this study, IFNγ WT and 12 mutants, all at the same concentration of 50 nM, were analyzed 

by the electronic tongue. Their CEPs obtained with the same CoCRR array are given below.     
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In Figure 4.16, the CEP of IFNγ WT is shown. It can be seen that IFNγ WT has higher affinity to 

CoCRRs rich in BB2 with a higher negative charge density. The maximal signal is obtained on the 

CoCRR containing 10% of BB1. 
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Figure 4.16. CEP of IFNγ WT (50 nM) obtained by the electronic tongue. 

 
The obtained results for the punctual mutants of IFNγ are shown in Figure 4.17.  

0

0.5

1

1.5

0 20 40 60 80 100

BB1 %

R
 %

S125

0

0.5

1

1.5

0 20 40 60 80 100

BB1 %

R
 %

S128

0

0.5

1

1.5

0 20 40 60 80 100

BB1 %
R

 %

S129

0
1
2
3
4
5

0 20 40 60 80 100
BB1 %

R
 %

S130

0

0.5

1

1.5

0 20 40 60 80 100
BB1 %

R
 %

S131

0
1
2
3
4
5

0 20 40 60 80 100
BB1 %

R
 %

S137

0

0.5

1

1.5

0 20 40 60 80 100
BB1 %

R
 %

S139

0

0.5

1

1.5

0 20 40 60 80 100
BB1 %

R
 %

S140

a) b) c)

d) e)

g)f) h)

0

0.5

1

1.5

0 20 40 60 80 100

BB1 %

R
 %

S125

0

0.5

1

1.5

0 20 40 60 80 100

BB1 %

R
 %

S128

0

0.5

1

1.5

0 20 40 60 80 100

BB1 %
R

 %

S129

0
1
2
3
4
5

0 20 40 60 80 100
BB1 %

R
 %

S130

0

0.5

1

1.5

0 20 40 60 80 100
BB1 %

R
 %

S131

0
1
2
3
4
5

0 20 40 60 80 100
BB1 %

R
 %

S137

0

0.5

1

1.5

0 20 40 60 80 100
BB1 %

R
 %

S139

0

0.5

1

1.5

0 20 40 60 80 100
BB1 %

R
 %

S140

a) b) c)

d) e)

g)f) h)

 
Figure 4.17. CEPs obtained for the punctual mutants of IFNγ, all at a concentration of 50 nM. In the first 

two rows, the CEPs corresponding to the mutations in D1 are given, including a) IFNγS125, b) IFNγS128, c) 
IFNγS129, d) IFNγS130, and e) IFNγS131. In the third row the CEPs corresponding to the mutations in D2 are 

given, including f) IFNγS137, g) IFNγS139, h) and IFNγS140. 
 

Interestingly, the obtained CEPs for mutants in which a single amino acid has been substituted 

are not identical, but differ in terms of intensity of the whole profile. We can classify them into three 

groups. In the first group, two of the mutants, IFNγS130 and IFNγS137, though at the same 

concentration as all the others, attain much higher reflectivity values with a maximal signal of 4.5%, 

even higher than that of IFNγ WT. This indicates that there is an increase of affinity due to the 

mutation. In the second group, including IFNγS125, IFNγS129, IFNγS131, and IFNγS140, their 
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CEPs are quite flat, but the signal intensity of IFNγS131 and IFNγS140 are much lower than the 

two formers. In the last group, including IFNγS128 and IFNγS139, their CEPs are very similar to 

that of IFNγ WT, with a maximal signal at 10% of BB1. These results provide interesting 

information about the importance of each amino acid in the domain D1 and D2 for the HS-IFNγ 

recognition. Based on the CEPs of these mutants, it can be seen that some of the amino acids in 

the C-terminal region seem to be more implicated than others in the HS recognition, which is 

consistent with the findings obtained by Dr. Lortat-Jacob’s group.   

 

Below we present together the CEPs for the mutants containing a whole muted domain (Figure 

4.18) and for the deletion mutants IFNγΔ136 and IFNγΔ124 (Figure 4.19).  
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Figure 4.18. CEPs corresponding to the mutants in which all the basic amino acid residues a) in the 

domain D1 (for IFNγSD1) and b) in the domain D2 (for IFNγSD2) were substituted by serine, respectively.  
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Figure 4.19. CEPs corresponding to the mutants a) IFNγΔ136 (deletion of amino acids 137 to 143) and b) 

IFNγΔ124 (deletion of amino acids 125 to 143)  
 

The e-tongue was found to be extremely sensitive to major changes in the domain D1 and D2. 

On one hand, we observed that the complete mutation of the basic amino acid residues present in 

the domain D1 (IFNγSD1) or the complete deletion of these two domains (IFNγΔ124) gave as a 

result complete loss of the affinity between the array of CoCRRs and the protein. On the other 

hand, we observed that when the D2 domain is completely modified (IFNγSD2) or deleted 

(IFNγΔ136) the mutants had much higher affinity to the CoCRR array.   

These results are in consistent with the biological findings reported by Dr. Hugues Lortat-Jacob. 

They have demonstrated that in vivo, unbound IFNγ is rapidly inactivated by the extensive carboxy-

terminal proteolysis that cleaves both D1 and D2 domains [150]. However, HS bound to the IFNγ 

limits the proteolytic degradations to the D2 domain only, thus enhancing the cytokine activity, see 
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Figure 4.20. [150, 151] [139]. The D2 domain, in maximizing the association rate of IFNγ with HS, 

can thus be viewed as a motif enabling the cytokine to escape inactivation through D1 processing. 
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Figure 4.20. The D1 and D2 domains of IFNγ are important for the interaction with the HS [144]. The D1 

domain seems to be involved in the interaction of the cytokine with its specific receptor [148]. For the activity 
of the cytokine, the loss of the domain 2 gives it a maximal activity, while the loss of both domains doesn’t 

permit the transduction of its signal Adapted form reference [152]. 
 

   Moreover, PCA was carried out based on these results. The data, containing 11-dimensions 

were previously normalized. Resulting score plot is presented in Figure 4.21 . 

 
Figure 4.21. Two-dimensional PCA score plot for classification of IFNγ (red dot) and its mutants. 

 
The obtained graphic shows that the mutants can be classified along the axis of the most 

important principal component PC1 into three clusters. The spot corresponding to IFNγ (in red) is at 
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the centre of the graphic All around, in green, we find all the points corresponding to the punctual 

mutants. Unfortunately, no good discrimination between these punctual mutants could be 

observed. Global mutation or deletion of the D2 domain originated a new cluster (in yellow), which 

is located on the left hand and clearly separated from the others. Finally, the total mutation of the 

D1 domain and the total deletion of the C-terminal domain of the protein resulted in two spots 

which were also clearly apart from the central cluster; this time on the right hand of the graphic.  

These results show that the e-tongue is able to per ceive fine modifications made in the 

C-terminal region amino acid sequence of IFN γ and to differentiate its various mutants with 

very similar structures. This confirms that the e-t ongue is able to mimic biological 

properties of HS and could be employed as a simple tool for better understanding of the 

nature of HS/protein interactions.  

4.6. Study of the nature of the interactions betwee n the 

electronic tongue and proteins 

To better understand the nature of the interactions between the electronic tongue and HSbps, 

and more importantly, to understand the role of BB1 and BB2 in these interactions, we have carried 

out protein analysis by replacing lactose (BB1) and sulfated lactose (BB2) with other BBs. 

Meanwhile, this permits us to evaluate the importance of the first level of complexity for the e-

tongue system as a HS mimetic.   

In this study, BB1 was replaced by BB3, which is a non-sugar molecule, neutrally charged and 

which possess a comparable molecular length. BB2 was replaced by BB4, which is also a non-

sugar molecule but negatively charged with almost the same molecular length as BB3, see Figure 

4.21. Two proteins were chosen: IFNγSD2, with high affinity to BB2-rich CoCRRs, and ECL, with 

high affinity to BB1-rich CoCRRs. This work was done in collaboration with Benjamin Musnier 

during his internship (equivalent M2) in 2013.  
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Figure 4.22. Molecular structures of BB3 and BB4.  

 
For this study, all BB mixtures were deposited on the same prism, including 11 BB1/BB2 

mixtures as described in Chapter 2 for reference, 11 BB1/BB4 mixtures with same ratios as 

BB1/BB2 mixtures only replacing BB2 with BB4, and 11 BB3/BB2 mixtures with same ratios only 

replacing BB1 with BB3. For each mixture, three replicates were used. Therefore, there were 99 

spots deposited on the same prism in total. Here experimental preparation details are not given. 

The important point is that for protein analysis with this new array, the same procedures and same 

conditions were used for SPRi measurements.  
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In the following Figure 4.23, the CEPs of IFNγSD2 (50 nM) on the arrays composed of different 

BB mixtures are given.   
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Figure 4.23. CEPs corresponding to IFNγSD2 (50 nM) obtained with the array a) containing 11 BB1/BB2 

mixtures, b) containing 11 BB3/BB2 mixtures, and c) containing 11 BB1/BB4 mixtures. 
 

Either when BB1 is replaced by BB3 (Figure 4.23b) or when BB2 is replaced by BB4 (Figure 

4.23c), the protein recognition pattern undergoes strong modification. Replacement of BB1 by BB3 

results in a flat profile with a little bit higher signal intensity for the CoCRRs rich in BB2 very 

probably due to electrostatic interactions, showing that the presence of BB1 is necessary for high 

affinity recognition. Replacement of BB2 by BB4 results in a flat profile, which proves that BB2 is 

also highly involved in the recognition related to not only its negative charge but also its structure.  

 

 In previous chapters it has been shown that combinatorial surfaces present more interesting 

properties than surfaces composed of pure BB1 or pure BB2. In Figure 4.24, CEPs obtained upon 

injection of ECL (200 nM) on the array composed of different BB mixtures are shown. The CEP of 

ECL (Figure 4.24a) obtained with the CoCRR array containing BB1/BB2 mixtures shows clearly the 

interest of mixing BBs. The protein has higher affinity to the CoCRRs containing 30% to 80% of 

lactose BB1 than to the CoCRR containing 100% of BB1, though it is known that ECL is specific to 

lactose.  

The role of each of the BBs in ECL recognition was then studied. When BB1 was replaced by 

BB3 the signal on all BB3/BB2 mixtures is relatively low (Figure 4.24b). The maximal signal is 

obtained for the mixture containing 100% sulfated lactose BB2, which is very probably due to 

electrostatic interaction with the protein. For signal on the other mixtures, the higher the percentage 

of BB3 in the mixture, the lower the signal intensity. When BB2 was replaced by BB4 (Figure 

4.24c), the intensity of signal is proportional to BB1% in the mixture with a maximal for 100% of 

lactose BB1. This illustrates that BB4 plays the role of a simple diluent while BB2 plays a more 

important role rather than a diluent.  
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Figure 4.24. CEPs corresponding to ECL (200 nM) obtained with the array a) containing 11 BB1/BB2 

mixtures, b) containing 11 BB3/BB2 mixtures, and c) containing 11 BB1/BB4 mixtures. 
 

These results show that by combining lactose and sulfated lactose, combinatorial surfaces with 

surprising novel biological properties can be obtained. Their biological properties are dependent 

not only on charge of the used BBs but also on sugar structures of BBs, in an even more important 

way. This affirmation is consistent with the comparison made between the first and second 

levels of diversity in HS structure and the e-tongu e properties.  

4.7. Conclusions of the chapter 

It has been demonstrated in this chapter that the e-tongue is very powerful for protein analysis, 

capable of differentiating even between mutants with very similar structures. But more interesting, 

our e-tongue system can mimic biological properties of heparan sulfate, useful as a simple tool for 

better understanding of HS/protein interaction and the elucidation of the role of different protein 

fragments involved in the recognition processes. In addition, it has been proven by combining 

lactose and sulfated lactose, combinatorial surfaces with surprising novel biological properties can 

be obtained and they are essential for the high affinity of the e-tongue to Hsbps, The biological 

properties of combinatorial surfaces are dependent not only on charge of the used BBs but also on 

sugar structures of BBs, in an even more important way. This is very promising in the design of 

new biomimetic nanovectors. In this regard, we proposed that the e-tongue could be used as a 

medium-throughput screening tool for the selection of BB mixtures with biologically interesting 

surface properties. This point will be addressed in the next chapter.  
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Résumé en français du chapitre 5  

Préparation de nanovecteurs biomimétiques 3D par un e 

approche basée sur langue électronique 
 

Depuis la commercialisation d’Arixtra®, un fragment de glycosaminoglycane (GAG) avec 

propriétés  antithrombotiques, les interactions GAG-protéine sont au centre d’une recherche 

intense. La recherche de médicaments de type GAG nécessite l’étude structurale des fragments 

qui reconnaissent de façon spécifique la molécule thérapeutique visée. Cette approche peut vite 

devenir très compliquée à cause des problèmes associés à la synthèse de carbohydrates. Ce 

chapitre est donc dédié au développement d’une nouvelle approche qui consiste à mimer les 

propriétés biologiques  des fragments de GAG pour la reconnaissance des protéines en utilisant 

des surfaces 3D exposant des disaccharides, assimilables à des nanovecteurs biomimetiques. 

Cette partie a pour origine le projet NanoGAG déposé avec l’équipe du Prof. Bonnaffé à Orsay.  

Dans ce chapitre, du fait de sa capacité pour tester une grande quantité de mélanges de 

disaccharides de façon efficace, la langue électronique a été utilisée comme moyen de criblage de 

surfaces 2D bioactives. Le but était de transférer la surface bioactive 2D sélectionnée à une 

surface tridimensionnelle. Le support 3D choisi pour cette étude est celui des nanoparticules d’or. 

Comme il est présenté dans l’introduction de ce chapitre, les nanoparticules d’or ont déjà une riche 

histoire d’applications et de recherche dans le domaine du biomédical et du diagnostic. Cette 

grande expérience de ces objets, ainsi que le fait que l’or soit le matériau employé comme base 

pour le greffage des disaccharides durant l’élaboration des langues électroniques, nous ont 

encouragés à utiliser des nanoparticules d’or pour cette étude. 

Une fois la surface 2D d’intérêt identifiée, la préparation des nanovecteurs est simple grâce à 

l’affinité entre les disaccharides thiolés et les nanoparticules d’or. La concentration de 

nanoparticules peut être calculée et suivie par spectrométrie UV-Visible grâce au pic d’absorption 

caractéristique des nanoparticules d’or d’environ 20 nm à 523 nm. La position du pic est 

dépendante du rayon des particules, ce qui permet de détecter l’attachement de molécules 

volumineuses sur les nanoparticules ainsi que l’agrégation des nanoparticules. Cette agrégation 

peut aussi être détectée par une perte d’intensité du pic d’absorption : le pic est proportionnel à la 

concentration de particules en suspension, et donc, sensible à la diminution de particules en 

solution provoquée par la formation d’agglomérats de particules. 
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La première difficulté rencontrée lors de la préparation de ces nanovecteurs fut leur instabilité 

en milieu salin. Une solution fut trouvée en modifiant les chaînes espaceurs des BBs par l’ajout 

d’une chaîne de polyéthylène glycol (PEG). Les nanoparticules fonctionnalisées avec les BBs 

contenant les chaines PEG sont beaucoup plus stables. Cela fut montré par des études en milieu 

salin, par spectroscopie UV-Visible, ainsi qu’à fortes concentrations, par SAXS.  

La caractérisation des nanoparticules s’est terminée par une estimation théorique et 

experimentale de la densité de ligands attachés par nanoparticule. 

Les propriétés biomimétiques des nanovecteurs furent testées au cours d’essais biologiques. 

Ces essais ont consisté à démontrer qu’il existait une certaine affinité entre les nanovecteurs et 

une protéine visée. Pour être spécifique, cette affinité ne doit pas exister dans le cas où le 

nanovecteur est fonctionnalisé avec une surface qui n‘a pas montré d’activité préalable envers la 

protéine. Ces théories ont été confirmées par des tests SPRi et ELISA. Les résultats préliminaires 

montrent que les nanovecteurs synthétisés possèdent une affinité envers les protéines testées. 

Ces premiers résultats positifs encouragent à poursuivre la recherche dans cette direction. 



Preparation of 3D Biomimetic 

Nanovectors through Electronic 

Tongue Based Approach 

 

5.1. Nanotechnology in biomedical applications 

Nanotechnology, a constantly expanding field, is nowadays able to provide the community with 

nanometric materials of controlled sizes (ranging from 1 nm to 100 nm), geometries (spheres, rods, 

shells...), core materials (organic, inorganic) and functionalities. Besides, as fabrication methods 

improve, new high technological characterization methods have progressively been developed 

giving rise to an era where the application of these materials becomes more challenging than their 

fabrication. 

One of the greatest challenges in nanomaterials is their application in biomedicine. 

Nanomaterials find their place in this field thanks to their size scale which is comparable to that of 

biomolecules such as proteins, see Figure 5.1. Thus, when coupled to appropriate functionalities, 

nanoparticles (NPs) become excellent tools for many biological applications at the cellular and 

molecular level [153]. The new and vast scientific area born from the application of nanomaterials 

to biomedicine is called nanomedicine. [154]  
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Figure 5.1. Illustration of the similar dimensions between nanoparticles (NPs) and biological entities, which 

favours the synergy of nanomaterials and biomedicine. Adapted from [155] and [153] 

5.2. Gold nanoparticles and nanoconjugates 

1.2.1 Gold nanoparticles 

Among the diverse NPs containing organic, metallic and semiconductor materials as core 

materials (each of them showing characteristic physical, chemical and electronic properties) [156] 

[157-159] gold nanoparticles (Au NPs) are probably the most studied ones. 

Au NPs have a rich history in chemistry, dating back to ancient roman times where they were 

used to stain glasses for decorative purposes. Characteristically, Au NPs exhibit a strong 

absorption band in the visible region which can be considered as small particle effect since it is 

absent in the individual atom as well as in the bulk metal. The physical origin of the light absorption 

by metallic NPs is the surface plasmon resonance, the collective oscillation of the conduction band 

electrons across the NP (diameter d<<λ, where λ is the wavelength of the light) [160]. The 

resonance frequency of this SPR is strongly dependent upon the size, shape, dielectric properties 

and local environment of the NPs. In colloidal solutions, the color of Au NPs may range from red to 

purple depending on their size. The most popular example of the use of Au NPs with decorative 

purposes is the Lycurgus cup, a fourth-century Roman chalice which under ambient lighting 

appears green, but when illuminated from the inside, shines bright red due to nanometric gold and 

silver particles embedded in the glass, as shown in Figure 5.2.  
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Figure 5.2. The Lycurgus cup (British Museum, London, UK). Under ambient lighting, on the left, and 

illuminated from the inside, on the right. 
 

The modern era of Au NPs began in 1857 with the work of Michael Faraday entitled 

Experimental Relations of Gold (and Other Metals) to Light.  It was possibly the first work 

discussing that colloidal gold solutions have properties that differ from bulk gold. [161, 162] In the 

20th century, and especially in the last decade, several methods for the preparation of gold colloids 

were reported. At present time, reliable and high-yielding methods for the synthesis of Au NPs 

have been already established [163].  

Resulting NPs have unique properties such as size and shape dependent optical properties, a 

high surface area to volume ratio, and easily modifiable surfaces. This last property permits to 

introduce a wide range of functionalities on the surface of NPs, which is one of the key attractions 

for the use of these materials in biology and medicine. 

Though barely applicable to real patients, some therapeutic effects have been observed for 

non-functionalized/bare Au NPs. It was found that 5 nm Au NPs exhibit anti-angiogenic properties 

in both in vitro and in vivo studies. This mechanism was explained by the ability of Au NPs to bind 

heparin-binding glycoproteins on the surface of endothelial cells and subsequent inhibition of their 

activity [164]. Non-functionalized Au NPs can also be applied to photothermal therapy. 

Photothermal therapy takes advantage of the ability of Au NPs to absorb light in the near infra-red 

region of the spectrum, where absorption of biological fluids and tissues is minimal, and convert it 

to heat to destroy cancer cells, bacteria and viruses. [165] [166] [167] The Au NPs can also be 

used together with other elements in composite materials to fabricate gold-containing devices such 

as thermo-sensitive microcapsules, films and hydrogels, to trigger drug release [168]. 

 

1.2.2. Gold nanoconjugates 

 

More importantly, Au NPs can be easily conjugated with various molecules, including small 

inactive molecules, DNA, proteins, carbohydrates etc. The functionalized NPs are called 

nanoconjugates, as illustrated in Figure 5.3. 
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Figure 5.3. Illustration of the variety of ligands to which gold nanoparticles can be conjugated. Figure 

adapted from [169] 
 

Gold nanoconjugates find many kinds of applications in the field of nanomedicine, including 

biodiagnostics for detecting target nucleic acids, proteins and other biologically relevant molecules, 

[170-176], therapeutics, where they are used as agents for killing cancer cells, bacteria and 

viruses, or as carriers for drug and gene delivery. [168] In addition, the versatility of gold 

nanoconjugates can be increased by incorporating multiple functional groups into one NP.  

In the following part, some examples will be given for illustration.   

a) Au NPs conjugated to small inactive molecules 

Recently, it has been reported that Au NPs conjugated to small molecules with no therapeutic 

effects have potential for drug agents. This is very promising since it could greatly accelerate the 

discovery of effective new drug formulations [177]. A remarkable work was done by the group of 

Daniel L. Feldheim [177]. They demonstrated that by anchoring a biologically inactive small 

molecule onto Au NPs, the obtained nanoconjugates were able to effectively inhibit HIV-1 fusion to 

human T-cells. A similar example was provided by Baram-Pinto et al., who proposed to mimic the 

polysulfonated heparan sulfate simply by anchoring an inactive small molecule 

mercaptoethanesulfonate on a Au NP surface. This approach was shown to be efficient in the 

inhibition of Herpes virus type 1 infection [178]. 

Further work of Feldheim’s group was dedicated to the creation of a library of thiol-monolayer-

coated Au NPs. The employed thiols had simple structures, as shown in Figure 5.4, and were 

mixed at different proportions to obtain 119 nanoconjugates in total. This permitted the discovery of 

Au NPs with potent activity for Escherichia Coli growth inhibition and inhibitors of the gram-positive 

bacterium Staphylococcus Aureus [179] [180].  

This inspiring work suggested that the display of ligand mixtures on Au NPs could present new 

opportunities in the rapid identification of nanomaterials with biological activity toward a range of 
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microbes. However, in our opinion, this approach could be further improved if, instead of the 

preparation of a great number of nanoconjugates in a random way, a previous multiplexed step for 

the screening of active surface coverings using a microarray technique was added. 

 
Figure 5.4. Chemical structures of thiols used for creation of a library of thiol-monolayer coated Au NPs. 

[180] 

b) Au NPs conjugated to drug molecules 

Au NPs have been conjugated to drug molecules to enhance their activity. Two types of drugs 

have been mainly tested: antibiotics and anticancer drugs. In the case of NPs conjugated to 

antibiotics including vancomycin [181] [182], ampicillin [183] or cefaclor [184], enhanced activity 

against bacteria was observed. This activity enhancement is mainly due to the high density of the 

drugs obtained upon conjugation to NPs, although some theories suggest that the antibiotic activity 

is also dependent on the particle structure [184]. 

 Au NPs have also been explored to develop more efficient anticancer drugs. Cancer is a major 

target of new therapeutics because of the drawbacks associated with current treatment strategies 

which include large systematic side effects due to the non-specificity of many cancer drugs such as 

cisplatin, paclitaxel, tamoxifen or doxorubicin [185]. Attachment of anticancer drugs to Au NPs can 

lead to increased toxicity compared to free drug. However, this can be seen as an advantage if 

combined with increased specificity of the drug conjugate to cancer cells. In general, two 

approaches can be adopted for targeting therapeutics and avoid accumulation in healthy tissue: 

passive targeting and active targeting. Passive targeting takes advantage of the Enhanced 

Permeability and Retention (EPR) effect, illustrated in Figure 5.5, based on the fact that certain 

sizes of molecules (typically liposomes, NPs, and macromolecular drugs) tend to accumulate in 

tumour tissue much more than they do in normal tissues, due to the leaky and abnormal in form 

and architecture tumour vasculature [186, 187].  
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Figure 5.5. Illustration of the complex environment NP–drug conjugates experience upon intravenous 
delivery. Initially, particles flow through the vascular system (red), diffuse through the leaky endothelial walls 

associated with several diseases (dark gray), and finally reach the targeted cell (enlarged box). From 
reference [188]. 

 

Active targeting involves the attachment of antibodies or other targeting moieties (small 

molecules, biopolymers, peptides, oligonucleotides, fatty acids [185]) to the NPs often targeted to 

over-expressed binding domains on cancer cells compared to regular cells [189]. 

c) Au NPs conjugated to nucleic acids 

Because of the extreme importance of nucleic acids in biological systems, learning to modulate 

the transcription and translation of DNA and RNA is expected to make gene therapy an important 

treatment methodology in the near future. Thus, being able to deliver inside cells a wide variety of 

oligonucleotides, such as plasmids, double stranded DNA, single stranded DNA, and single 

stranded RNA, could have large therapeutic benefits. However, due to their highly negative charge, 

these molecules cannot enter the cell without the help of some sort of delivery vehicle [185]. 

Au NPs are attractive platforms for DNA/RNA delivery thanks to their high surface-volume ratio 

that maximizes the payload-carrier ratio and enables efficient DNA/RNA compaction. DNA can be 

attached to NPs either by electrostatic interactions or by thiol modification of the DNA molecule, 

allowing direct anchorage of the DNA molecule on the Au NPs thanks to its strong affinity for gold 

surfaces. For the former, usually NP surfaces are charged positively by a monolayer containing 
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substituents like cationic quaternary ammonium [190] [191] [192], primary amines [193{Kawano, 

2006 #221]}, amino acids [194, 195], cyclodextrin-oligo(ethylenediamino) complexes [196] or 

polyethylenimine  [197]. The positive charge of the nanoconjugate surface permits a non-covalent 

attachment of the DNA through electrostatic interaction and protects it from enzymatic digestion, 

see Figure 5.6. Interestingly, it has been reported that modified NPs show, in some cases, better 

transfection efficiency than the commercially available polyethylenimine or lipofectamine 2000, 

widely used transfecting agents. 

 
Figure 5.6. Example of the strategy for release of DNA from a photocleavable DNA-Au NP complex upon 

irradiation within the cell. From references [162, 191] 
 

For the latter, DNA and RNA, generally modified with a thiol moiety, have also been 

successfully employed for gene silencing applications [198] [199]. It has been proven that this type 

of nanoconjugates can be digested by restriction enzymes and expressed as functional proteins 

inside mammalian cells [200]. Besides, it has been demonstrated that by covering the NPs with 

promoter DNA, DNA transcription could be inhibited [201].  

In addition to intracellular applications, DNA-Au NPs have also been used for the development 

of colorimetric assays for detection of cancer cells [202]. In this case, Au NPs were functionalized 

with a monolayer of aptamers selected to have a high affinity for surface receptors expressed by a 

cancer cell line. The aptamer-functionalized nanoconjugates assemble on the cell surfaces, 

causing an interaction of their surface plasmon resonance and, thus, a red-shift in the extinction 

spectra. Detection could be made by the naked eye or using a spectrometer, making the assay 

potentially useful for cancer diagnosis or disease screening. 

d)  Au NPs conjugated to proteins 

Antibodies are the most often used molecules to provide specificity and bioactivity to NPs, in 

particular, for active targeting purposes. It is possible to find antibodies that recognize an 

extraordinarily large number of antigens ranging from large pathogens (viruses, bacteria…) to small 
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molecules (hormones, drugs, bacterial toxins…) with high specificity [189]. This property has also 

permitted the development of novel sensing methods based on antibody-Au NP conjugates. For 

instance, in Figure 5.7, we present the example of NanoDLSayTM where the formation of a 

nanoconjugate cluster or the increase of the size of single nanoconjugate due to analyte 

attachment can be made by dynamic light scattering (DLS) particle size measurement. 

 
Figure 5.7. The principle of NanoDLSayTM. Two assays are illustrated: A) Analyte binding induced NP 

cluster formation and B) Analyte binding induced individual NP size increase. In both cases, the particle size 
change of the assay solution is measured by dynamic light scattering. From [175] 

 

Proteins of therapeutic interest can also be attached to NPs. This can be made non-covalently 

via electrostatic interactions or covalently without altering their biological activities. Many examples 

are found in the literature, including intracellular delivery of β-galactosidase [203], transmucosal 

delivery of insulin [204], or delivery of TNF-alpha, a cytokine with anti cancer efficacy, into 

mammary carcinomas grown in mice [205].  

Moreover, NP-protein conjugates have been exploited as vaccine candidates. They are 

reviewed in the reference [155]. Herein, a very promising example is given. Recently, Stone and 

his colleagues have devoted to prepare a vaccine based on Au NPs against respiratory syncytial 

virus (RSV), a virus causing pneumonia in children [206]. To do so, they attached the major 

protective antigen of the virus, the fusion protein, on the surface of gold nanorods with the aim of 

mimicking the virus. To ensure high stability of the nanoconjugates in a physiological environment 

after inoculation in vivo, the covalent binding approach was chosen. It was shown that the 

nanoconjugates induced successfully human immune response. 

e)  Au NPs conjugated to carbohydrates  

Carbohydrate-mediated interactions are central to many important biological phenomena. 

Characteristic features of most interactions involving carbohydrate are high specificity and low 

affinity. Nature overcomes this low affinity by simultaneously engaging multiple ligands for binding, 

leading to enhanced avidity through the multivalency effect. In this regard, carbohydrate-coated 

NPs, also called glyconanoparticles (glycoNPs), present a good bio-mimetic model of carbohydrate 

presentation on the cell surface [207]. The large surface areas of NPs permit the immobilization of 

multiple carbohydrate ligands, which can potentially enhance the weak affinities of individual 

ligands to their binding partners. Applications of these kind of nanoconjugates include the study of 
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interactions where sugars are involved (carbohydrate-carbohydrate, carbohydrate-protein), 

biolabelling, bio-amplification strategies, as well as biomedicine [153, 208].   

GlycoNPs as tools for carbohydrate-carbohydrate and  carbohydrate-protein 

interaction study 

GlycoNPs have been intensively used to investigate carbohydrate-carbohydrate interactions as 

well as carbohydrate-mediated cell-cell interactions by Penadés and co-workers [155]. They proved 

the requirement of Ca2+ ions for certain carbohydrate-carbohydrate interactions thanks to the 

aggregation of glycoNPs mediated by the mentioned cation, and they could study the kinetics of 

these interactions thanks to SPR measurements [209] [153]. 

These multivalent systems have been also used for the study of carbohydrate-protein 

interactions. In a similar way as for carbohydrate-carbohydrate interaction studies, carbohydrate-

protein interactions can be detected by the aggregation of the glycoNPs in presence of the studied 

protein (see Figure 5.8) [210] or by competition experiments made using the glycoNPs (see Figure 

5.9). [211].  

 

 
Figure 5.8. Schematic representation of the reversible aggregation-dispersion behavior of lactose-coated 

Au NPs by sequential addition of RCA120 lectin and galactose with the corresponding color changes of the 
solution. From reference [210]. 
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Figure 5.9. Schematic illustration of the interactions of glyconanoparticles and ConA on a biosensor chip 

during a competition assay. From reference [211]. 
 

GlycoNPs as biolabels 

The strong affinity given by the multivalent ligand presentation by the glyconanoconjugates 

combined with the good visibility of Au NPs by transmission electron microscope makes these 

entities good candidates as biolabels. There is an interesting example of this application provided 

by the selective binding of mannose Au NPs to FimH adhesin of bacterial type I pili. The selective 

binding of the nanoconjugates to the bacterial type I pili observed by transmission electron 

microscope presented a novel method of labelling specific receptors for carbohydrates on the cell 

surface using glycoconjugates [212]. 

 

GlycoNPs for bio-amplification strategies 

The easily observable aggregation of glycoNPs can be exploited for bio-amplification strategies. 

This was proved by Geddes et al., who developed a method to quantify glucose by monitoring the 

changes in the plasmon absorption of gold glycoNPs conjugated with a high-molecular-weight 

dextran. The method was based on the aggregation of Au NPs with ConA, which results in a 

significant shift and broadening of the gold plasmon absorption. The addition of glucose 

competitively binds to ConA, reducing Au NP aggregation and therefore decreasing the plasmon 

absorption [173]. 

 

GlycoNPs in biomedicine 

GlycoNPs constitute a good biomimetic model to intervene in carbohydrate-mediated biological 

processes and, thus are promising for biomedical applications. 

Several groups have proposed the conjugation of heparin to NPs with different purposes like 

inhibiting basic fibroblast growth factor-2 induced angiogenesis [213] or enhancing its anticoagulant 

activity [214]. However, the extreme complexity of polysaccharide design and synthesis has 

encouraged the research and development of more simple approaches to construct glycoNPs with 

biomedical interest.  
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Reynolds et al. have used small carbohydrate molecules galactose and fructose for preparing 

glycoNPs. They have shown that obtained glycoNPs were efficient inhibitors for two lectins (PA-IL 

and PA-IIL), responsible of the virulence and host invasion of Pseudomonas aeruginosa, an 

opportunistic bacteria responsible of numerous infections [215]. This was made via the so-called 

anti-adhesive approach, illustrated in Figure 5.10, which has been used not only for the prevention 

of pathogen invasion but also for anticancer applications. One of the critical steps of metastasis is 

the adhesion of tumour cells to vascular endothelium, which permits the growth of new tumour foci. 

Carbohydrate-carbohydrate interactions between glycosphingolipids expressed on the tumour and 

endothelial cell surfaces are involved in the adhesion step. Therefore, inhibition of this process by 

glycoNPs could provide effective anti-adhesion therapy and thus, avoid metastasis progression. 

[216] 

 

 
Figure 5.10. Possible action mechanism of glyconanoparticles in anti-adhesive therapy. From reference 

[209]. 

5.3. Objective of the chapter 

Since the commercialization, in 2002, of Arixtra(R), a synthetic antithrombotic GAG fragment, 

GAG-protein interactions have been the centre of intense research. Search of new GAG type drugs 

rely on the elucidation of the structures of fragments binding specifically to the therapeutic target. 

However, this approach generally involves tremendous synthetic efforts in carbohydrate synthesis. 

In this context, a project (ANR 06-NANO-045, 2006-2010) has been proposed by Prof. David 

Bonnaffé (University Paris-Sud, Orsay), Hugues Lortat-Jacob (IBS, Grenoble) and our lab. In this 

project, we have proposed to change drastically the approach. Instead of preparing GAG fragments 

or mimetics, we have decided to mimic directly the ability of GAG fragments to bind specifically a 

given protein by the multivalent display of more easily accessible synthetic disaccharides on a 3D 

surface, such as nanoparticles, for preparation of biomimetic nanovectors.  

In this study, the developed electronic tongue is u sed as a medium throughput 

screening technique for bioactive 2D combinatorial surfaces since it permits to test the 
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maximum of disaccharide mixtures on a single array in a highly efficient way. Once the 

combinatorial surface of interest chosen, it will b e then transferred to a 3D surface (NPs) for 

preparation of biomimetic nanovectors. 

5.4. Preparation of 3D biomimetic nanovectors 

As illustrated in Figure 5.11 for preparation of 3D biomimetic nanovectors, first, different building 

blocks are mixed with well-defined composition and ratio. The mixtures are spotted on the SPRi 

prism for screening of bioactive combinatorial surfaces. For this, the interaction between all the 

obtained combinatorial surfaces and the protein of interest are measured simultaneously by SPRi 

so as to determine the composition of the combinatorial surface which has the strongest affinity to 

the target protein. Once the combinatorial surface of interest chosen, the same composition is then 

transferred to a 3D surface (NPs) for preparation of biomimetic nanovectors. 
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Figure 5.11. Schematic illustration for preparation of 3D biomimetic nanovectors through electronic tongue 

based screening of 2D bioactive combinatorial surfaces.  
 

For proof of concept and as preliminary tests, we decided to prepare biomimetic nanovectors 

based on our previous results. That is to say, the two disaccharides lactose and sulphated lactose 

are used as BBs and the studied proteins, such as IFNγ, are used as protein of interest. For 

example, based on the CEP generated with the electronic tongue, we can easily determine that the 

combinatorial surface containing 10% BB1 and 90% BB2 is the most active one to IFNγ, as shown 

in Figure 5.12. Therefore, the mixture of BB1 and BB2 containing 10% of BB1 will be used for 

preparing the corresponding bioactive biomimetic nanovector.  
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Figure 5.12. Screening of the 2D bioactive combinatory surface based on CEP generated by the electronic 
tongue in order to determine the composition of BB mixture for preparing the 3D biomimetic nanovector.   

5.4.1. Choice of nanoparticles 

In this study, gold nanoparticles were chosen as a multivalent 3D scaffolds, not only because 

they are widely studied in the literature but also because gold is the material used for the electronic 

tongue with SPRi detection system.  

Although a variety of methods for synthesizing Au NPs have been reported [160], for this work 

we decided to use commercially available colloid solutions in order to avoid synthesis and 

characterization steps and ensure experimental reproducibility. The ones used during the 

experiments of this section were purchased from Sigma-Aldrich and BBInternational.  

However, the exact molar concentration of Au NP suspension is often not given by the supplier. 

In our study, for preparation of the biomimetic nanovector by functionalizing Au NPs with the BB 

mixtures, this parameter is important to know. There are different ways to calculate the molar 

concentration of Au NPs.  

If Au NPs are synthesized from a salt solution of HAuCl4, the concentration can be calculated as 

follows [217]:  

Assuming spherical shape and uniform face-centered cubic (fcc) structure, the average number 

of gold atoms (N) per nanosphere can be calculated by applying the following equation: 

M

D
N

3

6

ρπ=  

Equation 5.1. Average number of gold atoms per NP. ρ  is the density of fcc gold (19.3g/cm3), D is the 

diameter of the NP and M stands for the atomic weight of gold (197 g/mol). 
 

Substituting the known data in the equation gives the number of gold atoms per particle as a 

function of the diameter: 

389602.30 DN =  
Equation 5.2. Average number of gold atoms per NP as a function of the diameter (in nm) of the NP. 

 

For example, for Au NPs of 20 nm, this leads to a number of 2,47x105 gold atoms per particle. 

The molar concentration of a nanosphere solution is calculated by dividing the total number of 

gold atoms (Ntotal, equivalent to the initial amount of gold salt added to the reaction solution) over 

the average number of gold atoms per nanosphere (N) according to the following equation: 

A

Total

NVN

N
C =   

Equation 5.3. Calculation of the molar concentration of Au NP solution. V is the volume of the reaction 
solution in liters and NA is the Avogadro’s constant.  It is assumed that the reduction from gold (III) to gold 

atoms was 100% complete. 
 

In our study, this calculation was used for the 20 nm Au NPs purchased from Sigma-Aldrich, in 

which the only concentration specified was 1% of gold. A concentration of 1.2 nM was obtained for 

this solution.  

Another common method used for calculation of the molar concentration of Au NP is based on 

measurement of the characteristic absorbance peak of gold colloids (at 523 nm for Au NPs of 20 
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nm) using UV-spectroscopy. The intensity of the peak is proportional to NPs concentration. This 

method is very useful in certain cases, for instance, to control the concentration of NPs after a 

centrifugation cycle or to check if there is any loss of NPs due to aggregation after a long period of 

storage.  

For the Au NPs of 20 nm purchased form BBInternational, the concentration was specified on 

the product notice: 1.16 nM. By plotting the solution absorbance at 523 nm versus different 

concentrations, we made a calibration curve, as shown in Figure 5.13. Based on it, we can 

determine concentration of Au NPs at any moment of our experiment for controlling the quantity of 

the particles simply by making an absorbance measurement. Calibration curve was also made for 

Au NPs of 5 nm and 10 nm.  
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Figure 5.13. Calibration curves derived from the absorbance of colloidal solutions of controlled 

concentrations.  
 

In addition, the correlation between the two calculation methods was checked using the solution 

of 20 nm Au NPs provided by Sigma-Aldrich. As shown previously, using the first calculation 

method, we obtained a concentration of 1.2 nM for this solution. After measuring by UV 

spectroscopy, the absorbance of this solution at 523 nm was 0.12 a.u., which corresponded to a 

concentration of 1.2 nM. As a consequence, the two calculation methods are consistent. 

5.4.2. Choice of building blocks used for the funct ionalization of 

Au NPs 

In this study, Au NPs were first functionalized with mixtures of BB1 and BB2 at various ratios 

by simply mixing the colloid solution and the BB mixtures at defined concentrations. After then, 

these functionalized NPs were re-dispersed in different media, including ultrapure water, HEPES 

buffer solution with and without NaCl, in order to study their stability under different conditions.  

The stability of Au NPs can be simply evaluated by the color of the colloid solution. The 

characteristic red color caused by the surface plasmon absorption around 520 nm indicates good 

dispersion of Au NPs in the solutions. When aggregation occurs, solutions turn to blue since 

particle distance decreases and, thus, colloid solutions absorb at longer wavelengths. When total 

aggregation occurs, solutions become clear because the aggregates deposit at the bottom.  
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As seen in Figure 5.14, all functionalized NPs solutions were stable in ultrapure water. 

However, when they were re-dispersed in HEPES buffer containing NaCl, all the colloid solutions 

immediately turned to light blue except the BB2-coated NPs, which are strongly negatively 

charged. This is not surprising since it is known that the presence of charge on Au NP surface can 

give rise to columbic repulsion and thus favors dispersion of the NPs. Nevertheless, the coulombic 

repulsion can be diminished by the addition of a salt, leading to precipitation of the NPs or “salting 

out” [218]. Usually, physiological salt concentration (around 150 mM) is sufficient to cause 

precipitation of NPs lacking additional stabilization. In order to confirm that the instability of 

functionalized Au NPs is due to the presence of NaCl in the buffer, another set of experiments were 

performed by re-dispersing all functionalized Au NPs in the same HEPES buffer solution but 

without NaCl. As expected, all functionalized NPs stayed dispersed. These results revealed that 

the Au NPs functionalized with mixtures of BB1 and BB2 were not suitable to potential applications 

in nanomedicine due to their intrinsic instability in physiological conditions. Consequently, we 

decided to search for new BBs for preparation of biomimetic nanovectors.  

 

 
Figure 5.14. Photography of functionalized Au NPs with BB1 and BB2 mixtures at different ratios after re-

dispersion in different media.  
  

It was reported in the literature that hydrophilic polyethylene glycol (PEG) chains can be used 

as an effective coating materials for stabilizing NPs. On one hand, they could render functionalized 

NPs more hydrophilic and favour suspension of NPs; on the other hand, they could increase steric 

hindrance of functionalized NPs and thus avoid aggregation of NPs. [219, 220] [221] [222] [223] 

[224]. In addition, PEG has been extensively used as a biomaterial because of its low toxicity and 

low immunogenicity [225].  

Therefore, we decided to integrate a PEG spacer in the BB1 and BB2. Two new building blocks 

were synthesized and provided by Prof. David Bonnaffé. Their structures are given in Figure 5.15. 

In this thesis, they are called BB1-PEG and BB2-PEG, respectively. Comparing to the structures of 

BB1 and BB2, the most important feature, the terminal functional group lactose and sulfated 
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lactose, is conserved for BB1-PEG and BB2-PEG. Two major differences include the insertion of a 

PEG spacer and the addition of an acetyl group as protection for thiol head group for the new BBs. 
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Figure 5.15. Chemical structures of BB1-PEG and BB2-PEG, which integrate a poly(ethylenglycol) spacer 

in BB1 and BB2, respectively. 
 

Using BB1-PEG and BB2-PEG as building blocks, an electronic tongue was constructed based 

on 11-CoCRR array during internship of Laurie-Amandine Garçon in 2012. This electronic tongue 

was used for analysis of pure proteins ECL, CXCL12α and CXCL12γ. It was demonstrated that the 

CEPs obtained for these proteins are almost the same as the ones obtained with the electronic 

tongue constructed using BB1 and BB2. This means that mixtures of BB1/BB2 have similar 

properties to those of BB1-PEG/BB2-PEG. 

5.4.3. Functionalization of Au NPs using new buildin g blocks 

The acetyl protection group of new BBs needed to be removed before use. The deprotection 

protocol was optimized using different basic solutions including NaOH (2.5 mM), NH4OH (63 mM) 

and K2CO3 (2.5 mM). The quality of self-assembly of the two new BBs on gold surface (2D) was 

characterized by electrochemical impedance spectroscopy and cyclic voltammetry. The detailed 

experimental set-up and results are given in the Appendix D. In summary, the optimal conditions 

chosen were: treatment of the BBs with 2.5 mM sodium hydroxide (NaOH) for 1h before the spot 

deposition. 

For functionalization of Au NPs using new BBs, a protocol was established. It is presented in 

detail in Table 5.1, and illustrated in Figure 5.16. 

 

1- Add 50 μL of the desired BB mixture at a total concentration of 10 mM to an eppendorf. 

2- Add 50 μL of NaOH at 5 mM to the BB mixture solution and wait for 1h. At this point, the BB 

concentration in solution is 5 mM and NaOH concentration is 2.5 mM. 

3- Add 400 μL of Au NPs of 20 nm as received from BBInternational (concentration 1.16 nM). 

Final concentration for NPs is 0.93 nM, and for BBs, 1 mM. 

4- Leave the mixed solution of step 3 overnight for self-assembly of BBs on Au NPs. 

5- Rinse functionalized NPs and re-suspend in the desired solution (HEPES buffer or ultrapure 

water) by at least three centrifugation/supernatant removal/buffer addition cycles. 
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Table 5.1. Protocol employed for the functionalization Au NPs using the new BBs. 

 

Mixture of BBs at
a ratio of interest

Addition of gold 
nanoparticles

Self-assembly

Nanoparticles functionalized 
with the BB ratio of interest

Mixture of BBs at
a ratio of interest

Addition of gold 
nanoparticles

Self-assembly

Nanoparticles functionalized 
with the BB ratio of interest  

Figure 5.16. Schematic illustration of the protocol employed for particle functionalization 
 

5.5. Characterization of functionalized NPs with ne w BBs 

In this thesis, two important features of the nanoconjugates were studied: stability and ligand 

density. Stability in strong saline conditions was evaluated by UV-Visible spectroscopy 

measurements. Stability and monodispersity at high concentrations was measured by small angle 

x-ray scattering. Ligand density on NPs was theoretically estimated and colorimetrically quantified. 

5.5.1. Direct visualization of the stability of fun ctionalized Au NPs 

with new BBs 

The Au NPs functionalized with BB1-PEG and BB2-PEG mixtures at different ratios were re-

dispersed in HEPES buffer solution containing NaCl. Satisfyingly, this time, all the solutions 

containing functionalized NPs kept their bright red color, as shown in Figure 5.17. Only the 

eppendorf containing non-functionalized NPs lost its red color. This confirms that the introduction of 

PEG spacer in BBs increases greatly the stability of functionalized Au NPs. Therefore, the 

prepared nanoconjugates are stable under physiological conditions of pH and ionic strength. They 

are thus very promising for our further study on interaction between these functionalized NPs and 

proteins of therapeutic interest.  

 
Figure 5.17. Photography of functionalized Au NPs with BB1-PEG and BB2-PEG mixtures at different 

ratios after re-dispersed in HEPES buffer containing NaCl. On the right, non-functionalized Au NPs after re-
dispersed in HEPES buffer containing NaCl. 
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5.5.2. UV-Visible Spectroscopy  

In addition, in this study, the stability of functionalized NPs in strong saline conditions was 

evaluated over time by UV-Visible spectroscopy measurements.  

For this, NPs functionalized with mixed BB1-PEG/BB2-PEG at a ratio of 7/3 were used as an 

example and they were re-suspended in water. The measurements were performed with UV-Vis 

NanoDrop instrument before and after the addition of a NaCl solution (200 mM) during over time (1, 

2, 3, 4, 5, 72 and 168 hours after storage). The mentioned apparatus permits to measure the 

absorbance of samples using a very small volume (~2 μL).  
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Figure 5.18. UV-Vis Spectra of the nanoconjugates (20 nm) before and after the addition of a NaCl 

solution over time. 
 

From Figure 5.18 we can see that the absorbance intensity of NPs before NaCl addition is 

slightly higher than the ones of NPs after NaCl addition. This is very probably due to the dilution 

effect caused by the addition of the saline solution. Interestingly, for all the measurements made 

after NaCl addition there is neither shift for absorption peak position nor change for absorbance 

intensity, illustrating that no aggregation of NPs occurs under saline conditions during at least one 

week. These results confirm again that the introduction of PEG chain in BB1 and BB2 increases 

strongly the stability of nanoconjugates under saline conditions. 

5.5.3. Small Angle X-Ray Scattering 

Stability of nanoconjugates (especially those with a neutral surface charge) was also tested at 

very high concentrations in order to explore the limits of the steric stabilization provided by the PEG 

chains. This was made by Small Angle X-Ray Scattering (SAXS) technique, in collaboration with 

Arnaud de Geyer from the INAC/SGX laboratory.  



5.5. Characterization of functionalized NPs with new BBs  

 

133 

A brief introduction to the SAXS technique, as well as technical details of the experiments done 

for this study, are included in the Appendix E. In brief, SAXS technique can give information about 

the individual nanoparticle and the presence of interferences between the nanoparticles in solution. 

These interferences are perceived in form of perturbation of the SAXS curve measured from 

individual (interaction-free) nanoparticles in the dilute regime. Indeed, the scattering from a colloidal 

suspension of isotropic spherical particles can be described by the combination of a first term 

which describes the scattering from individual nanoparticles (referred to as the form factor P(q)) 

and a second term which describes interactions between nanoparticles (referred to as the structure 

factor S(q)): I(q)=P(q)S(q). In our case, two factors can induce inter-particle interferences: 1) the 

presence of charged particles 2) a small mean inter-particular distance (at high concentration of 

nanoparticles). 

The samples used for the study were aqueous solutions of 10 nm Au NPs that were 

functionalized with pure neutrally charged molecules BB1-PEG or with pure negatively charged 

ones BB2-PEG at different concentrations.  The objective was to see if increasing drastically the 

concentration of nanoparticles would affect their stability and induce aggregation. 

The concentration of mother colloidal suspension purchased from BBInternational is 0.057 

mg/ml. This concentration is 20 times lower than the concentration (1 mg/ml) normally required to 

measure within a reasonable acquisition time the scattering curves in the dilute regime. Thus we 

prepared functionalized NPs solutions with 10×, 20×, 35×, 60× and 160× higher concentrations 

comparing to the mother solution by centrifuging and re-suspending NPs in smaller volume, 

referred to as c10, c20, c35, c60 and c160, respectively. The information obtained by SAXS at 

different concentrations concerns the shape and size of the gold nanoparticles and their inter-

particle interactions. 

First, neutrally charged nanoparticles which were functionalized with BB1-PEG were 

analyzed. In Figure 5.19a, we show the SAXS curves obtained for c10, c20 and c35. The curves 

overlapped perfectly, indicating that there is no aggregation induced by high concentration of 

colloid solution. 

 The mean radius of the suspended nanoparticles can be calculated with measurements in 

the dilute regime both from the position of the first maximum of the curve Iq4 vs q (Porod 

representation) or by a Guinier-type analysis of the scattering at very small angles (in range qR<1). 

As shown in Figures E3 and E4 included in the Appendix E, for the sample c35, both values are 

similar and fit well with the attended data for a stable monodisperse Au NP solution. From the first 

maximum around q=0.065 Å-1 in the Iq4 curve we can deduce a value RM = 43 Å and from the 

scattering intensity in the range 10-2 Å-1 – 2x10-2 Å-1 (satisfying condition qR<1) we can deduce a 

Guinier radius RG =43 Å. Both values agree perfectly well confirming the spherical shape of the 

particles and the absence of inter-particle interactions at the measured concentration. It should be 

noticed that the radius 43 Å deduced from the SAXS analysis corresponds to the size of the 

metallic core of the nanoparticles and not to the whole size including the surrounding shell of 

organic ligands.  
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Besides, when we concentrated the nanoparticles up to c160, the monodispersity of the solution 

could still be proved (see Figure E5) since the slope of the Guinier representation of the SAXS data 

was  the same to that of c35, meaning that the gyration radius was the same. We could strongly 

affirm, then, that the Au NPs studied were stable even at high concentrations. 

 
Figure 5.19. Scattering curves obtained for a) BB1-PEG nanoconjugates at x10, x20 and x35 

concentrations and b) for BB1-PEG and BB2-PEG nanoconjugates at a x20 concentration (data represented 
as log(I) vs loq(q).) 

 

Moreover, we were able to affirm that the functionalized nanoparticles, both negatively charged 

and non-charged, at a concentration of x20, stayed stable. There were no aggregates since both of 

the obtained curves showed a clear sharp first minimum, which suggests monodispersity of the 

nanoparticles (see Figure 5.19b).  

However, for evaluation of the effect of charge repulsions, much more concentrated colloidal 

suspensions should be used. Taking into account of constraints like product-consumption, we 

finally did not perform experiment to study this point. 

5.5.4. Determination of Ligand Density on Functiona lized 

Nanoparticles 

In this part, the ligand density on functionalized NPs was determined theoretically and 

experimentally, by a colorimetric technique. 

a) Theoretical estimation of ligand density on functionalized NPs 

Theoretical estimation of the quantity of ligands present on nanoparticles after functionalization 

was done by employing the data included in Table 5.2. 

First, the surface of the nanoparticle was calculated in function of its diameter/radius (S = 4πr2, 

in Å). Then, the number of ligand anchored on each NP was determined  by assuming  that S-S 

spacing is the same as the one obtained for  self-assembled monolayers on a gold (1.1.1)  planar 

surface (4.97 Å) and the area occupied per thiol molecule is 21.4 Å2 [226]. For example, for the Au 

NPs of 20 nm, according to our calculation, there are 5872 ligands anchored on its surface after 
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functionalization. In the fourth column, the number of ligand anchored on different size of NPs is 

listed. These data are consistent with those experimentally obtained in literature [227].   

To functionalize Au NPs, we first centrifuged the colloid solution (as received from 

BBInternational) and removed all surnatant. Then, the same volume of solution containing the BBs 

was added to Au NPs. In practice, before functionalization, we calculated the concentration and 

quantity of BBs necessary for covering all NPs in solution in theory. The concentration of the 

commercially available nanoparticle solution (BBInternational) is known and included in the column 

five. This permitted to estimate the concentration of BBs necessary to cover all the NPs in solution. 

To make sure that all NPs are completely covered by BB molecules, we have used BBs with a 

concentration that is 100 times higher than the one determined in theory, as listed in last column.  

 

D 

(nm) 

R  

(Å) 

S  

(Å2) 

Number of 

ligands per 

particle* 

[NP]  

(nM) 

[BBs] 

necessary for 

covering the 

NPs in theory 

(μM) 

[BBs] used for 

functionalization 

of NPs  

(mM) 

2 10 1256 59 249 14.6* 1.4* 
5 25 7854 367 83 30.5* 3* 

10 50 31416 1468 7.5 10.9* 1* 
20 100 125664 5872 1.2 6.8* 0.7* 

40 200 502656 23489 0.15 3.5* 0.35* 
 

Table 5.2. Parameters used for theoretical calculation of ligand density on Au NPs. D, R and S are the 
diameter, the radius (D/2), and the surface (4πr2) of Au NPs. [NP] is the nanoparticle concentration as 

received commercially in our study; [BBs] is the building blocks concentration. *Estimation made under the 
assumption that the area occupied by each ligand (thiol) molecule is 21.4 Å2. [226]. 

 

b)  Colorimetric quantification of ligand density 

In addition, the quantity of ligands present on nanoparticles after functionalization was also 

determined based on a colorimetric method using a protocol developed by our collaborators David 

Bonnaffé and Christine Le Narvor (University Paris-Sud, Orsay). This protocol used for the 

determination of oligosaccharide quantity attached to PolyEthylene Terephthalate (PET) surfaces 

was adapted to our needs.  

Principle of the phenol/sulphuric acid technique 

Mono-, oligo- and polysaccharides react with phenol and sulphuric acid to give as a result the 

formation of a colored molecule with an absorption maximum at 490 nm, as shown in Figure 5.20. 
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Figure 5.20.  Reaction mechanism: in concentrated acid media, galactose is dehydrated and produces 5-

hydroxymethylfurfural, which, in the presence of phenol, gives a colored substance showing a maximum of 
absorbance at λ = 490 nm. 

 

Experimental method 

The employed reagents were the following: 

− 6% phenol solution in water 

− Sulfuric acid solution 96% 

First, a calibration curve was made using a 0.5 mg/mL solution of lactose monohydrate. 

Volumes of 0, 20, 40, 80, 100, 120, 140 and 160 μL of this solution were added to test tubes and 

then adjusted to 200 μL by adding ultrapure water. Afterwards, 200 μL of phenol solution (6%) 

were added to each tube followed by adding 1 mL of concentrated sulphuric acid solution.  

Due to the presence of concentrated sulphuric acid in the media, the glycosidic bonds of lactose 

are hydrolyzed and the monosaccharides get free (see figure Figure 5.21).  

 

 
Figure 5.21. Hydrolysis of lactose to give β-D-galactose and glucose. 

 
The monosaccharides in solution react with the sulphuric acid and the phenol by an exothermic 

reaction that leads to the formation of a yellow compound whose absorbance is measured with a 

UV-Vis spectrometer. The obtained calibration curve is shown in Figure 5.22. 
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Figure 5.22. Calibration curve made by measuring the absorbance at 490 nm of the colored compound 

formed form the reaction of lactose with sulphuric acid and phenol. 
 

The procedure to determine the quantity of disaccharides attached to the gold surfaces was 

very similar. 200 μL of functionalised NPs (20 nm) at the desired concentration (In this case the 

sample contained 5.6×1011 functionalized nanoparticles, which was calculated by absorbance 

measurement before the reaction) were put in a test tube. Then, phenol 6% (200 μL) and sulphuric 

acid (1mL) were added. As a consequence, the glycosidic bonds of the disaccharides were 

hydrolysed and the monosaccharides (both form BB1-PEG and BB2-PEG) got free in solution. 

They reacted as explained before to give a colored compound whose absorbance was then 

measured by UV-Vis spectroscopy. Before the measurement, an extra step of centrifugation was 

added in order to avoid the interference from absorbance peak of gold nanoparticles at about 520 

nm. The obtained absorbance value for the sample was A (490 nm) = 0.0176 

As a result, the quantity of disaccharides present in solution can be determined, which 

corresponds to the total number of ligand initially present on the nanoparticle surface. As 

nanoparticle concentration is known, it is possible to quantify the density of the ligands (each ligand 

contains one disaccharide moiety) that were initially attached per particle.  

In this case, the absorbance value obtained corresponds to 4.012×1015 ligand molecules. Note: 

the calibration curve was made with monohydrated lactose. The nanoparticle quantity present in 

the sample can be calculated from the absorbance (A = 0.089) using the calibration curve for 20 

nm NPs in Figure 5.13. This calculation gave a number of 5.67×1011 particles in the sample. 

Thus, we can determine the ligand density per particle:  

particleperligands
lesnanopartic

ligands
7075

1067.5

10012.4
11

15

=
⋅

⋅
 

c)  Comparison between theoretical and experimental results 

As described above, ligand density on Au NPs (20 nm) were both determined by theoretical 

estimation and experimental quantification. The former gave 5872 ligands per nanoparticle; while 

the latter gave 7075 ligands per nanoparticle. Satisfyingly, they are in the same order of magnitude. 

Higher ligand density on Au NPs obtained by the second method could be explained by the fact 

that due to technical constraints there is always a remaining volume of BBs that were not anchored 
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on Au NPs even after several cleaning circles by centrifugation.  The quantity of BBs molecules in 

the remaining solution was unknown but it was included systematically in the calculation by this 

method.   

Moreover, we have also performed some preliminary tests to determine the ratio of BB1-

PEG/BB2-PEG on the functionalized Au NPs by measuring zeta potential, but due to time 

constraints that disallowed us to optimize the experimental set-up, the results were not very 

satisfying and they were not shown here.   

5.6. Bioactivity of the 3D biomimetic nanovectors   

After characterization, bioactivity of the 3D biomimetic nanovectors was evaluated by studying 

their interaction with proteins of interest by SPRi and ELISA. The proteins used as models were 

IFNγ and its mutants.  

As described previously, the biomimetic nanovectors were prepared by functionalizing Au NPs 

with selected BB mixtures. The selection of the 2D bioactive combinatorial surfaces was made 

based on CEPs. In this study, the mixture BB1-PEG/BB2-PEG with a 10% of BB1-PEG was 

chosen. In addition, Au NPs were also functionalized with a BB mixture corresponding to a 2D less 

active combinatorial surface, based on CEP, for negative control, as illustrated in Figure 5.23.  
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Figure 5.23. Schematic illustration for preparation of biomimetic nanovectors and inactive nanoconjugates 

based on CEP generated by electronic tongue.  

5.6.1. Evaluation of the bioactivity of the 3D biom imetic 

nanovectors by SPRi  

The principle of the competitive assay based on SPRi 

To study the interaction between the protein and the biomimetic nanovectors by SPRi, a 

competitive assay was designed. The idea was to incubate the protein IFNγ Δ136 (50 nM) with 

the biomimetic nanovectors, and then to compare the signals obtained on the spot containing 

10% of BB1 of the CoCRR array by injecting the protein IFNγ Δ136 (50 nM) with and without 

incubation with nanovectors. As illustrated in Figure 5.24:  

- If the nanovector is inactive, there will be no interaction with the protein. Consequently, 

no signal change will be observed. 
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- If the nanovector is bioactive, there will be interaction with the protein, resulting in a 

decrease of concentration of free protein. Consequently, a decrease of signal will be 

induced by the 3D biomimetic nanovectors.  
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Figure 5.24. Schematic illustration of the principle of the competitive assay based on SPRi.  

 

 Experimental part and Results 

In this study, IFNγ Δ136 (50 nM) was incubated with two sets of functionalized NPs for the 

same period of time, as illustrated in Figure 5.25. In the first set, the protein was incubated with 

inactive nanoconjugates at different concentrations: 0.005, 0.02, 0.08 and 0.2 nM. In the second 

set, the protein was incubated with active biomimetic nanovectors at different concentrations; 

0.005, 0.01, 0.02, 0.04, 0.08, 0.1 and 0.2 nM. In practice, the functionalized nanoparticles at 

different concentrations were centrifuged and the supernatant removed. Then, 800 μL of IFNγ 

Δ136 (50 nM) were added to each eppendorf of NPs and they were mixed and left for incubation 

during at least 30 minutes before use.  
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Figure 5.25. Preparation of the samples for injection on SPRi competition experiments. 

 

The obtained results are shown in Figure 5.26. The maximal reflectivity on the spot containing 

10% of BB1 was plotted against the nanoparticle concentration. As we can see, for the samples of 

the protein incubated with nanovectors functionalized with 10% BB1-PEG, the signal decreased 

significantly in a NP concentration-dependent manner. However, there was almost no signal 

decrease for the samples of the protein incubated with nanoconjugates functionalized with 90% of 

BB1-PEG. These preliminary results showed that the 3D biomimetic nanovectors we prepared are 

bioactive since they have affinity to the model protein. Thus, it is feasible to construct bioactive 

nanovectors which can mimic biological properties of GAG fragments simply by multivalent display 

of synthetic disaccharides onto nanoparticles. 
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Figure 5.26.  SPRi results obtained on the spot containing 10% of BB1 after injection of IFNγ Δ136 

incubated both with biomimetic nanovectors at different concentrations (in green) and with inactive 
nanoconjugates at different concentrations (in blue).  

  

5.6.2. Evaluation of the bioactivity of the 3D biom imetic 

nanovectors by ELISA  

The interaction between the model protein and the biomimetic nanovectors was also evaluated 

with ELISA, which permits to accurately measure the concentration of IFNγ. In this study, the 

model protein IFNγ Δ136 and IFN Δ124 (for negative control) were incubated with different 

concentrations of 3D biomimetic nanovectors and inactive nanoconjugates. Afterwards, all these 

solutions were centrifuged, and their supernatants were used as samples for ELISA measurement 

to determine the concentration of free protein, as shown in Figure 5.27. Results will then be 

compared to a reference IFNγ solution, which would maintain a constant concentration of [IFN]0 

before and after the centrifugation step.  
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Figure 5.27. Comparison of sample preparation for studying the bioactivity of the 3D biomimetic 

nanovectors by SPRi and ELISA. 
 

We anticipated that if the biomimetic nanovectors are active, the protein IFNγ Δ136 will be 

captured during incubation. Consequently, the concentration of the free protein in the supernatant 

will decrease comparing to the initial concentration. The higher the concentration of NPs used for 

incubation, the lower the concentration of free protein in the supernatant. When the model protein 

is incubated with inactive nanoconjugates, there is no affinity between the NPs and the protein. 

Consequently, the concentration of the protein in the supernatant should be the same as the initial 

concentration. 

Determination of IFNγ concentration by ELISA  

For IFNγ concentration determination, a commercial Quantikine® Human IFNγ Immunoassay 

was used. This assay employs the quantitative sandwich enzyme assay technique, illustrated in 

Figure 5.28. A polyclonal antibody specific for IFNγ is pre-coated onto a microplate. Standards and 

samples are pippeted into the wells and any IFNγ present is bound by the immobilized antibody. 

After washing away unbound substances, an enzyme-linked polyclonal antibody specific for IFNγ is 

added to the wells. Following a wash step to remove any unbound antibody-enzyme reagent, a 

substrate solution is added to the wells and color develops in proportion to the amount of IFNγ 

bound in the initial step. Finally, the color development is stopped and the intensity of the color is 

measured. 
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a) b) c)a) b) c)

 
Figure 5.28. Illustration of the principle of ELISA based on a quantitative sandwich enzyme assay. a) A 

microplate pre-coated with capture antibody, on which samples or standard solutions are added; b) Addition of 
a second HRP-labelled antibody (detection antibody);  c) Addition of tetramethylbenzidine (TMB) substrate 

solution to the wells, generating blue color. The color intensity is proportional to the amount of analyte present 
in the sample. Color development is stopped, turning the color in the wells to yellow. The absorbance of the 

color at 450 nm is measured. 

Experimental part and Results   
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Figure 5.29. Illustration of the design used for the incubation of nanoparticles at different concentrations 

with the two proteins at a constant total concentration of 50 nM. 
 

As illustrated in Figure 5.29, eight solutions of the biomimetic nanovectors (1.937, 0.717, 0.265, 

0.098, 0.036, 0.013, 0.005 and 0 nM) were prepared in eppendorfs and they were divided into two 

sets, in the first set these solutions were put in contact with the protein IFNγΔ136 (50 nM) and in 

the second set with IFNγΔ124 (50 nM). The same procedure was used for the inactive 

nanoconjugates.  

All these solutions were incubated 0.5 hour under agitation and 0.5 hour more without agitation. 

Afterwards, nanoparticles were centrifuged and the supernatants were diluted 1000 times (from a 

maximal concentration of 50 nM to 50 pM) in order to fit in with the concentration range of the 

calibration curve of the assay. All the diluted solutions were then used for ELISA analysis to 

determine the IFNγ concentration present in each well. The absorbance measurements at 450 nm 

(1.0 s) were made for each well at the IBS with a plate reader (Perkin Elmer, USA).  

The results are shown in Figure 5.31. In the case where the protein IFNγ Δ136 was incubated 

with the biomimetic nanovectors at various concentrations (see Figure 5.30a, in green), the 

concentration of the free protein in the supernatant calculated by ELISA decreased significantly 
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comparing to the initial concentration. Within the tested concentration range, the higher the 

concentration of NPs used for incubation, the lower the concentration of free protein in the 

supernatant. In the case where IFNγ Δ136 was incubated with the inactive nanoconjugates, see 

Figure 5.31a, in blue, decrease of the concentrations of the free protein in the supernatant was also 

observed for [NP] at 0.8 and 2 nM, but was much less important.  

The protein IFNγ Δ124 was used for negative control due to its completely lost biological activity 

(as discussed in Chapter 4). For this protein, after incubation with either biomimetic nanovectors or 

inactive nanoconjugates, the concentrations of free protein in the supernatant were almost the 

same as the initial concentration, see Figure 5.30b. There was no concentration decrease, 

illustrating that this protein has neither affinity to biomimetic nanovectors nor with inactive 

nanoconjugates. This proves that the 3D biomimetic nanovector is not only active but also selective 

to the target protein.  
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Figure 5.30.  ELISA results obtained with two proteins IFNγ Δ136 and IFNγ Δ124 after incubation with the 

active nanovectors at different concentrations (in green) and with the inactive nanoconjugates at different 
concentrations (in blue).  
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5.7. Main conclusions of the chapter 

In this chapter, it has been demonstrated that the developed electronic tongue is very efficient 

as a medium throughput screening technique for bioactive 2D combinatorial surfaces. Based on 

the generated CEPs, the most active combinatorial surface can be easily selected and then 

transferred to 3D Au NPs for preparation of biomimetic nanovectors.  

However, the obtained biomimetic nanovectors are not stable in the buffer solution containing 

salt. To obtain stable ones new building blocking (BB1-PEG and BB2-PEG) were prepared by 

integrating a PEG spacer in the BB1 and BB2. The biomimetic nanovectors functionalized with 

BB1-PEG/BB2-PEG mixtures are very stable under physiological conditions of pH and ionic 

strength as well as at very high concentrations, as proven by UV-spectroscopy and SAXS.  

The bioactivity of the 3D biomimetic nanovectors was evaluated by studying their interaction 

with proteins of interest (IFNγΔ136 as a model) by SPRi and ELISA. Results obtained by SPRi and 

ELISA showed that biomimetic nanovectors containing 10% BB1-PEG are active since they have 

affinity to the model protein IFNγΔ136. In contrast, nanoconjugates containing 90% of BB1-PEG 

have no affinity to the model protein. In addition, the 3D biomimetic nanovectors have no affinity to 

the protein IFNγΔ124 who has no affinity to heparin sulfate and was used for negative control. 

Thus, the 3D biomimetic nanovector is not only active but also selective to the target protein. 

These preliminary results confirmed that it is feasible to prepare biomimetic nanovectors that 

mimic directly the biological properties of GAG fragments by the multivalent display of inactive and 

easily accessible synthetic disaccharides on gold nanoparticles. More importantly, our approach is 

not limited to the domain of glycobiology. It could be extremely useful for other therapeutic domains 

in which the multivalent presentation of a (bio)molecule is a key factor for its bioactivity.   
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The last two decades witnessed a rapidly growing interest in e-noses/tongues due to their 

potential in a wide range of domains, including controlling the quality of foods and beverages, 

monitoring pollutants and explosives in the environment and diagnosing diseases. However, 

generally, the preparation of e-noses/tongues sensing arrays requires designing and synthesizing 

from 5 to 50 cross-reactive receptors whose structures are sometimes very complex, requiring 

laborious synthesis. The development and more widespread use of this kind of devices should be 

greatly facilitated if the design and production of sensing elements was simplified.  

 

In this context, the objective of this thesis is to develop a novel approach that greatly simplifies 

the design and production of sensing materials for the construction of e-tongues. For this, we have 

proposed a novel strategy. Instead of synthesizing a great number of complex molecules, cross-

reactive receptors have been prepared by mixing and self-assembly of a restricted set of building 

blocks, ideally small and easily accessible molecules displaying different physicochemical 

properties. Upon combination of such BBs in varying and controlled proportions, a collection of 

combinatorial cross-reactive receptors with evolutive properties have been obtained. A major 

advantage of this approach is to allow a very quick growth of the diversity: eleven CoCRRs can be 

prepared by mixing only two BBs with concentration varying from 0 to 100% in 10 % increment, 

while 66 can theoretically be accessed by adding a third BB. Such growth can be generalized to n 

BBs and i % concentration increment, leading to an impressive number of [(100/i)+n-1]!/(n-

1)!(100/i)! potential different CoCRRs. Moreover, the composition of each CoCRR is linked and 

close to that of its neighbors and each CoCRR provides a signal that is related to that of its 

neighbor. Thus, the series of signals generated upon interaction between CoCRRs and analytes 

can be considered as continuous. As a consequence, abnormal signals can be easily identified, 

paving the way to analysis with unprecedented reliability.  

 

In this thesis, a model e-tongue has been successfully constructed for proof of concept based 

on a CoCRR array combined with an optical detection system surface plasmon resonance imaging. 

The CoCRR array was inspired by the way cell surface heparan sulfates recognize HS binding 

proteins and it was prepared by using only two small disaccharides, lactose and sulfated lactose, 

as BBs.  

 

To evaluate discrimination and identification capacities of our system as an electronic tongue, 

samples of varying complexities have been analyzed, including single-component samples, such 

as pure proteins of both HSbps and non-HSbps, dual-component samples by mixing two pure 

proteins, as well as real-world complex samples, such as beer, wine and milk. We have 

demonstrated that the e-tongue system is able to generate distinct 3D continuous evolution 

landscapes and 2D continuous evolution profiles behaving as “fingerprints” for differentiation and 

identification of these samples. The e-tongue is very powerful for protein analysis, capable of 

differentiating even proteins of the same family, such as CXCL12α and CXCL12γ. The analysis of 

dual-component protein samples has revealed that the CEP of the protein mixtures indicates 
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additive behavior with respect to the signals obtained from the pure proteins, showing the potential 

of the system for identification of components in this kind of relatively simple mixtures. 

Furthermore, the e-tongue is also very efficient for differentiation and identification of complex 

mixtures. Besides, it allows monitoring the deterioration of UHT milk, a very promising illustration 

for future applications in quality control of food and beverages.  

 

For any e-nose and e-tongue system, there are two important features, repeatability and 

stability. In this thesis, they have been addressed. The results show that e-tongue exhibits very 

good repeatability, both from measurement to measurement and from batch to batch, and good 

stability upon prolonged storage period up to 5 months. Therefore, we believe that this new 

methodology will contribute to the design of cheaper and more reliable e-noses/tongues and 

facilitate their implementation in even broader domains of application. 

 

The extraordinary capacity of e-tongue for differentiation of CXCL12α and CXCL12γ of the 

same family has suggested that the e-tongue has biological properties of heparan sulfate 

somehow. Very interestingly, as we have demonstrated, both e-tongue and heparan sulfate have 

two complexity levels that determine their recognition capacity: local microheterogeneities and 

overall charge topologies. In nature, for HS, the combination of these two levels of polymer 

complexity gives it the specificity in the recognition of the targeted protein.  

 

We have thus performed a complete study to check this point by using a protein of therapeutic 

interest, IFNγ and its mutants. It has been successfully demonstrated that the e-tongue has very 

good affinity to IFNγ in the nanomolar range, but very low affinity to non-sugar binding proteins, 

such as HSA, IgG, or cytochrome C. Even when IFNγ is diluted in a protein-rich media containing 

fetal bovine serum, the e-tongue is still able to detect the protein in a concentration-dependent way. 

This illustrated well the specificity of interaction between the protein and the e-tongue system. In 

addition, by analyzing various mutants of IFNγ, we have demonstrated that the e-tongue is able to 

perceive fine modifications made in the C-terminal region amino acid sequence of IFNγ and to 

differentiate its various mutants with very similar structures. This confirms further that the e-tongue 

is able to mimic biological properties of HS and thus could be employed as a simple tool for better 

understanding of the nature of HS/protein interactions interaction. In glycobiochemistry, the idea 

that many protein-HS interactions depend more on the overall organization of the HS domains 

(charge density and distribution along the chain) than on the fine structure (specific sulfation and 

epimerization sequences) is still a matter of debate so far, the approach of e-tongue we developed 

in this thesis offers an unprecedented and simple tool to investigate this point.  

 

To better understand the nature of the interactions between the e-tongue and HSbps, and more 

importantly, to understand the role of lactose BB1 and sulfated lactose BB2 in these interactions, 

we have carried out protein analysis by replacing lactose (BB1) and sulfated lactose (BB2) with 

other BBs having similar physicochemical properties but without disaccharide unit. The obtained 
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results have proven that both BB1 and BB2 play very important role in this interaction. In fact, by 

combining lactose and sulfated lactose, combinatorial surfaces with surprising novel biological 

properties can be obtained and they are essential for the high affinity of the e-tongue to HSbps, 

The biological properties of combinatorial surfaces are dependent not only on charge of the used 

BBs but also on sugar structures of BBs, in an even more important way. This is very promising in 

the design of new biomimetic nanovectors.  

 

In the last part of this thesis, we have proposed to use the developed e-tongue as a medium 

throughput screening technique for bioactive 2D combinatorial surfaces since it permits to test the 

maximum of disaccharide mixtures on a single array in a highly efficient way. Once the 

combinatorial surface of interest chosen, it was then transferred to a 3D surface (NPs) for 

preparation of biomimetic nanovectors that mimic directly the biological properties of GAG 

fragments.  

 

It has been demonstrated that the developed e-tongue is very efficient for screening bioactive 

2D combinatorial surfaces. Based on the generated CEPs, the most active combinatorial surface 

can be easily selected and then transferred to 3D Au NPs for preparation of biomimetic 

nanovectors. Herein, the biomimetic nanovectors functionalized with BB1-PEG/BB2-PEG mixtures 

are very stable under physiological conditions of pH and ionic strength as well as at very high 

concentrations, as proven by UV-spectroscopy and SAXS. Based on results obtained by SPRi and 

ELISA, the biomimetic nanovectors containing 10% of BB1-PEG are active with good affinity to the 

model protein IFNγΔ136. In contrast, nanoconjugates containing 90% of BB1-PEG have no affinity 

to this protein. In addition, the 3D biomimetic nanovectors have no affinity to the protein IFNγΔ124 

as negative control since it has no any affinity to heparan sulfate. Thus, the 3D biomimetic 

nanovector is not only active but also selective to the target protein. 

 

These preliminary results confirmed that it is feasible to prepare biomimetic nanovectors that 

mimic directly the biological properties of GAG fragments by the multivalent display of inactive and 

easily accessible synthetic disaccharides on gold nanoparticles. More importantly, our approach is 

not limited to the domain of glycobiology. It could be extremely useful for other therapeutic domains 

in which the multivalent presentation of a (bio)molecule is a key factor for its bioactivity.   

 

In conclusion, in this thesis we have developed a novel approach that greatly simplifies the 

design and production of sensing materials for the construction of e-tongues. The model e-tongue 

constructed based on the CoCRR array and SPRi is very efficient for differentiation and 

identification of samples of varying complexities, from pure proteins to complex mixtures. 

Moreover, this system is a very useful tool for conception of 2D and 3D biomimetic surfaces,  with 

promising applications either for better understanding of the nature of HS/protein interactions or for 

preparation of biomimetic nanovectors to target specifically proteins of therapeutic interest.  





 

Appendices 

 

Appendix A: The composition of buffer solutions use d in 

this thesis 
 

HEPES: 

 

The HEPES buffer solution employed in this thesis consists of 10 mM HEPES, 150 mM NaCl, 

and 0.005%Tween®. The pH was adjusted to 7.4 with a NaOH solution. Before storage at -20 °C, 

the buffer was filtered through a 0.8 μm Acrodisc® filter. 

 

TRIS-Mannitol: 

 

    TRIS-Mannitol buffer solution contains 25 mg/mL mannitol and 10 mM Tris. The pH was 

adjusted to 6.8.  

    This buffer solution was used for dilution of protein samples received from IBS. The protein 

samples were then aliquoted and conserved at -80°C until use.  
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Appendix B: RMN of BB1 and BB2 building blocks 
 

The 1H-NMR and 13C-NMR spectra of BB1 and BB2, as well as their peak assignation are given 

here. These data were provided by Prof. Bonnaffé.  

    NMR spectra were recorded in D2O at room temperature with Bruker Avance 400 

spectrometer using standard pulse programs. Chemical shifts are given in part per millions (ppm) 

relative to acetone (1H d = 2.225 ppm and 13C d = 30.5 ppm). The aglycon carbons are numbered 

a, b, c, d, e, f and g, starting from the one linked to the lactosyl moiety. 

 

Figure B.1. 1H NMR of BB1 molecule (400 MHz, D2O, ref Acetone): δ = 4.47 (d, J1, 2= 8.0 Hz, 

1H, H-1), 4.45 (d, J1’, 2’= 7.5 Hz, 1H, H-1’), 3.99 (dd, Ja, a’= 10.0 Hz, Ja, b=6.5 Hz, 1H, H-a), 3.97 

(dd, J6a, 6b= 12,5 Hz, J6a, 5= 2.0 Hz, 1H, H-6a), 3.92 (d, J4’, 3’= 3.5 Hz, 1H, H-4’), 3.81 (dd, J6b, 

6a= 12,5 Hz, J6b, 5 = 4 .5 Hz, 1H, H-6b), 3.80-3.69 (m, 4H, H-a’, H-5’, H-6'a, H-6'b), 3.66 (dd, J3’, 

2’= 10.0 Hz, J3’, 4’= 3.5 Hz, 1H, H-3’), 3.65-3.60 (m, 2 H, H-3 and H-4), 3.58 (ddd, J5, 4 = 10.0 Hz, 

J5,6b = 4,5 Hz, J5,6a’= 2,0 Hz, 1H, H-5), 3.55 (dd, J2’, 3’= 10.0 Hz, J2’,1’= 7.5 Hz, 1H, H-2’), 3.41 

(t, Je, d= 6.5 Hz, 2H, H-e), 3.35-3.27 (m, 1H, H-2), 2.77 (t, Jf, e= Jf, g= 6.5 Hz, 2H, H-f), 2.0 (quint, 

Jg, h= Jg, f= 6.5 Hz, 2H, H-g), 1.91 (m, 2H, H-b) 
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Figure B.2. 13C NMR of BB1 (400 MHz, D2O, ref Acetone): δ = 175.37 (CO), 102.62 (C-1’), 

101.84 (C-1), 78.20 (C-4), 75.00 (C-5’), 74.42 (C-5), 74.42 (C-3’), 72.51 (C-2), 72.24 (C-3), 70.62 

(C-2’), 68.53 (C-a), 68.21 (C-4’), 60.65 (C-6), 59.85 (C-6’), 38.23 (C-e), 36.90 (C-h), 34.02 (C-f), 

30.27 (Cd), 28.62 (C-b), 27.19 (C-c), 24.46 (C-g). 
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Figure B.3. 1H NMR of BB2 (400 MHz, D2O, ref Acetone): δ= 5.10 (d, J4’, 3’= 3.0 Hz, 1H, H-4’), 

4.94 (d, J1, 2= 6.0 Hz, 1H, H-1), 4.78 (d, J1’, 2’= 7.5 Hz, 1H, H-1’), 4.69 (dd, J3, 4= 7.0 Hz, J3, 2= 

5.0 Hz, 1H, H-3), 4.53 (dd, J3’, 2’= 10.0 Hz, J3’, 4’= 3.0 Hz, 1H, H-3’), 4.47 (dd, J6a, 6b= 10.5 Hz, 

J6a, 5= 5.5 Hz, 1H, H-6a), 4.44 (dd, J2, 1= 6.0 Hz, J2, 3= 5.0 Hz, 1H, H-2), 4.39 (dd, J2’, 3’= 10.0 

Hz, J2’, 1’= 7.5 Hz, 1H, H-2’), 4.29 (dd, J6b, 6a= 10.5 Hz, J6b, 5= 3.5 Hz, 1H, H-6b), 4.28 (d, J6’, 

5’= 6.0 Hz, 2H, H-6’a= H-6’b), 4.19 (t, J4, 5= J4, 3= 7.0 Hz, 1H, H-4), 4.08 (t, J5’, 6’= 6.0 Hz, 1H, H-

5’), 4.05 (dd, J5, 4 = 7.0 Hz, J5, 6a= 5.5 Hz, J5, 6b= 3.5 Hz, 1H, H-5), 3.97 (dt, Ja, a’= 10.0 Hz, Ja, 

b= 6.0 Hz, 1H, H-a), 3.95 (dt, Ja, a’= 10.0 Hz, Ja, b= 6.0 Hz, 1H, H-a’), 3.45 (t, Je, d= 6.5 Hz, 2H, 

H-e), 2.76 (t, Jh, g= 7.0 Hz, 2H, H-h), 2.72 (t, Jd, e= 6.5 Hz, 2H, H-d), 2.69 (t, Jc, b= 7.5 Hz, 2H, H-

c), 2.37 (t, Jf, g= 7.0 Hz, 2H, H-f), 1.99 (quint, Jg, h= Jg, f= 7.0 Hz, 2H, H-g), 1.93-1.86 (m, 2H, H-

b). 
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Figure B.4. 13C NMRof BB2 (250 MHz, D2O, ref Acetone): δ= 176.2 (CO), 101.2 (C-1’), 99.9 (C-1), 

77.9 (C-3), 77.4 (C-2), 75.9 (C-3’), 75.6 (C-2’), 75.3 (C- 4’), 75.2 (C-4), 73.3 (C-5), 72.0 (C-5’) 68.7 

(C-a), 66.7 (C-6), 66.6 (C-6’), 38.9 (C-e), 37.2 (C-h), 34.6 (C-f), 30.7 (C-d), 29.1 (C-b), 27.7 (Cc), 

25.0 (C-g). 



 

159 

 Appendix C: Spotting design used for preparation o f the 

11- CoCRR array 
 

    To prepare the CoCRR array, eleven BB1/BB2 mixed solutions were deposited on the prism 

with four replicates for each ratio using a non-contact piezoelectric spotter. A spotting map (see 

Figure C1) was designed and used for preparation of almost all CoCRR arrays in this thesis in 

order to obtain more reproducible measurements from batch to batch. Taking into account fluidic 

effect in the flow cell, the four replicates of each ratio were placed randomly in different zones on 

the prism, for example, in the center, at the edge, close to flow input/output of the flow cell. 

 

 159 159.65 160.3 160.95 161.6 162.25 162.9 163.55 164.2 164.85 165.5 166.15 

47.65     80%      70%  

             

48.3    100%  70%  10%  0%  40% 

             

48.95   60%  90%  20%  30%  50%  

             

49.6  0%  40%  10%  80%  100%  20% 

             

50.25 10%  30%  50%  60%  40%  90%  

             

50.9  100%  20%  90%  0%  70%  80% 

             

51.55   80%  40%  30%  50%  60%  

             

52.2  50%  60%  100%  20%  10%  30% 

             

52.85   70%  0%      90%  

 

Figure C1. Representation of the spotting design used for preparing 11-CoCRR array.  
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Appendix D: Optimisation of protocol for the 

deprotection of BB-PEG head groups   
 

The acetyl protection group of BB-PEG needed to be removed before use to deprotect the thiol 

head group. The deprotection could be done using a basic solution. In this study, the deprotection 

protocol was optimized by testing three basic solutions, including, from strong to weak base NaOH 

(2.5 mM), NH4OH (63 mM) and K2CO3 (2.5 mM). For this study, BB1-PEG was used. After 

deprotected, it was used to functionalize a gold electrode by formation of SAMs, whose quality was 

characterized by electrochemical impedance spectroscopy and cyclic voltammetry.  

In practice, first, a gold-covered glass sheet was cut in five pieces and cleaned by 5 min 

immersion in acetone, 2 min in piranha solution (H2SO4: H2O2 7:3 v:v) and immediate rinse with 

ethanol. The five pieces were then dried under a flow of Argon and put inside four small Petri 

dishes. Afterwards, one piece was kept for reference (Electrode 1), one another was functionalized 

with BB1-PEG without deprotection (Electrode 2), and the three others were functionalized by the 

BB1-PEG (50 µM) after deprotection using K2CO3 (2.5 mM) (Electrode 3), NH4OH (63 mM) 

(Electrode 4) and NaOH (2.5 mM) (Electrode 5), and, respectively. The samples were left overnight 

and the day after they were cleaned with ultrapure water. 

Electrochemical measurements were performed using a three-electrode system: the gold sheet 

as working electrode, a 150µm Pt wire as counter electrode and an Ag/AgCl reference electrode. 

The gold electrode was set-up on a support for electrical contact, as shown in Figure D1a. The 

other side of the electrode was inserted inside a screwing electrochemical cell containing a 5.7 mm 

diameter joint, shown in Figure D1b.  

 

Figure D1. Positioning of the gold electrode a) One side of the gold electrode was put on a 

support and b) the other side is inserted in the electrochemical cell. 

 

The aqueous solution used for the electrochemical measurements contained: 

− Lithium Perchlorate (LiClO4) 100 mM 

− Potassium ferrocyanide (K4Fe(CN)6·3H2O) 5 mM 

− Potassium ferricyanide (K3Fe(CN)6) 5 mM 
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The whole electrochemical set-up is shown in Figure D2. 

  

 

Figure D2. Experimental electrochemical set-up. 

 

The results obtained by cyclic voltammetry (Figure D3)(-0.2-0.6V; scan rate 10mV/s),  show that 

except for the bare gold electrode, electron transfer on the other electrodes was blocked due to the 

formation of SAMs of BB1-PEG on their surfaces.  

. 

Cyclic Voltametry
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Figure D3. Cyclic voltammetry curves for a bare gold electrode (green), and three others 

functionalized by the BB1-PEG without deprotection (blue), after deprotection with K2CO3 (dark 

blue), and NH4OH  (pink)  
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Unfortunately, the cyclic voltammetry data corresponding to NaOH were lost.  

 

Moreover, electrochemical impedance measurements were also performed (200kHz-10mHz; 

amplitude = 10mV).  

Impedance Curves
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K2CO3 2,5mM
NH4OH 63mM
NaOH 2,5mM

 

Figure D X. Impedance curves obtained on a bare gold electrode(light blue), and on the four 

other electrodes, functionalized by BB1-PEG without deprotection (red), after deprotection with 

K2CO3 (orange), NH4OH  (green) and NaOH (blue).  

 

From the impedance data, we obtained the electron transfer resistance for each sample, listed 

in Table D1. The higher the resistance, the better quality of SAMs formed on the electrode surface. 

and, thus, the better the deprotection treatment.  Consequently, due to its higher resistance, NaOH 

2.5mM was considered the best solution to give more compact and probably more stable layers. 

 

 
Electro

de 1 

Electro

de 2 

Electro

de 3 

Electrod

e 4 

Electrod

e 5 

Electron transfer 

resistance 
36 Ω 

125 000 

Ω 

146 000 

Ω 

1 550 00

0 Ω 

2 800 

000 Ω 

Table D1.- Electron transfer resistance values for the five electrodes.



 



 

 

Appendix E: Small-angle X-ray scattering  
Small-angle X-ray scattering (SAXS) is an experimental technique widely used to study the 

structural properties of matter. The elastic scattering of radiation in the sample leads to interference 

effects,resulting in a scattering pattern, which can be analysed to provide information about size 

and shape of the component of the sample. 

 
Figure E1. Schematic setup of SAXS experiments. 

 

    The principle of a SAXS experiment is the following: X-rays are generated in an X-ray source 

and passed through a collimator. The beam direction is defined by a set of pinholes and the sample 

is placed after the last one. When the x-rays traverse the sample, some of them are scattered and 

can be detected on a position-sensitive detector. A beamstop is placed in front of the detector to 

absorb the strong direct unscattered beam. 

    For most samples, the main SAXS intensity is present close to the beamstop and decreases 

as a function of the scattering angle. Instead of displaying the logarithm of the intensity I(q) as a 

function of the scattering angle 2θ, it is usual to display it as a function of length of the scattering 

vector q = 4 π sin(θ)/λ where λ is the x-ray wavelength. This q parameter allows an easier 

comparison of data recorded with different wavelengths.  

    Measurements used a laboratory point collimation SAXS camera equipped with a rotating 

anode generator (FR591 Nonius) operating with a copper target at 45 kV and 66 mA and a point 

focus source of 200 μm size. The X-ray beam was Kα/Kβ filtered (λ=1.5418 Å) by total reflection 

from two curved Ni-coated Franks mirrors and by transmission through a thin 10 μm Ni foil. A multi-

wire gas filled proportional counter with a large 17x17 cm2 active area was used, enabling 

measurements covering a large q range. The distance between the sample and the detector was 

180 cm which leads to a range of scattering vector q between 10-2 Å-1 and 0.3 Å-1. The calibration 

in the reciprocal q-space was performed using the scattering from the silver behenate as reference 

sample with a first diffraction peak occurring at q = 0.10763 Å-1. The scattering curves I(q) of the 

colloidal objects were obtained by reduction of the data by radial integration of intensities from the 

centre of the two-dimensional SAXS isotropic patterns after correction for the background 

scattering from the solvent. The colloidal suspensions were studied in 1 mm thin-walled glass 

capillaries. 
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Figure E2. SAXS data collected from a Silver Behenate. a) SAXS data collected from a silver behenate 
powder capillary as reference sample for q calibration (first diffraction ring occurring for q = 0.10763 Å-1). b) 
I(q) curve from a silver behenate powder sample obtained by data reduction of  the two-dimensional SAXS 

isotropic pattern (data represented as log(I) vs loq(q). 
 

Resulting Graphs: 
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Figure E3. SAXS curve of sample c35 showing the Guinier region at smallest q (qR<1) and a 

series of very well defined oscillations at higher q characteristic for monodisperse particles. 
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Figure E4 . a) Porod representation of SAXS curve for sample c35. From the position of the first maximum 

at qM=0.065 Å-1 we can deduce a radius RM= 43 Å (qMRM= 2.78 for spherical objects).b) Guinier representation 
of SAXS curve for sample c35 at lowest angles (in q range qR<1). From the slope of the curve ln(I) vs q2 we 
can deduce a radius of gyration Rg = 33 Å which combined with the relation RG=√5/√3 Rg valid for spherical 

objects leads to a Guinier radius RG=43 Å in perfect agreement with the radius deduced from the Porod 
representation. 
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Figure E5. Guinier representation of SAXS curve for samples x20, x60 and x160. The parallel lines 
indicate that the radius of gyration for the three samples is the same, suggesting that even at high 

concentrations (x160) nanoparticles stay monodisperse. 
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