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ABSTRACT 

After having recalled the tolerances on the adjust
ments which mainly affect the energy spread out of an 
SSC either with or without RF flat-topping cavities, 
the special case of no flat-topping is considered 
with more detai l. 
A method for cutting the bunches in phase in an SSC to 
a very short length while minimizing the loss is des
cribed. This length is then kept approximately cons
tant in the isochronous cyclotrons themselves, since it 
is only affected by the radial acceleration gradient. 
In between, on the contrary, rebunchers are needed to 
counteract drift effects. The cases of curved paths and 
of the entrance or exit of a cyclotron, where the defi
nition of an equivalent drift length requires special 
attention, is discussed. The importance at input and 
output of an SSC of having the particles transfered 
about their own energy dependent equilibrium orbit 
is emphasized. 

1) INTRODUCTION 
GANIL (Grand Accelerateur National d'Ions Lourds) is a 
complex cyclotron system made of two SSC's in cascade, 
following a small injector cyclotron, intended to accel
erate all ions to an energy of 10 MeV/nucleon for 
very heavy ions up to 100 MeV/nucleon for light 
ones [1]. 
Emphasis is put on the beam quality to be delivered 
from that installation. Here, the problems related to 
energy spread are especially considered with some of 
the most stringent tolerances to satisfy. 

2) ENERGY SPREAD PRODUCED DURING ACCELERATION 
2.1 ~~~~gY_~~~~~~_~~~~~~~!Q~? 

In an SSC where the field is close to isochronism, the 
particles of the bunches receive a slightly different 
energy according to their phase. For one particle, it 
is possible to represent acceleration in each gap by a 
vector. The total energy received depends almost only 
on the phase of the sum of these vectors. The energy 
spread produced is then related to the distribution in 
phase of the particles in the bunches. 
The use of r.m.s. values for phase and energy spread 
(a) , 

~'P = 2..[ff 
fJ\JJ = 2 V \<[2 _ W2 

(1 ) 

(2 ) 

leads to expressions where the exact distribution has 
a reduced influence. It is shown in Appendix I that 
one has, to a good approximation in the case of a clas
sical cyclotron without flat topping, 

where ~~. is the phase adjustment of the bunch centre 
and A~. represents the contribution of phase inde
pendent sources of spread, like the injected bea~ 

(a) The factor 2 gives, in case of betatron motion with 
uniform distribution in phase space (Kapchinsky 
Vladimirsky), thE true value of half beam size. 

energy spread. Neglecting this last term and assum
ing the first term as predominant, one can write 

AW IW ~ ~qJ2/4 '" 2 ~f! (4) 

with flat topping, on the contrary, 

(}W I W ~ b'f. b ~~~ (5 ) 
where ~':Pf.I: is the error in phase of the f..t. volt
age with respect to the fundamental, expressed in phase 
of the fundamental frequency. Initial energy spread 
would again add quadratically. 

2.2. Discussion 
A look at relations (4) and (5) immediately shows that 
if one likes to be able to accelerate long bunches 
(e.g., for maximum intensities, when space charge 
effects become appr3ciable (b))! in.order to keep small 
energy spread (~10- ), flat topplng lS necessary. 
The most stringent tolerance is then put on the rela
tive phase between fundamental and f.t. frequencies 
(of the order of .1° or .2°) inasmuch as the bunches 
are longer. 
If, on the contrary, for experimental requirements, 
bunches have to be kept short, there is no need for 
flat topping. In this case, however, the relative phase 
of the bunches with respect to RF has to be carefully 
stabilized (of the order of .5°). 
One should, in fixing tolerances, not forget the effect 
of other sources of energy spread, like that coming 
from the injected beam or the error in mean energy 
which is almost directly proportional to the RF voltage 
(but also depends slightly on bunch centre phase in the 
case of f. t. ) . 
In addition, one must keep in mind that the particle 
phases introduced here are average values for which the 
particular phase at injection or ejection may not be 
exactly representative when variations can take 
place during acceleration, as will now appear. As 
soon as an exact adjustment has been found, however, 
the required tolerance in phase can be kept satisfied 
only from the measurements of input and output values. 

3) LIMITING BUNCH LENGTH l~ 

The short length of bunches required may not he 
obtained from the injector of an SSC, nor reached for 
all types of operation from the rebuncher system used 
betwe~n it and the SSC itself. It can then be necessary 
to stlll reduce that length inside the SSC. 

Provided one accepts los s of those particles which are 
outside the necessary ± ~q>, it is relatively simple to 
make the selection in an SSC as follows. 

A sm~ll change is applied to the value of magnetic in
ductlon of the sectors and the injection phase is dis
placed in such a way as to have the central phase of 
the bunches shifting during acceleration from say -~ 
to +'P", keeping the average ~tpo close to zero. For 'f!o~ 
o! the.order of 30°, after 5 to 10 turns, particles 
wlth dlfferent phase have received different energies 
and are separated radially without successive turns 
being yet mixed. 

(b) The Unear part of space char·ge can be compensated 
fm' by a small slope of the RF voltage along the bunch 
length. This is more easily produced with f.t. than 
without. 
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Figure 1 Simu lated r- ~W distribution of t he part ic le s 
aft er 6 and 7 tuY'ns . At such a place, it is possib le to 
cut down the bunch length fr om + 7 . 5 0 to + 3° wi th a 
slit or a target between two t urns 

o < /), ..p < 2°5 
+ 2 °5 < /),'f> < 5 ° 
a 5 ° </), 'f' 

Numerical simulation has shown (see fig.l) that it is 
then pos s ible with a single slit or target, properly 
placed, to cut bunches of ±7 . 5° down to ±3°, at 
least for cases where turn to turn separation is large. 
The value of transverse emittance is not an important 
parameter , provided injection is correctly adjusted 
with a proper correlation of radius with energy and 
corresponding phase with angle. 
For smaller turn to turn separation or to reach shor
ter lengths, a second target can be used: it can ei
ther be put on the same turn at an opposite azimuth or 
on the same azimuth a few turns later after half a ra
dial betatron oscillation . 
The intensity loss to expect in the case mentioned 
remains of the order of 50 %. It would increase for a 
larger reduction in bunch length . 
The energy spread obtained at ejection corresponds to 
(3) or (4). 

4) PHASE CONSERVATION IN AN sse 
For a correct isochronism adjustment and orbits well 
centered (no radial oscillation), the central phase 
of a bunch is supposed to change regularly with azi
muth and the phase width to remain constant. 
This is true only for a very small acceleration rate. 

4.1. ~~~!r~! -~~~~~-~~~~gT-9~ri~g-Q~~-!~r~ 
r~~~!!i~g_frQ~_~~~~_~r~!iQ~ 

Acceleration being not continuous, the accelerated 
orbit is not a spiral. Let us consider the case of 
two cavities per turn and replace the effect of each 
cavity by a single kick given in the middle . There are 
several ways to approach such an effect. 
In a compact classical cyclotron, it is seen to produ
ce the displacement of the centre of the orbits which 
twice a turn jumps alternatively from one to the other 
of two positions. 
It can also be described in terms of orbit oscillations: 
Fig.2 shows how, from one energy kick to the next, the 
orbit can oscillate around an orbit whose radius is 
just the average of those at successive gap crossings. 

radius 

azimuth 

gap 

Figure 2 : Acce l er at ed orbi t with minimum osci llation 
i n a two gap or two dee geome try. 

In a 4 sse, the unacce1erated orbit has a squared sha
pe ; the effect described is changing it to a lozenge 
(see fig. 3) (e). The difference in length of the or
bits followed in the two sectors crossed between accel
erating cavities entails a shift in phase in the 
middle of the free valley with respect to the average 
between cavities . Such an effect may greatly affect 
beam phase measurements, particularly when turn spacing, 
i .e.,re1ative energy gain, and RF harmonic number are 
1 arge. 

cavity cavity 

Figure 3 : Lozenge s hape of the acceler ated orbit i n a 
two dee f our sector SSC. 

4.2. ~~~~~_!~~g!~_fb~~g~_9~ri~g_Q~~_!~r~_ 
Apart from oscillations resulting from unequal lengths 
of the bunches in radial and azimuthal directions, 
other variations are due to acceleration. 
Accelerating cavities used in sse are usually double 
gap and generally of radial structure. As already men
tioned, it is possible to replace the effect of two 
gaps by a single kick; this is obtained from a Fourier 
analysis of the field distribution along the orbit. 

The treatment of one complete cavity for a single cros
sing leads to a Fourier integral in the spectrum of 
which only the component corresponding to a periodic 
orbit acts on the particles. A proper choice of the 
azimuth (the axis of symmetry, if it eXists) or a kind 
of centre of gravity leads to a single term equivalent 
to a single kick (See note of appendix II). 
This kick however is both function of W (or rather wave 
vector R = w/\I land radi us r. It can be put in the 
form 

~VI=q"olr),.5(r,'n ~itl~ (6) 

with 
~(r.\?l = 2. f.,itl (\?r~e) (7) 

(c) This effect i s descr ibed by S. ADAM as GABA effects 
(15th European Cyc lotron Progr ess Mee ting. Ber l i n 1978 
The Inj ec t or II f or SIN). 
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if cavities are radial sectors with a half angle 9 and 
r is the radial coordinate at the mid-valley azimuth. 
In (6), q V.(r, is the energy gained at one accelera
ting gap by a particle of coordinate r as defined above. 
(The dependance of V. with k is assumed negligible as 
well as the coupling with the axial direction z). 
With such a field where only the space harmonic Fourier 
component S is acting on the particles, one has [3J, 
during the crossing of a full cavity assumed concentrat
ed at its centre, a slight phase displacement and a 
small radial kick given by (d) : 

~f .. = '9.-'9 ... = _ q\lo R '1.5 ~QS 'P 
2.W )i? 

A(M"rl :: ~." 
2W h 

(8) 

(9) 

This radial kick moves the orbit from that cavity to 
the next and changes its length and therefore input 
phase at this next cavity by an amount (see appendix 
II) . 

(10) 

With the expression (7) for S, one gets: 
~.p .. ~ _Aco~~lf ( 11) 

with 
A: ~~/2w.kr~e w~9(tlr~el. (12) 

Adding ~{>a partly cancels out this term and one only 
has 

~4>-I 4- SoP .. '"' b~. r. dJo. cole! '" . 
VI V. cI r 

(13 ) 

For a constant voltage along the accelerating gaps, 
there is a complete cancellation effect such that twice 
a turn, from cavity centre to cavity centre, isochro
nism is conserved. In between, however, besides a beta
tron oscillation which may be due to a mismatch bet
ween azimuthal and radial dimensions, the bunch length 
has a variation of the type shown on figure 4. 
The various aspects of this effect have to be taken 
into account for bunching adjustments. According to 
(11) it is particularly important when A (defined by 
(12)) is not sma ll. 

If 

2A'f ,--- -azimuth 

Figure 4 : Bunch length variation around a double gap 
two dee SSC. The amplitude of variation is proportional 
to the parameter A (here A = 0.4). The bunches are as
swned matched in r,r~'f-space at mid-vaHey azimuth. 

In practice, the situation is still more complicated 
and even if the previous cancellation is perfect, one 
should use cavity geometries and harmonic numbers mini
mizing this term. Besides equations (8) and (9) there 
are indeed other relations describing all the possible 
couplings between the four coordinates of radial and 
azimuthal motion (assuming axial not coupled). In 
particular, associated with (9), through Maxwell's 

d) In case of unequal gaps, the equivalent centre can 
mOVe in azimuth with r and this results in an addi
tional radial kick term which, as for spiral sector 
machines, entails a phase delay just equal, in this 
linear approximation, to the spiralization. 

equations, one has 
b'W/'4J : ~WoNJ ... 2 A l? A~ (14 ) 

expressing the fact that, for a fixed energy, a cavity 
of radial shape delivers an acceleration which de
pends on the radial coordinate (even for a zero voltage 
gradient), which periodically moves the equivalent 
orbit. 
The motion of a particle in a t:,r-to<P diagram, seen at 
each turn in a stroboscopic view 13j, appears then as 
shown on fig. 5 on dashed or dotted curves according 
to the sign of A, the A ~O case being shown by the 
solid curve. Final energy spread may be appreciably 
affected by such an effect, which leads to a growth of 
phase spread when A is too large (e). 
In order to avoid any degradation due to this, A 
should be kept « 1. 

4 lIr 

t 1cm 

l_1cm 
I 

Figure 5: Motion of a particle in a to.p -tor plane ob
tained from a stroboscopic view at periodic points 
showing the effect of the parameter A. Here the initial 
values of A are : 

_ A = - 0.03 ___ -4 = - 0.3 ----A = 0.5 

When the gradient dV/dr is not zero, the term (13) can 
lead to a phase compression or dilatation.(13) can be 
written [3J 

M' ~.D _ r ') (~Wl _n 
4+ "2' .. - £W· iJr . eol-~ '« (15) 

from which one gets the invariant initially given by 
R.W. r'1ULLER, et al. [4J 

~'W. Il>in A~ ". '-"Ins\-

or, coming back to the voltage on the gap and applying 
the invariant from injection to ejection, 

(16 ) 

Such an effect, which has also been confirmed on numeri
cal simulation, can be used as a very elegant way for 
phase compression; practical considerations, however, 
reduce the extent of what can be obtained from it. 

5) DRIFT EFFECTS AND REBUNCHING 
In between SSC's,over a rectilinear path of length L, 
two particles of slightly different velocities 
('\1 :!: A'\1/2) sl ip in phase, one with respect to the other, 
by an amount : 

A'9 :< ~ L 6"/ V • ( 17 ) 
Such a situation can introduce a deterioration of the 
bunching; it may also be used, by the introduction of 
cavities properly placed along the transfer lines, to 
obtain rebunching, virtually even on a shorter 
1 ength [5]. 
One must be aware,however,that relation (17) only 
holds for a straight transfer. Over a curved path par
ticles of different momentum have different trajec-

e) This has been described by W.M. SCHULTE with a com
pletely different formalism (15th European Cyclotron 
Progress Meeting. Berlin 1978 : Radial Beam Behaviour 
in 2 dee cyclotrons). 
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tories ; this fact can appreciably change the 
phase sl ip, making it nil, as in an isochronous cyclo
tron, or, on the contrary, very large, as for some 
adjustments of high resolution spectrometers. 

In order to study phase slip effects in beam transfer 
systems, one may use matrix formalism which, limited 
to the coordinates in the plane of the beam (transver
se and longitudinal) and assuming a constant velocity 
transfer, can be written 

, :' t _I :~ ~ :~~ ~ 
!6'i'/k - \ a31 a32 1 

601/'IT 0 0 0 

with the simplectic conditions 
a14 a32 all - a31 a12 

a24 = a32 . a21 - a31 a22 

and unity determinant 
all' a22 - a 12 . a21 = 1 • 

( 18) 

(19) 

(20) 

A particularly interesting class of transfer systems 
is the achromatic case for which 

a14 = a24 = 0 , 

entailin~ from (19) and (20), 

a31 = a32 = 0 

In this case, it is easy to see that 

f:/iz = '" a!o4 fj,J / ~ 
Comparison with (17) shows that a34 can then be 
called the equivalent length of the system. 

(21) 

(22) 

(23) 

Achromatic systems possess several other interesting 
properties. Provided they do not include more than 
two curved components, their equivalent length is 
simply the sum of equivalent elements [6]. This is 
not generally the case. When entering or exiting an 
SSC, a choice must be made of what kind of matching 
to achieve in the above coordinates. 

Achromatic matching can be made onto an orbit 
inside the machine. This choice, however, only 
yields correct results at a given azimuth and with 
oscillations induced along this orbit for particles 
of different velocities; in addition, the length 
of the transfer depends upon the azimuth. 

It is much better, then, to try to ensure chromatic 
isochronism in the transfer. This is achieved when 
each particle has a displacement proportional to 
its momentum or velocity with respect to the 
reference orbit: 

far = r biJ/1.J. (24) 
In order to make a correct numerical study of this 
case, one should not forget, however, that such a 
chromatic transfer should satisfy the simplectic con
ditions (19). It is then seen [6] that, in addition 
to (24), there must exist another correlation (f), 

6'-1' = l<r llr' (25) 
which is automatically introduced by any physical 
system. 

(f) The necessity of this term was pointed to us by 
P. YVON. 

Numerical simulation has demonstrated a very noticeable 
improvement on output energy spread when injection is 
made in this way; it is then possible to reach the 
limits given by (3) or (4) even for large emittance 
beams with high harmonic numbers. One must insist on 
the real importance of contribution (25) which, es
pecially for high harmonic numbers, is responsible for 
the improvements obtained, through a better matching. 

6) CONCLUSION 

In order to reach given energy spread specifications 
in an SSC complex like GANIL, strict tolerances must 
be satisfied. In particular, special attention has 
to be given to phase and bunch length, to the method 
used to obtain and keep the necessary value, and 
to procedures for checking the quality of adjustments. 
Several aspects of these problems have been considered 
here: the methods proposed, as comfirmed by numerical 
simulation, show very promising prospects provided 
proper precautions are taken. 

The complexity of some effects emphasize nevertheless 
the importance of finding accurate adjustments from 
the measurement of the energy spread itself. 
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APPENDIX I 

Let us assume a density distribution in phase defi
ned by a truncated gaussian law : 

for 

According to (1), one has 

t.'I'!4-[ -9'fC- f
',adjC e-f'I'd~ 

If the relative energy gain of the particles is 
given by the cosine of their phase with respect to 
the RF phase _ b'i'o, one has for the mean energy in 
the bunch, with respect to the peak, 

-! l 'i - ~ i' 0 )~ 
2 

and according to (2) 

( 6: t = , l -I? _ Sf 0 )4 

Straightforward but tedious computations give 

and 

with 

_ 4 b'" l-! 2a~ 1 + 6a:&. -l 
- ~'P" I - Mao I A '£~ - • 

Assuming 8£ «A~the following expression can be 
used : 

Numerical values obtained from these various rela
tions are given on the figure as functions of b/a 
or ~ J a. 
One sees that for b/a of the order or 1 or 1.5,f(b/a ) 
is not far from 1. 
One may add that a similar computation for a parabo
lic distribution gives an expression equivalent to 
t 0:>1 a) = '181"1 , while a uniform distribution 
corresponds to b/a= 0, i.e., -{ (bJG I :: ~4 15 
For f = lone has 

1.4 

0.5 
, d/d,,(tp/a) 

" or---
...... -!..- -

2 3 

APPENDIX II 

Reference [3] describes the formalism (a) used to 
represent the action of a two gap radial dee by a 
single kick applied at its centre. 

The derivation of the phase slip from one cavity to 
the next resulting from the radial kick received at 
dee crossing is, however, slightly incorrect because 
an average expression has been used for the betatron 
function. 

Let uS consider accurately a hard edge sse configura
tion with half valley angleoC. (sector angle V/z_2.co(); 
for a mid-valley radial coordinate r, a radius of 
curva ture ~ in the sec tor, wi th 

two half trajectories having a radial displacement ~ 
at mid-free-valleys cross in accelerating valleys 
with an angle 

2. ~ l-4· .t1"e><) 
and differ in length from the closed orbit by (see 
the figure) 

A simple check on relations (8) ,(9) and (10) shows 
that, provided '10 is constant in r, 

~-fl+ ~~~= O. 

\ 
\ 
\ 
I 

I I 
I I 
l~tg«..J 
I, /1 

! : 
6 .' ,6<1 tg'It) 

I I 
a,' I 

7 : 
I , , 

This has been confirmed on the simulation computa
tions for the soft edge case of GANIL. 

Such a property is then valid for an sse ; it is also 
true for a classical cyclotron and, as already men
tioned in the note of section 4.2., for a spiral gap 
shape. It is probably true for any shape either 
outside or inside a magnetic field as long as linear 
approximation is valid and curvature in the gaps may 
be neglected ; no general proof of this property is 
known, however. 

(aJ The principles leading to it can be found in : 
Accurate beam dynamics equations in proton linear 
accelerator~by A. Carne, P. Lapostolle, M. Frome, 
5th Int. Conf. on High Energy Accelerators FRASCATI 
1965 pp 656. 662. 
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** DISCUSSION ** 

w. JOHO: In the new injector for SIN we have 
a very large energy gain per turn compared 
with the initial injection energy of only 
800 kV. Therefore, this effect of diamond
shaped orbits is even more pronounced in our 
case. Since the beam cuts the edge angle of 
the magnet differently in the even and odd 
sectors, the focusing does not have four-fold 
symmetry. Therefore, we plan to make the even 
sectors different from the odd sectors so 
that the orbit and not the magnets has'four
fold symmetry. Do you plan something similar 
for GANIL? 

P. LAPOSTOLLE: No, we don't. In our case, 
having different acceleration harmonics with 
different turn separation, it would be diffi
cult to make a correction good for all cases. 
We have managed to choose parameters so that 
the effect.is :eas00ably small. So, apart 
from.compl1cat1ons 1n measurements, this 
part1cular effect does no harm to the beam 
quality in our case. 

W. SCHULTE: The correlation between high 
frequency phase and radial momentum at the 
injec~ion P?int in the cyclotron, as you point 
out, 1S equ1valent to dispersion matching at 
that point. This point was discussed by 
Hinder~r two y~a:s.ago at the ECPM. Secondly, 
there 1S a def1nItIon of central position 
phase which will facilitate the description 
of ~he accelerated particles. A poster contri
but10n deals with this definition and with the 
injection problem. 

P. LAPOSTOLLE: Thank you for your comments. 
Though ~sing very different approaches, our 
con~IUS1?nS agree. What you find from your 
Ham1ltonlan reduced variables I have obtained 
in actual laboratory coordinates. 

Proceedings of the Eighth International Conference on Cyclotrons and their Applications, Bloomington, Indiana, USA

0018-9499/79/0400-2311$00.75 c○1979 IEEE 2311


