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CEA/DRT/LIST/DCSI/LM2S, 91191 Gif-sur-Yvette, France.

e-mail: diarra.fall@univ-orleans.fr ; eric.barat@cea.fr

Abstract

We introduce a new sampling strategy for the two-parameter Poisson-
Dirichlet process mixture model, also known as Pitman-Yor process mix-
ture model (PYM). Our sampler is therefore applicable to the well-known
Dirichlet process mixture model (DPM).

Inference in DPM and PYM is usually performed via Markov Chain
Monte Carlo (MCMC) methods, specifically the Gibbs sampler. These
sampling methods are usually divided in two classes: marginal and condi-
tional algorithms. Each method has its merits and limitations. The aim of
this paper is to propose a new sampler that combines the main advantages
of each class. The key idea of the proposed sampler consists in replac-
ing the standard posterior updating of the mixing measure based on the
stick-breaking representation, with a posterior updating of [Pit96b] which
represents the posterior law under a Pitman-Yor process as the sum of a
jump part and a continuous one. We sample the continuous part in two
ways, leading to two variants of the proposed sampler. We also propose
a threshold to improve mixing in the first variant of our algorithm.

The two variants of our sampler are compared with a marginal method,
that is the celebrated Algorithm 8 of [Nea00], and two conditional algo-
rithms based on the stick-breaking representation, namely the efficient
slice sampler of [KGW11] and the truncated blocked Gibbs sampler of
[IJ01]. We also investigate effects of removing the proposed threshold in
the first variant of our algorithm and introducing the threshold in the ef-
ficient slice sampler of [KGW11]. Results on real and simulated data sets
illustrate that our algorithms outperform the other conditionals in terms
of mixing properties.

Keywords: Bayesian nonparametrics; Dirichlet process mixture model;
Pitman-Yor process mixture model; Gibbs sampler; Slice sampling



1 Introduction

Bayesian nonparametrics have recently gained popularity in a great number
of applications in statistics and machine learning (density estimation, cluster-
ing, image segmentation and reconstruction, language modeling etc.). Dirich-
let process mixture models (DPM) ([Fer83], [Lo84]) have become ubiquitous
in Bayesian nonparametric modeling as reviewed by [MQ04] and recently by
[MM13]. This makes crucial the use of effective sampling strategies for DPM
and their two-parameter generalization a.k.a as Pitman-Yor mixtures (PYM).
In particular, the mixing properties of MCMC samplers appears as a key point
in order to address high dimension applications using large datasets. In this
paper, we investigate such a task.

A DPM assumes that the random density function can be written as

f(x) =

∫
p(x|θ)dH(θ) with H ∼ DP(α,G0), (1)

where {p(·|θ) : θ ∈ Θ} is a family of non-negative (possibly multivariate) kernels
defined on a complete and separable metric space X such that

∫
X p(x|θ)λ(dx) =

1 for all θ ∈ Θ and for some σ-finite measure λ. The prior over the mixing
distribution H is a Dirichlet process (DP) [Fer73] with parameters α > 0 and
base distribution G0 that is the prior guess at the shape of H, E[H(·)] = G0(·).
As it is well-known, the DP selects an almost surely discrete random probability
measure that can be represented as

H(·) =

∞∑
k=1

wkδθ∗
k
(·), (2)

where (wk)∞k=1 are non-negative weights that sum to unity, and (θ∗k)∞k=1 a se-
quence of Θ-valued random locations. The random probability measure H can
be constructed using the stick-breaking representation, where the weights are

wk = vk
∏
l<k

(1− vl)

for a sequence (vk)k≥1 of independent random variables on (0, 1). One can
replace the Dirichlet process in (1) with any almost surely discrete random
probability measure, for example a Pitman-Yor process (PYP). The definition
of the PYP is set forth in the next paragraph, but here we anticipate that the
Pitman-Yor process mixture model is obtained as follows

f(x) =

∫
p(x|θ)dH(θ) with H ∼ PY(d, α,G0), (3)

with d ∈ [0, 1), α > −d. The PYM is an interesting alternative to the DPM
that allows more flexibility in the modeling. Alternatively, the model (3) can
be expressed hierarchically as follows

xi|θi
ind∼ p(xi|θi)

θi|H
iid∼ H (4)

H|α,G0 ∼ PY(d, α,G0).
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By exploiting the discreteness of H, the PYM also provides a flexible model
for clustering items of various kinds in a hierarchical setting without explicitly
specifying the number of components.

In a Bayesian context, one is interested in the posterior distribution of the
random density f . However, this later does not exhibit any closed form and
inference is necessarily simulation-based. After the first MCMC method in-
troduced by [Esc94] for DP mixture models, many authors contributed to its
improvement ([EW95], [MM98]) and to handle non-conjugate cases [Nea00].
These aforementioned techniques integrate with respect to the mixing mea-
sure H and, thus, remove the infinite dimensional aspect of the problem. This
leads to the so-called marginal (or Pólya urn) approaches. Efficient versions
of marginal samplers usually achieve good mixing performances [Nea00]. An
alternative to marginal methods is given by the conditional algorithms which
explicitly represent the mixing measure using, for instance, its stick-breaking
series representation ([IJ01], [Wal07]). The challenge in conditional approaches
is to deal with the countably infinite representation of H in Equation (2). In
[IJ01], authors resort to an approximation and truncate the mixing measure at a
deterministic value. An alternative which avoids hard truncations was proposed
by [MT98] who provided an approximation of the Dirichlet process by means
of a random truncation of its stick-breaking representation. The idea of ran-
dom truncation has also been developed in [PR07] with a Metropolis-Hastings
sampling scheme, and in [Wal07] using the slice sampling strategy. This later
algorithm has been improved by [Pap08] and [KGW11].

The key advantage of conditional methods using the stick-breaking construc-
tion is in updating the mixing measure H as well as the other parameters in the
model. This makes possible direct inference on H. Furthermore, components
weights are explicitly represented and updated. This property makes these al-
gorithms able to update blocks of parameters and easy to parallelize in order
to take advantage of recent parallel computation hardware architectures, which
is well suited particularly for large data sets. On the flip side, by integrat-
ing mixture components out of the model, marginal techniques are based on
incremental updates which are prejudicial when working with huge data sets.
Another drawback of marginalizing over the mixing measure is that computing
posterior conditionals require additional sampling steps (see [IJ01]).

However, dealing with exchangeable prediction rules, marginal methods ex-
hibit most of the time better mixing properties than conditionals, and our exper-
imental comparison in Section 5 corroborates this assessment. Also, the random
weights are collapsed by marginalization and this results in a crucial reduction
of the parameters space dimension. A limitation of conditional methods based
on the stick-breaking representation is that the sampler operates in the space
of non-exchangeable cluster labels, as pointed out in the paper by [PISW06].
Indeed, in this representation, weights are explicitly defined by the prior and
components are represented with a size-biased ordering over their labels. This
means that components with lower labels have higher prior probabilities than
components with higher labels. As a consequence, components are not inter-
changeable and cluster prior labelling contributes to the posterior sampling. In
this situation, the sampler needs to mix efficiently over clusters labels to avoid
any clustering bias. Then, [PISW06] recommend systematic use of two addi-
tional Metropolis-Hastings moves (”label-swap” and ”label-permute”) in order
to improve mixing over clusters. When working with non-exchangeable clusters
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labels, this additional step seems to be the only way to improve the mixing
over clusters (see also [Pap08]). In contrast, in marginal methods using Pólya
urn representation, the sampling occurs in the space of equivalence classes over
exchangeable clusters labels where clusters identities are arbitrary and insignif-
icant. This is the adequate space to live for the sampler because cluster labels
are irrelevant.

In this context, we introduce a new conditional sampling scheme which is
formulated in the space of equivalence classes over clusters labels where clusters
identities are irrelevant. Our approach can be seen as marginalizing the clusters
labels ordering. Before going further, we point out that instead of using the
stick-breaking representation for the underlying mixing measure, recent con-
ditional samplers exploit other constructive representations. For instance, the
use of the so-called Ferguson and Klass representation [FK72] of independent
increment processes has been recently considered in the literature. See, e.g.,
[GW11] and [NBP09], and references therein for some recent contributions in
this direction. Such approaches are interesting in the sense that they allow to
consider classes of priors, in general, wider than the PYP and the DP. However,
they become non-trivial to implement, even when applied to the DP model.
Given the importance of the DPM and PYM, the dominant priors in Bayesian
nonparametrics, it seems important to devote attention to the development of
alternative, simple and efficient algorithms. It is the purpose of this paper to
provide a simple and fast way to infer DPM and PYM. Also, it is worth men-
tioning that since this work was presented in a technical report, it has been
successfully applied, for example in [CTM].

The remainder of this paper is structured as follows. In Section 2, we recall
some preliminaries about Pitman-Yor processes. Section 3 briefly recalls the
basis of the algorithms that are used to compare our samplers and discuss the
advantages and limitations of marginal and conditional methods. Afterwards,
in Section 4, we present the two variants of the proposed MCMC. We evaluate
performance of the algorithms through application to real and simulated data
sets in Section 5. Finally, we conclude the paper in Section 6 with discussions
and extensions for further work.

2 Preliminaries on Pitman-Yor processes

In this section, we provide a succinct description of the Pitman-Yor process. We
refer interested readers to [Pit96b], [PY97], [Pit02],[IJ01], [IJ03] and references
therein for more details on Pitman-Yor processes.

Definition 1 (Two-parameter GEM distribution)
Let d ∈ [0, 1), α > −d, (vj)j≥1 a sequence of independent random variables
such that for all j, vj ∼ Beta(1 − d, α + jd). Define the sequence of weights
(wj) by the stick-breaking scheme as follows w1 = v1, w2 = v2(1− v1), . . . , wj =

vj
∏j−1
i=1 (1 − vi). The sequence w = (wj)j≥1 is said to follow a two-parameter

GEM distribution (after Griffiths, Engen and McCloskey), with parameters d
and α, and denoted by

w ∼ GEM(d, α).

Definition 2 (Pitman-Yor process)
Let w ∼ GEM(d, α) and G0 a diffuse (non-atomic) probability measure on a
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measurable space (Θ,B) (i.e G0({θ}) = 0 for each θ ∈ Θ). Let Θ∗ = (θ∗j )j≥1
be iid G0, independently of w. Then

H(·) d
=

∞∑
k=1

wkδθ∗
k
(·), (5)

where δθ∗(·) denotes the Dirac measure giving mass 1 at θ∗, is distributed ac-
cording to a two-parameter Poisson-Dirichlet distribution on (Θ,B). We refer
to H as a Pitman-Yor process with parameters d and α and base measure G0.
It is denoted by:

H ∼ PY(d, α,G0).

Setting d = 0, the Pitman-Yor process reduces to the Dirichlet process with
parameters α and G0, while the PY(d, 0, G0) yields a measure whose random
weights are based on a stable law with index 0 < d < 1.

Definition 2 is a constructive definition of the PYP called stick-breaking
representation. The PYP has also a characterization in terms of generalized
Blackwell-MacQueen [BM73] urn scheme. Henceforth, Kn will denote the ran-
dom variable identifying the number of distinct values appearing in the sample
(θ1 . . . ,θn) from a two-parameter Poisson-Dirichlet process, and kn a realization
of Kn.

Proposition 1 (Generalized Blackwell-MacQueen urn)
Let d ∈ [0, 1), α > −d and G0 a diffuse probability measure on Θ. Consider a
sequence of (θi)i≥1 generated via the following predictive distributions

θ1 ∼ G0 (6)

θn+1|θ1, . . . ,θn ∼ α+ dkn
α+ n

G0 +

kn∑
j=1

nj − d
α+ n

δθ∗
j
, (7)

where {θ∗j , j = 1, . . . , kn} are the unique values among {θi, i = 1, . . . , n} and
nj the frequency of θ∗j . The distribution of this sequence of exchangeable draws
converges almost surely to a discrete distribution which is distributed accord-
ing to a PY(d, α,G0) when n goes to infinity: θ1, . . . ,θn|H ∼ H where H ∼
PY(d, α,G0).

The predictive distributions (6)-(7) are the key components of marginal methods
described in Section 3. They also make clear the role of the parameters in
Pitman-Yor and Dirichlet process mixture models. In a DPM, the probability
for θn+1 to coincide with an already observed value, say θ∗j , is determined by
nj while the probability to sample a new value for θn+1 from the base measure
G0 is proportional to the concentration parameter α. As a consequence, α is
the only parameter which can be used to tune the number of clusters. [KH73]
showed that the asymptotic behaviour of the number of clusters Kn that are
induced by the Dirichlet process is

Kn/ log(n)→ α.

For some applications, this feature can be too restrictive. In a PYM, together
α and d control the formation of new clusters. The first controls the overall
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number of clusters whereas d determines the asymptotic growth of Kn. The
larger d, the more new values are generated. In [Pit02], it is shown that

Kn/n
d → Sd

where Sd is a strictly positive random variable, with continuous density

Pd,α(S ∈ ds) = gd,α(s) :=
Γ(α+ 1)

Γ(αd + 1)
s
α
d gd(s)ds (s > 0)

where gd = gd,0 is the density function of a positive stable random variable with
parameter d.
These effects can be visualized by looking at the induced prior distribution of
the number of distinct clusters in a sample of size running from 1 to 10, 000, for
both DP and PYP with respectively α = 10 and (d = 0.5, α = 10). Results are
displayed in Figure 1.

Figure 1: Number of clusters as a function of the sample size for a DP(α = 10) (left)
and a PYP(d = 0.5, α = 10) (right). The rate at which the number of clusters Kn

increases is slower in the DP than in the PYP, being respectively log(n) and nd.

Another characteristic of the DP and the PYP is a reinforcement mechanism
(named after ”rich-get-richer”) that tends to reinforce among the observed clus-
ters those having higher frequencies. As noted above, in a DP the probability
of joining an existing cluster j is proportional to the size nj of that cluster. In a
PYP however, this probability is proportional to nj − d, with d acting as a dis-
count parameter that reduces the probability of adding a new observation to an
existing cluster. This yields a power-law behaviour for the PYP which greatly
influences the clustering structure and makes this prior well-suited to natural
language processing applications, unlike the DP [Teh06]. We refer to [DBFL+]
for more details on the role of d in the combined effect of the reinforcement
mechanism and the increase in the rate at which new values are generated.

After having recalled the basis of Pitman-Yor processes, we present in the
next section the MCMC samplers of both marginal and conditional type for the
Dirichlet and Pitman-Yor mixture models.
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3 Sampling from DPM and PYM

To be self-contained, in this section we recall basis of the two classes of MCMC
algorithms for sampling under the posterior of a DPM and a PYM and briefly
describe each of the algorithms that are used to compare our proposed method.

3.1 MCMC algorithms for PYM

Posterior distributions are intractable in DPM and PYM. Posterior inference
is performed using approximation techniques such MCMC methods. There are
many sampling MCMC algorithms which can roughly be divided into two cat-
egories: marginals and conditionals.

3.1.1 Marginal methods

These methods are called marginal since the infinite dimensional random com-
ponent, namely the mixing measure H, is integrated out of the model and the
predictive distributions are used within a Gibbs sampler to get posterior sam-
ples. Marginal methods can be sub-categorized into conjugate or non-conjugate
models. By conjugacy, we mean that the mixture kernel p(·|θ) and the base
distribution G0 form a conjugate pair. In this case, calculations in condi-
tional posterior distributions are simplified and can be performed analytically
([Nea91], [Esc94], [WME94], [EW95] and [BM96]). In non-conjugate models
however, posteriors can not be easily calculated. The sampling scheme is more
difficult and requires elaborated techniques ([MM98], [WD98] and [GR01]). The
reader is referred to [Nea00] for a more complete overview and discussions about
these methods. Neal [Nea00] also proposes two novel sampling schemes for non-
conjugate models: the first (referred to as ”algorithm 7” in Neal’s paper) uses
a combination of Metropolis-Hastings steps with Gibbs updates. The second,
named after ”algorithm 8”, is based on an augmentation scheme and extends
the model to include auxiliary components which exist temporarily. We briefly
detail this algorithm we will use to contrast our sampler since, to our knowledge,
it achieves the best mixing properties in marginal methods. This algorithm has
been developed for Dirichlet process mixture models in Neal’s paper. Here, we
slightly modify it by adding the second parameter in order to infer Pitman-Yor
mixture models.

Algorithm 8 of [Nea00]: The idea behind ”algorithm 8” of [Nea00] is to
add auxiliary components (representing potential future components) when up-
dating classification variables.

To be more precise, let ci such that ci = k iff θi = θ∗k, where Θ∗ =
(θ∗1 , θ

∗
2 , . . . ) denote the unique values among (θ1, . . . ,θn). Since data are ex-

changeable and labels of components completely arbitrary, each datum xi can
be treated as the last. Using the predictive distribution (7), xi is thus assigned
to an already represented component or to an auxiliary component. If we denote
by k−n the number of active components disregarding observation i and n−i,k the
number of cj for j 6= i that are equal to k, the prior probability to allocate xi to

an active component is
n−i,k−d
α+n−1 and the probability to create a new component

is
α+dk−n
α+n−1 , which will be equally distributed among the m auxiliary components.
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The choice of m is left to the user. It is governed by a balance between compu-
tational considerations and mixing properties. Combining with the likelihood,
updating classification variables is done via the conditional probabilities:

Pr(ci = k|xi, c−i,Θ∗) ∝


n−i,k − d
n− 1 + α

p(xi|θ∗k) for k = 1, . . . , k−n ,

α+ dk−n
m(n− 1 + α)

p(xi|θ∗k) for k = k−n + 1, . . . , k−n +m.

After this step, parameters for non-empty components are updated according to
their posterior law based on the prior G0 and the likelihood of all data currently
allocated to:

p(θ∗k|X, c) ∝ G0(dθ∗k)
∏

{i:ci=k}

p(xi|θ∗k).

3.1.2 Conditional methods

In contrast to marginal methods, conditional samplers retain the mixing mea-
sure H and explicitly represent it using, for example, the stick-breaking con-
struction stated in Equation (5). The issue is to treat the infinite dimensionality
of H. There are methods that approximate H by a deterministic truncation of
the number of its components, and those that use a finite but random number
of masses.

The truncated blocked Gibbs sampler [IJ01]
To remove the infinite dimensional aspect of the problem, Ishwaran and James

([IJ01], [IJ03]) truncate H at a chosen integer value N . It is necessary to set
vN = 1 in the stick-breaking construction of H to ensure that the truncated
measure HN is a probability measure, with distribution:

HN (·) =

N∑
k=1

wkδθ∗
k
(·).

Under this truncated framework, and using classification variables c = (c1, . . . , cn),
the hierarchical model (4) can be rewritten as follows

xi|ci,Θ∗ ∼ p(xi|θ∗ci)

ci|w ∼
N∑
k=1

wkδk(·) (8)

w|d, α ∼ GEM(d, α)

θ∗k|G0 ∼ G0,

where X = (x1, . . . ,xn) represent the data, Θ∗ = (θ∗1 , . . . ,θ
∗
N ) the parameters

of the mixture components and w = (w1, . . . , wN ) the components weights,

with wN =
∏N−1
k=1 (1 − vk) = 1 −

∑N−1
k=1 wk. Rewriting the model in this form

makes direct posterior inference possible since one has to treat a finite number of
components. If we denote by kn the number of currently non-empty components,
the full conditionals involved in the Gibbs sampler are given by the following:
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1. Conditional for c: ci|w,Θ∗,X ∼
∑N
k=1 wk,iδk for i = 1, . . . , n where

(w1,i, . . . , wN,i) ∝ (w1 p(xi|θ∗1), . . . , wN p(xi|θ∗N )) .

2. Conditional for w : w1 = v∗1 and wk = v∗k
∏k−1
l=1 (1−v∗l ) for k = 2, . . . , N−

1, with v∗k ∼ Beta(1− d+ nk, α+ kd+
∑N
l=k+1 nl) for k = 1, . . . , N − 1,

where nk = #{i : ci = k}.

3. Conditional for Θ∗:

• θ∗k ∼ G0 for k = kn + 1, · · · , N .

• θ∗k|c,X has density proportional to

G0(dθ∗k)
∏

{i:ci=k}

p(xi|θ∗k) for k = 1, . . . , kn.

This sampler is easy to implement since the truncation allows it to be similar
to standard Gibbs samplers in finite dimensional models. However, even if
methods for controlling the truncation accuracy have been proposed ([IJ01],
[IJ03]), it would be better to avoid any hard approximation. To this purpose,
algorithms that only use a finite number of elements at any iteration while
allowing inference to the true infinite-dimensional prior have been proposed
by Papaspiliopoulos and Roberts [PR07] and Walker [Wal07]. This later uses
an elegant strategy called slice sampling and is based on auxiliary variables.
Walker’s slice sampling was improved by Papaspiliopoulos [Pap08] and Kalli et
al. [KGW11]. This later is named after ”slice efficient”.

The slice sampler ([Wal07], [KGW11])
The idea under the slice sampler proposed by [Wal07] for inference in DPM

is to introduce uniform auxiliary variables which make the mixture model con-
ditionally finite. To make it precise, let us consider the model (4) with kernel p
and mixing measure H being constructed using the stick-breaking representa-
tion (5). The density of a single observation xi, given w and Θ∗, is

f (xi) =

∞∑
k=1

wk p (xi|θ∗k) . (9)

The infinite dimensional aspect of (9) is tackled by introducing u = (u1, u2, . . . , un)
uniform auxiliary variables such that the joint density of any (xi, ui) is

f (xi, ui) =

∞∑
k=1

1(ui < wk) p (xi|θ∗k) =

∞∑
k=1

wk p (xi|θ∗k)U (ui|0, wk) ,

where U (·|a, b) denotes the uniform density function over [a, b]. The conditional
density of xi, given ui, is

f (xi|ui) =
1∑∞

k=1 1(ui < wk)

∑
k∈{j:wj>ui}

p (xi|θ∗k) .

So, given ui, the number of components of the mixture model f is finite. One
can then complete the model by introducing a further assignment variable ci
and considering the joint density function

f (xi, ui, ci) = 1(ui < wci) p
(
xi|θ∗ci

)
= wci U (ui|0, wci) p

(
xi|θ∗ci

)
.
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The full conditionals required to implement this Gibbs sampler are those of:
the slice variables ui, the indicators ci, the components parameters θ∗k and
the stick-breaking weights vk. In the slice sampler of Walker [Wal07], each of
these variables is sampled independently and the sampling of the vk is quite
hard. This was handled in the efficient version of the slice sampler (”slice
efficient”) proposed in [KGW11]. In this version, the stick weights and the slice
variables are blocked during iterations, which, by integrating out slice variables,
dramatically simplifies generation of the weights and results in a more efficient
sampler compared to Walker’s algorithm. So, we will compare our methods with
the ”slice efficient” one. The required full conditionals of this later algorithm
are now given.

1. Conditional for ui: ui ∼ U(ui|0, wci).

2. Conditionals for θ∗k and wk : they are the same that in the truncated
blocked Gibbs sampler of [IJ01] previously described.

3. Conditional for ci: Pr(ci = k) ∝ 1(k : wk > ui) p(xi|θ∗k). To sample from
this probability mass function, one needs to know the exact number of
components that are required at each iteration of the sampler. It is given
by the smallest K such that

K∑
k=1

wk > 1− u∗,

where u∗ = min{u1, . . . , un}.

In this section, we have outlined a marginal and two conditional methods
for inference in Pitman-Yor mixture models. In the next section, the merits
and limitations of each class of algorithms are summarized. This motivates
the development of a new sampling approach which falls within the class of
conditional approaches.

4 A new sampling method

By integrating mixture components out of the model, marginal algorithms make
the allocation step very sequential since they need to condition on all previously
allocated data. These incremental updates make marginal samplers not easily
parallelizable. This feature is prejudicial when working with large data sets since
the allocation step forms the most time consuming part of the algorithm. How-
ever, marginal samplers have the advantage that they deal with exchangeable
prediction rules and exhibit most of the time better mixing properties.

The stick-breaking representation of the Pitman-Yor process allows to ex-
plicitly represent the weights in terms of independent Beta random variables. As
a consequence, updating indicator variables in the allocation step is done with-
out conditioning on the other indicators. This makes conditional algorithms
using this representation easy to implement in a parallel computer. However
this simplicity in the representation comes at a cost of slower mixing, since
the stick-breaking prior has a weak preference for components to be sorted by
decreasing mass. Consequently, additional moves in the MCMC algorithm are
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necessary to improve mixing over clusters labels as suggested in [PISW06] and
[Pap08].

In this context, we propose a conditional algorithm which is rather different
from the others discussed so far. Our sampler is an attempt to combine the
main advantages of marginal and conditional algorithms. The underlying idea
is to integrate out the explicit order of clusters labels like in marginal methods
hence collapsing the model to a lower dimensional space while keeping compo-
nents weights as done in conditional approaches. To these aims, we propose
to replace the standard posterior updating of the mixing measure based on
the stick-breaking representation, with a posterior updating of Pitman-Yor pro-
cesses under the class of Poisson-Kingman models introduced by [Pit03]. The
next proposition summarizes this posterior characterization.

Proposition 2 [Pit96b], Corollary 20
Let H ∼ PY(d, α,G0) where G0 is a diffuse probability measure s.t. E(H) = G0.
Consider a sample θ1, . . . ,θn|H ∼ H. Let {θ∗j }

kn
j=1 denote the set of unique

values of {θi}ni=1 and nj the number of occurrences of θ∗j in the sample. Then
the posterior of H can be expressed as follows

H|θ1, . . . ,θn
d
=

kn∑
j=1

wjδθ∗
j

+ rknHkn , (10)

where

(w1, . . . , wkn , rkn) ∼ Dir(n1 − d, . . . , nkn − d, α+ dkn)

Hkn ∼ PY(d, α+ dkn, G0),

and Hkn independent of (w1, . . . , wkn , rkn), with E(Hkn) = G0.

The posterior characterization (10) allows us to work on the space of equiva-
lence classes of clusters θ∗j and, due to exchangeability, to integrate out the order
of cluster labels as in the marginal samplers. Indeed, Pitman showed in [Pit96a]
equivalence between exchangeability of the random partition generated by sam-
pling from a discrete distribution and symmetry in the law characterizing the
limiting frequencies of occupied components given the data. We can easily check
that exchangeability is ensured in equation (10) since it sums to a symmetric
Dirichlet distribution and an unconditional Pitman-Yor process (independent
of the observed data). So, our sampler lives in the space of equivalence classes
over clusters labels. These labels are then exchangeable and no mix over them is
needed. This property has important consequences on the algorithm mixing. As
opposed, in the conditional algorithms using the stick-breaking representation,
exchangeability is lost when using the usual updating rule:

H(·)|θ1, . . .θn =
∑
k∈c∗

w∗kδθ∗
k
(·) +

∑
k/∈c∗

wkδZk(·), (11)

where c∗ = (c∗1, . . . , c
∗
kn

) are the unique values of the classification variables c =
(c1, . . . , cn), the weights w∗k follow a GEM distribution with updated parameters:

w∗1 = v∗1 , w
∗
2 = v∗2(1− v∗1), . . . , w∗n = v∗n

∏n−1
i=1 (1− v∗i ) where v∗l ∼ Beta(1− d +

nl, α+ ld+
∑∞
m=l+1 nm), and for all k /∈ c∗, Zk

iid∼ G0.
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This clearly illustrates that the posterior distribution of a random probability
measure constructed via the stick-breaking representation depends on which ex-
plicit atoms labels observations are allocated to. This property is not necessary
and has the impact of bothering the Gibbs sampler.

Given the posterior characterization (10), we are now in position to set up a
new Gibbs sampling scheme for simulating from the posterior of a Pitman-Yor
mixture model.

4.1 Proposed variants

For simulating Hkn , the continuous part of the posterior given in equation (10),
we propose two variants. The first makes use of a thresholded version of the
”slice efficient dependent” of [KGW11]. The second is based on a truncation as
originally suggested in [IJ01].

4.1.1 Exchangeable Thresholded Slice Sampler

We first propose a slice sampler inspired from [Wal07] and [KGW11]. The main
steps are now summarized.

We augment the state with additional slice variables u = (u1, u2, . . . , un)
such that the joint density for any (xi, ui), given a collection w of random
masses and component parameters Θ∗, is

f (xi, ui) =

∞∑
k=1

wk p (xi|θ∗k)U (ui|0, ξk) , (12)

where ξk is a dependent variable such that for all k,

ξk = min (wk, ζ) , (13)

with ζ ∈ ]0, 1] and is independent of wk. Here, ζ is a threshold that we propose
in order to improve mixing properties of the sampler compared to [Wal07] and
[KGW11]. The threshold ζ can be a random or deterministic variable. Here,
the role of ζ is to ensure that on average at each iteration, all occupied clusters
and at least a non-occupied one are proposed by the algorithm. For example, a
deterministic typical value of ζ that gives rise to good trade-off between mixing
properties and computational burden is the mean weight of the first atom (in
size-biased order of Hkn) with no data allocated to, which can be expressed in
the two-parameter case as

ζ =
(α+ dEα,d(Kn))(1− d)

(α+ n)(α+ 1)
,

where Eα,d(Kn) is the expected value of Kn:

Eα,d(Kn) =

n∑
i=1

(α+ d)i−1↑
(α+ 1)i−1↑

,

where (x)a↑ = Γ(x+ a)/Γ(x) is the Pochhammer symbol.
In the case of the Dirichlet process (d = 0),

Eα,d(Kn) =

n∑
i=1

α

α+ i− 1
= α log

(
1 +

n

α

)
.
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For d 6= 0, it can be easily checked that,

Eα,d(Kn) =
α

d

(
(α+ d)n↑

(α)n↑
− 1

)
.

For sufficiently large n, this expectation can be fairly approximated using Stir-
ling’s formula

Eα,d(Kn) ≈ Γ(α+ 1)

dΓ(α+ d)
nd.

Coming back to the slice sampling formulation, using equation (13), we can
rewrite equation (12) as follows:

f (xi, ui) = 1 (ζ > ui) ζ
−1
∑
wk>ζ

wk p (xi|θ∗k) +
∑
wk≤ζ

1 (wk > ui) p (xi|θ∗k) ,

where both sums are finite since #{j : wj > ε} <∞, for all ε > 0. The use of
u allows to sample a finite number K∗ of weights and locations for Hkn .

Let us here denote w = (w1, w2, . . . , wkn ,wkn) where w1, w2, . . . , wkn are
the kn Dirichlet random weights in the posterior characterization (10), and wkn

is a collection of random variables distributed according to a two-parameter
GEM(d, α + dKn) distribution; these are the stick-breaking random weights of
Hkn . The Gibbs sampler allows to generate variables from the joint posterior
of (Θ∗, c,w,u|X), by sampling iteratively from each full conditional. As in
[KGW11], we jointly sample w,u|c. The full conditional distributions involved
in the steps of the sampler are then:

• p(c|θ∗, w, u),

• p(θ∗|c, w, u),

• p(w, u|c,θ∗) = p(u|w, c,θ∗) p(w|c,θ∗).

We now provide a way of simulating from each conditional.

1. Conditional for (w,u) :
We jointly sample w,u|c in three steps by first sampling w1, w2, . . . , wkn |c,
then u|w1, w2, . . . , wkn , c, and finally wKn |u. The mains steps are now
given.

• Sample wk for k ≤ kn:

w1, . . . , wKn ,rkn |c ∼ Dir (n1 − d, . . . , nkn − d, α+ kn d) .

• Sample ui|w1, w2, . . . , wkn , c:

ui|w1, w2, . . . , wkn , c
ind.∼ U (ui|0,min (wci , ζ)) .

Set u∗ = min{u1, . . . , un}.

• Sample wk for k > kn. While rk−1 > u∗,
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vk ∼ Beta (1− d, α+ k d) ,

wk = vk rk−1,

rk = rk−1 (1− vk) .

Set K∗ = min ({k : rk < u∗}).
Clearly, wk < u∗ for all k > K∗, that is why we only have to sample a
finite set of wK∗ .

Note that, at each iteration, non-empty clusters are re-labeled according
to their order of appearance in the sampling. We operate in the space
of equivalence classes over non-empty clusters labels which are thus ex-
changeable. The stick-breaking prior only concerns empty clusters for the
given iteration of the Gibbs sampler. As pointed out, this encourages good
mixing over clusters.

2. Conditional for c:
As underlined, sampling of classification variables requires the compu-
tation of a normalizing constant which becomes feasible using auxiliary
variables since the choice of ci is from a finite set:

ci|w,u,Θ∗,X
ind∼

K∗∑
k=1

wk,i δk (·) ,

where wk,i ∝ 1 (wk > ui) max (wk, ζ) p (xi|θ∗k) , and
∑K∗

j=1 wk,i = 1.

Note also that, in order to speed up computations, it is convenient to sort
weights wk, k > kn in decreasing order. By this, we can avoid tests for all
k > κ as soon as wκ < ui.

3. Conditional for Θ∗:

• Updating parameters for non-empty components from the density
proportional to:

G0(dθ∗k)
∏
i:ci=k

p(xi|θ∗k) for all k ≤ kn.

• Sampling parameters for unallocated components from their priors:

θ∗k
iid∼ G0, for kn < k ≤ K∗.

The blocked Gibbs sampler structure allows easy implementation of the algo-
rithm on a parallel computer.

4.1.2 Exchangeable Truncated Gibbs Sampler

The second variant of the algorithm we propose is an alternative of the first one.
It is still based on the posterior given in equation (10). But instead of using
the slice sampling strategy to sample the continuous part Hkn , we resort to an
approximation by taking a fixed level L. This truncation eliminates the need
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of auxiliary variables. This scheme was suggested in [IJ01]. We approximate
equation (10) by

kn∑
j=1

wjδθ∗
j

+ rknH
∗
kn ,

where H∗kn is an approximation of Hkn , i.e a truncation of Hkn at level L. The
total number of represented components is then K∗ = kn + L. The main steps
are now given.

• Sample classification variables:

(ci|w,u,Θ∗,X)
ind∼

K?∑
k=1

wk,i δk (·) ,

where

wk,i ∝ wk p (xi|θ∗k) and

K∗∑
k=1

wk,i = 1.

• Sample wk for k ≤ kn:

(w1, w2, . . . , wkn , rkn |c) ∼ Dir (n1 − d, n2 − d, . . . , nkn − d, α+ kn d) .

• Sample wk for kn < k ≤ K∗:

vk ∼ Beta (1− d, α+ k d) ,

wk = vk rk−1,

rk = rk−1 (1− vk) .

Set wK∗ = rK∗−1 such that vK∗ = 1.

• Sample components parameters using

– the density proportional to

G0(dθ∗k)
∏
i:ci=k

p(xi|θk)

for non-empty components (i.e. k ≤ kn),

– the priors for unallocated components:

θ∗k
iid∼ G0, for kn < k ≤ K∗.

5 Comparisons of algorithms

In this section, we carry out a comparative study that involves a variety of data
sets, both real and simulated. We evaluate the performance of the samplers
described in the previous sections and our new sampling method. We thus
compare these following algorithms:

• algorithm 8 of [Nea00] (”Algo. 8”),
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• the slice efficient of [KGW11] (”Slice efficient”),

• the truncated blocked Gibbs sampler of [IJ01] (”Trunc.”),

• the two variants of the proposed sampling scheme based on an exchange-
able model (”Slice exch. thres.” and ”Trunc. exch.”).

We also investigate the gain in the mixing performances of the algorithms due
to the exchangeability property of the model on one hand, and to the proposed
threshold on the other hand. For this reason, we implement in addition our
slice sampler using the exchangeable model but without the threshold (”Slice
exch. without thres.”) and the slice efficient of [KGW11] which uses an non-
exchangeable model with the introduction of the threshold (”Slice eff. thres.”).
Note that the ”Slice efficient” is referred to as ”Slice efficient dependent” in
[KGW11], in contrast to their independent version which makes use of a deter-
ministic slice function.

Data specification:

We tested the algorithms with p(·|θ) being a normal kernel with parameters
θ∗ = (µ, σ2) and G0 a normal-inverse Gamma distribution i.e, G0(µ, σ−2) =
N (µ|η, κ2) ×G(σ−2|γ, β) where G(·|γ, β) denotes the Gamma distribution with
density proportional to xγ−1e−x/β .

For comparison purposes, we considered the same real and simulated data
sets as in [KGW11].

1. The simulated data were generated from the following mixtures of Gaus-
sians.

• A bimodal mixture (bimod):

0.5N (−1, 0.52) + 0.5N (1, 0.52).

• An unimodal lepto-kurtic mixture (lepto):

0.67N (0, 1) + 0.33N (0.3, 0.252).

These simulated densities are shown in Fig.2.

In order to gauge algorithms performance for small and large data sets,
we generated n = 100, n = 1, 000 and n = 10, 000 draws from each of
these two mixtures.

2. The real data are

• Galaxy data, which are the velocities (in 103 km/s) of 82 distant
galaxies diverging from our own. It is a popular data set in density
estimation problems and is also used by [EW95], [GR01] for instance.

• S&P: this consists of 2023 daily index returns. This data set is uni-
modal, asymmetric, and heavy-tailed.
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Figure 2: Bimodal (bimod) and unimodal lepto-kurtic(lepto) mixtures

Algorithms performance:

We monitored the convergence of two quantities: the deviance of the esti-
mated density and the number of occupied clusters. The deviance is a global
function of all parameters of the model and is defined as

D = −2

n∑
i=1

log

∑
j

nj
n
p(xi|θ∗j )

 ,

where nj is the size of cluster j.
The performance of competing samplers in their stationary regime was judged

by looking at the integrated autocorrelation time (IAT) for each monitored
quantity. IAT is defined in [Sok97] as,

τ = 1 + 2

∞∑
j=1

ρj ,

where ρj is the sample autocorrelation at lag j. This quantity is an indicator of
mixing behaviour of algorithms and measures effectiveness of MCMC samples.
As such, it has also been used by other authors to compare MCMC methods
(for example [Nea00], [GR01], [PR07], [KGW11]). IAT controls the statistical
error in Monte Carlo measurements. In fact, the correlated samples generated
by a Markov chain at equilibrium cause a variance that is 2τ larger than in
independent sampling [Sok97]. If we denote by τj the integrated autocorrelation
time produced by algorithm j for a given quantity, then τ1/τ2 = k > 1 means
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that algorithm 1 requires k more iterations than algorithm 2 to produce the same
Monte Carlo error [PR07]. So, when comparing two alternative Monte Carlo
algorithms for the same problem, the most efficient is the one that produces the
smaller IAT since it provides better estimates.

However, the calculation of IAT is difficult in practice. Following [Sok97],
an estimator of τ can be obtained by summing the estimated autocorrelations
up to a fixed lag L:

τ̂ = 1 + 2

L∑
j=1

ρ̂j .

The choice of the cut-off point L is left to the user.
One can also estimate the standard error of τ̂ using this formula from [Sok97]:

std(τ̂) ≈
√

2(2L+ 1)

M
τ2

where M is the Monte-Carlo size.

Algorithms parametrization:

At first, we set the discount parameter d of the PYM to zero in order to
reduce it to a DPM. The strength parameter of the PYM, that is now the
precision parameter of the DPM, was respectively set to α = {1, 5}. Secondly,
we investigated the behaviour of the competing algorithms in a power-law case
(Pitman-Yor). The values d = 0.3 and α = 1 were chosen for the PYM. The
expected number of a priori components are then much larger than in the DPM
case. We report in Tables 1-3 the expected number of a priori components, for
each data set length and each parametrization.

Data E(Kn)
Galaxy (n = 82) 4.4
Lepto/bimod (n = 100) 4.6
Lepto/bimod (n = 1, 000) 6.9
S&P 500 (n = 2023) 7.6
Lepto/bimod (n = 10, 000) 9.2

Table 1: E(Kn) for each data set length in a DP(α = 1)

Data E(Kn)
Galaxy (n = 82) 14.3
Lepto/bimod (n = 100) 15.2
Lepto/bimod (n = 1, 000) 26.5
S&P 500 (n = 2023) 30
Lepto/bimod (n = 10, 000) 38

Table 2: E(Kn) for each data set length in a DP(α = 5)
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Data E(Kn)
Galaxy (n = 82) 10.63
Lepto/bimod (n = 100) 11.48
Lepto/bimod (n = 1, 000) 25.5
S&P 500 (n = 2023) 36.4
Lepto/bimod (n = 10, 000) 58.9

Table 3: E(Kn) for each data set length in a PYP(α = 1, d = 0.3)

The hyperparameters have been fixed in a data-driven way according to
[GR01] and set as follows: if R is the range of the data we take η = R/2
(mid-range), κ2 = 1/R2, γ = 2 and β = 0.02R2.

The blocked Gibbs sampler of [IJ01] was truncated at level N = 3αlog(n),
where n is the data size. This induces a truncation error that stands for the L1

distance between the marginal density of the data under the truncated model
and the marginal density under the full model, (see [IJ01]). The corresponding
truncation errors for the different data sets are reported in the following table.

Data ε
Galaxy (n = 82) 7.4139e-04
Lepto/bimod (n = 100) 9.0413e-04
Lepto/bimod (n = 1, 000) 8.2446e-06
S&P 500 (n = 2023) 2.2572e-06
Lepto/bimod (n = 10, 000) 7.5181e-08

We also truncated the second variant of our sampler at level L = 2αlog(n).
The algorithm 8 of [Nea00] was tested with m = 2 auxiliary components.

We followed the instructions of [Sok97] who recommends running the sam-
plers for a sufficient number of iterations. For each of the data sets, we ran
2, 000, 000 iterations for each algorithm and discarded the first 200, 000 for the
burn-in period. We believe that these numbers are sufficient to obtain reliable
results.

Results and comments:

We report in Tables 4-9 the results of our comparisons for each set of data
in the DPM case with α = 1. The other results are postponed in the appendix.
Each table contains respectively, for each algorithm, the estimated IAT for the
mean number of clusters and for the deviance, the estimated mean number of
clusters and the estimated deviance. Estimated IAT are obtained by integrating
autocorrelation values for each monitored quantity up to a fixed lag (LD for
deviance and LC for the mean number of clusters). The estimates of standard
errors are put inside parentheses.

For visual comparison purposes, the autocorrelation curves are displayed in
Figures 4 and 5 for Galaxy data. We also show in Figure 3 the histogram of
the data and the density estimates when using each algorithm. By looking
at the curves of the estimated densities, the values of the estimated deviances
and the mean number of clusters, we made sure that all algorithms perform
the estimation correctly and then they can be assessed through their mixing
performance.
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In the overall experiments, it turns out that:

• As expected, algorithm 8 performs better than all conditional algorithms
since it works in an unidentifiable allocation structure. Furthermore, in-
tegrating out the mixture components speeds up the convergence since
the dimensionality of the space is drastically reduced. One can refer to
[PR07] and [PISW06] for more details about why conditional approaches
are outperformed by marginals.

• On the other hand, the two variants of our method are superior to all other
competitors in conditional algorithms using the stick-breaking representa-
tion, thanks to exchangeability in the model and the introduction of the
threshold we propose. The ”Slice efficient” gives the worst performance.

We believe that the poor-mixing due to non-exchangeability in the posterior
stick-breaking representation is emphasized by the lack of the weights in slice
samplers. This could often hinder the Gibbs sampler in the allocation step, for
changing an observation from a component associated with a few observations to
a component associated with many. Introducing our threshold would facilitate
this change. To validate this conjecture, we experimented the effect of the
threshold in the ”Slice efficient”. This algorithm is referred as ”Slice eff. thres.”
Furthermore, the threshold makes little difference between the thresholded slice
efficient (”Slice eff. thres.) and the truncated blocked Gibbs sampler (Trunc.).
This later considers the weights of the mixture components when updating
classification variables.

On the flip side, removing the threshold in our sampler (”Slice exch. without
thres.”) increases the IAT. Overall, it was observed on all data sets that the
threshold causes a rapid decrease of autocorrelation curves in the first lags.
However, it slightly increases the computation time per iteration. We underline
that all algorithms have been implemented without any parallelization. All of
them, excluding ”Algo. 8”, may be easily parallelized.

We now turn our attention to the benefits we reap thanks to the exchange-
ability property of the model. This is notable in differences between ”Slice
exch. thres.” and ”Slice eff. thres.” and in differences between ”Trunc. exch.”
and ”Trunc.”. We also notice on the curves that the autocorrelations obtained
by ”Slice exch. without thres.” decrease and reach zero faster than in algo-
rithms using non-exchangeable models (”Trunc.”, ”Slice eff. thres” and ”Slice
efficient”). This behaviour was observed on all data sets.

It is worth noting that the two variants of our algorithms and algorithm 8
of [Nea00] were stable in all experiments: for various simulations, we always
obtained the same results in each data set and in each size of data. On the
contrary, the algorithms using non-exchangeable models ([IJ01] and [KGW11])
did not always give the same results. We also observed erratic convergence
behaviour of the Gibbs sampler in these two algorithms, particularly for large
data sets (for example lepto with n = 10, 000).
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Results for d = 0 and α = 1

In the following tables, n stands for the data set length, LD and LC are
respectively the number of autocorrelation lags for deviance and for the clus-
ters number. Values inside parentheses correspond to standard deviations of
estimates.

IAT for # of
clusters

IAT for de-
viance

Estimated #
of clusters

Estimated
deviance

Slice exch. thres 14.48(0.37) 2.88(0.05) 3.986(0.93) 1561.14(21.61)

Trunc. exch. 14.42(0.37) 2.94(0.05) 3.989(0.93) 1561.16(21.69)

SE without thres. 35.52(0.92) 4.77(0.09) 3.989(0.93) 1561.15(21.61)

Truncated 38.65(1.00) 3.63(0.07) 3.996(0.94) 1561.15(21.66)

Slice efficient 60.65(1.57) 5.28(0.10) 3.991(0.93) 1561.15(21.62)

Slice eff. thres. 37.82(0.98) 3.61(0.07) 3.986(0.93) 1561.08(22.17)

Algo 8 (m = 2) 8.25(0.21) 2.57(0.05) 3.987(0.93) 1561.16(21.62)

Table 4: Galaxy data n = 82, LD = 150, LM = 300.

IAT for # of
clusters

IAT for de-
viance

Estimated #
of clusters

Estimated
deviance

Slice exch. thres 28.76(0.74) 5.85(0.11) 3.801(1.66) 287.59(8.46)

Trunc. exch. 28.51(0.74) 6.00(0.11) 3.808(1.67) 287.58(8.48)

SE without thres. 70.56(1.82) 9.54(0.17) 3.799(1.67) 287.58(8.43)

Truncated 54.38(1.40) 5.89(0.11) 3.789(1.66) 287.58(8.42)

Slice efficient 99.92(2.58) 8.76(0.16) 3.784(1.65) 287.58(8.42)

Slice eff. thres. 55.41(1.43) 5.65(0.10) 3.794(1.66) 287.61(8.58)

Algo 8 (m = 2) 15.59(0.40) 5.20(0.09) 3.794(1.66) 287.59(8.52)

Table 5: Bimod data n = 100, LD = 150, LM = 300.
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IAT for # of
clusters

IAT for de-
viance

Estimated #
of clusters

Estimated
deviance

Slice exch. thres 93.28(3.93) 3.65(0.07) 3.806(1.73) 2735.14(8.66)

Trunc. exch. 91.20(3.85) 3.69(0.07) 3.795(1.72) 2735.14(8.66)

SE without thres. 228.64(9.64) 5.44(0.10) 3.809(1.73) 2735.15(8.67)

Truncated 156.27(6.60) 3.71(0.07) 3.777(1.71) 2735.13(8.62)

Slice efficient 257.25(10.85) 5.13(0.09) 3.766(1.68) 2735.12(8.61)

Slice eff. thres. 150.13(6.33) 3.81(0.07) 3.798(1.71) 2735.15(8.72)

Algo 8 (m = 2) 47.25(1.99) 3.06(0.06) 3.798(1.72) 2735.14(8.65)

Table 6: Bimod data n = 1000, LD = 150, LM = 800.

IAT for # of
clusters

IAT for de-
viance

Estimated #
of clusters

Estimated
deviance

Slice exch. thres 25.61(0.85) 13.53(0.29) 3.991(1.64) 239.74(11.38)

Trunc. exch. 24.78(0.83) 13.46(0.28) 3.983(1.63) 239.75(11.31)

SE without thres. 90.56(3.02) 42.74(0.90) 3.991(1.63) 239.73(11.26)

Truncated 41.22(1.37) 17.03(0.36) 4.001(1.64) 239.72(11.31)

Slice efficient 120.71(4.03) 46.28(0.98) 3.979(1.64) 239.77(11.29)

Slice eff. thres. 44.73(1.49) 16.98(0.36) 3.989(1.64) 239.77(11.82)

Algo 8 (m = 2) 14.79(0.49) 9.83(0.28) 3.994(1.63) 239.72(11.36)

Table 7: Lepto data n = 100, LD = 200, LM = 500.

IAT for # of
clusters

IAT for de-
viance

Estimated #
of clusters

Estimated
deviance

Slice exch. thres 235.49(9.93) 13.17(0.24) 4.006(2.05) 2400.51(18.68)

Trunc. exch. 237.70(10.02) 13.66(0.25) 4.022(2.08) 2400.48(18.72)

SE without thres. 462.09(19.49) 18.75(0.34) 3.973(1.99) 2400.53(18.73)

Truncated 294.24(12.41) 12.67(0.23) 3.958(2.01) 2400.47(18.49)

Slice efficient 472.95(19.95) 16.91(0.31) 3.864(1.92) 2400.45(18.26)

Slice eff. thres. 302.50(12.76) 13.80(0.25) 3.978(2.07) 2400.53(18.93)

Algo 8 (m = 2) 148.81(6.28) 11.55(0.21) 4.018(2.07) 2400.48(18.69)

Table 8: Lepto data n = 1000, LD = 150, LM = 800.
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IAT for # of
clusters

IAT for de-
viance

Estimated #
of clusters

Estimated
deviance

Slice exch. thres 22.58(0.75) 145.07(3.06) 4.977(0.82) 14990.47(57.56)

Trunc. exch. 21.59(0.72) 148.69(3.14) 4.978(0.82) 14990.50(59.09)

SE without thres. 93.93(3.13) 194.26(4.10) 4.976(0.82) 14990.35(57.80)

Truncated 32.75(1.09) 148.66(3.14) 4.975(0.81) 14990.94(59.44)

Slice efficient 105.92(3.53) 204.63(4.32) 4.965(0.81) 14991.21(61.14)

Slice eff. thres. 34.87(1.16) 145.46(3.07) 4.969(0.82) 14990.56(60.53)

Algo 8 (m = 2) 13.55(0.45) 106.28(2.24) 4.980(0.82) 14990.38(59.09)

Table 9: S&P 500 n = 2023, LD = 200, LM = 500.

IAT for # of
clusters

IAT for de-
viance

Estimated #
of clusters

Estimated
deviance

Slice exch. thres 244.64(11.53) 5.79(0.12) 3.77(1.74) 27235.46(9.09)

Trunc. exch. 247.02(11.65) 5.57(0.12) 3.77(1.73) 27235.45(9.04)

SE without thres. 433.42(20.44) 11.82(0.25) 3.75(1.73) 27235.44(9.01)

Truncated 286.67(13.52) 5.46(0.11) 3.73(1.74) 27235.44(8.98)

Slice efficient 456.95(21.55) 12.20(0.26) 3.76(1.76) 27235.44(9.00)

Slice eff. thres. 258.92(12.21) 6.09(0.13) 3.75(1.72) 27235.46(9.09)

Algo 8 (m = 2) 180.58(8.51) 4.76(0.10) 3.78(1.76) 27235.46(9.05)

Table 10: Bimod data n = 10, 000, LD = 200, LM = 1000.

IAT for # of
clusters

IAT for de-
viance

Estimated #
of clusters

Estimated
deviance

Slice exch. thres 212.65(10.03) 11.74(0.25) 3.74(1.77) 23517.95(12.52)

Trunc. exch. 179.46(8.46) 10.96(0.23) 3.74(1.74) 23517.94(12.43)

SE without thres. 502.18(23.68) 19.68(0.42) 3.82(1.82) 23518.00(12.64)

Truncated 186.83(8.81) 17.80(0.38) 4.73(1.75) 23518.57(13.92)

Slice efficient 444.243(20.95) 17.60(0.37) 3.68(1.70) 23517.90(12.35)

Slice eff. thres. 203.24(9.58) 12.03(0.25) 3.73(1.76) 23517.99(12.59)

Algo 8 (m = 2) 142.67(6.73) 10.47(0.22) 3.74(1.77) 23517.95(12.47)

Table 11: Lepto data n = 10, 000, LD = 200, LM = 1000.

23



 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 5000  10000  15000  20000  25000  30000  35000

Densities

Histogram
Slice exch. without thres. T = 1.94e-03

Slice exch. thres. T = 2.74e-03
Slice efficient T = 2.27e-03

Slice eff. thres. T = 3.03e-03
Trunc. T = 4.33e-03

Algo. 8 (2) T = 1.58e-03
Trunc. exch. T = 1.57e-03

Figure 3: Histogram of data and estimated densities (Galaxy data).
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# Clusters: autocorrelation time

Slice exch. without thres.: 3.989 (0.932) iat = 35.522 (0.918) T = 1.94e-03
Slice exch. thres.: 3.986 (0.929) iat = 15.463 (0.400) T = 2.74e-03

Slice efficient: 3.991 (0.933) iat = 60.646 (1.567) T = 2.27e-03
Slice eff. thres.: 3.986 (0.924) iat = 37.821 (0.977) T = 3.03e-03

Trunc.: 3.996 (0.936) iat = 38.650 (0.999) T = 4.33e-03
Algo. 8 (2): 3.987 (0.926) iat = 8.246 (0.213) T = 1.58e-03

Trunc. exch.: 3.989 (0.928) iat = 14.421 (0.373) T = 1.57e-03

Figure 4: Autocorrelation curves used to estimate the IAT for the number of clusters
(Galaxy data).
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Slice exch. without thres.: 1561.152 (21.606) iat = 4.770 (0.087) T = 1.94e-03
Slice exch. thres.: 1561.143 (21.611) iat = 2.885 (0.053) T = 2.74e-03

Slice efficient: 1561.149 (21.619) iat = 5.283 (0.097) T = 2.27e-03
Slice eff. thres.: 1561.084 (22.175) iat = 3.614 (0.066) T = 3.03e-03

Trunc.: 1561.154 (21.661) iat = 3.627 (0.066) T = 4.33e-03
Algo. 8 (2): 1561.158 (21.616) iat = 2.568 (0.047) T = 1.58e-03

Trunc. exch.: 1561.163 (21.692) iat = 2.941 (0.054) T = 1.57e-03

Figure 5: Autocorrelation curves used to estimate the IAT for the deviance (Galaxy
data).
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6 Conclusion and discussion

When models become more and more complex, due to an increase in dimen-
sion, the poor mixing of a MCMC algorithm can be inhibiting. Therefore, it
seems important to develop samplers that allow to improve mixing while exper-
imenting strategies to reduce the computational cost. The present paper has
aimed at providing a simple, efficient and easy to use Gibbs sampler for pos-
terior simulation under Pitman-Yor and Dirichlet mixture models that satisfies
the constraint of efficient parallelization ability while maintaining mixing prop-
erties closed to Pólya urn approaches. We have attempted to combine blocking
properties of conditional approaches which retain the random distribution in
the sampling, and exchangeability of the model which is maintained in Pólya
urn based algorithms. The proposed approach combines an update but unused
formula from [Pit96b] with the slice sampling sampling strategy and a tricky
threshold. Our comparative study on both real and simulated data sets support
our belief that the two novel variants of our conditional Gibbs sampler have the
potential to be a useful addition to the menu of samplers for DP and PYP.

A difference between the two proposed variants is that for the truncated
version (”Trunc. exch.”), the fixed length of approximation has to be decided
before effective sampling. This is most of the time not a crux for Dirichlet
processes, but for the two-parameter case the fixed approximation may give
rise to biased estimates for moderate truncation lengths. For large lengths,
the computational burden is emphasized especially for large data sets. The
exchangeable thresholded slice version (”Slice exch. thres.”) achieves adaptive
truncation at each iteration and maintain nice trade-off between IAT and time
cost. This latter variant gives then rise to convenient trade-off between IAT and
computation time while avoiding any hard truncation.

On one hand, as mentionned our samplers are applicable to Pitman-Yor
and Dirichlet mixture models. On the other hand, since the ”Slice efficient” of
[KGW11] has been developed for more general stick-breaking priors and that
the introduction of the proposed threshold improves its mixing property, one
can consider such a combination when working with mixtures based on general
stick-breaking processes other than Dirichlet and Pitman-Yor processes. In this
case, an interesting perspective could be to introduce also mixing moves over
clusters labels as suggested in [PISW06] and [PR07]. As mentioned, the ordering
of clusters labels matters in the stick-breaking representation. A step of labels
permutation could result in a better mixing chain.

In our experimental study, it appeared that particularly for the two-parameter
class, standard conditional algorithms may present unexpected biased results.
This drawback is reinforced for large data sets. On the other hand, Pólya urn
based algorithms and our proposed sampling schemes exhibit stable behaviour
in all situations.
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Appendix

In this appendix, we show the rest of the results from our comparative study,
excepted results for lepto and bimod data with n = 10, 000.

A-Results for d = 0 and α = 5

IAT for # of
clusters

IAT for de-
viance

Estimated #
of clusters

Estimated
deviance

Slice exch. thres 10.73(0.28) 2.80(0.05) 7.082(3.32) 1563.10(23.55)

Trunc. exch. 10.11(0.26) 2.81(0.05) 7.084(3.31) 1563.10(23.54)

SE without thres. 26.32(0.68) 4.13(0.07) 7.085(3.32) 1563.10(23.53)

Truncated 19.51(0.50) 3.45(0.06) 7.079(3.32) 1563.10(23.57)

Slice efficient 38.75(1.00) 4.96(0.09) 7.085(3.31) 1563.11(23.59)

Slice eff. thres. 19.75(0.51) 3.32(0.06) 7.057(3.31) 1563.33(25.34)

Algo 8 (m = 2) 6.16(0.16) 2.35(0.04) 7.084(3.31) 1563.10(23.56)

Table 12: Galaxy data n = 82, LD = 150, LM = 300.

IAT for # of
clusters

IAT for de-
viance

Estimated #
of clusters

Estimated
deviance

Slice exch. thres 14.24(0.37) 2.35(0.04) 8.886(5.41) 283.18(8.98)

Trunc. exch. 13.74(0.35) 2.33(0.04) 8.880(5.38) 283.17(8.97)

SE without thres. 34.31(0.89) 3.30(0.06) 8.884(5.40) 283.17(8.95)

Truncated 23.22(0.60) 2.67(0.05) 8.883(5.41) 283.18(9.00)

Slice efficient 45.67(1.18) 3.58(0.06) 8.891(5.38) 283.18(8.97)

Slice eff. thres. 23.60(0.61) 2.38(0.04) 8.877(5.39) 283.56(9.98)

Algo 8 (m = 2) 8.56(0.22) 2.01(0.04) 8.888(5.42) 283.18(8.98)

Table 13: Bimod data n = 100, LD = 150, LM = 300.
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IAT for # of
clusters

IAT for de-
viance

Estimated #
of clusters

Estimated
deviance

Slice exch. thres 81.36(3.43) 6.90(0.13) 9.889(7.26) 2741.07(12.05)

Trunc. exch. 81.07(3.42) 6.81(0.12) 9.956(7.35) 2741.08(12.05)

SE without thres. 200.17(8.44) 12.37(0.23) 9.913(7.29) 2741.08(12.07)

Truncated 135.98(5.73) 7.35(0.13) 9.958(7.34) 2741.08(12.09)

Slice efficient 256.71(10.83) 12.85(0.23) 9.962(7.40) 2741.09(12.06)

Slice eff. thres. 130.61(5.51) 6.92(0.13) 9.867(7.30) 2741.43(12.70)

Algo 8 (m = 2) 42.85(1.81) 5.35(0.10) 9.928(7.36) 2741.08(12.03)

Table 14: Bimod data n = 1000, LD = 150, LM = 800.

IAT for # of
clusters

IAT for de-
viance

Estimated #
of clusters

Estimated
deviance

Slice exch. thres 11.12(0.37) 14.26(0.30) 9.004(4.74) 257.17(21.70)

Trunc. exch. 11.84(0.39) 14.34(0.30) 8.988(4.75) 257.19(21.89)

SE without thres. 27.06(0.90) 30.15(0.64) 8.999(4.74) 257.15(21.64)

Truncated 17.79(0.59) 15.96(0.34) 9.011(4.75) 257.16(21.69)

Slice efficient 37.12(1.24) 33.49(0.71) 9.009(4.74) 257.18(21.67)

Slice eff. thres. 17.47(0.58) 15.16(0.32) 9.002(4.76) 257.56(23.14)

Algo 8 (m = 2) 6.95(0.23) 11.43(0.24) 8.999(4.73) 257.18(21.66)

Table 15: Lepto data n = 100, LD = 200, LM = 500.

IAT for # of
clusters

IAT for de-
viance

Estimated #
of clusters

Estimated
deviance

Slice exch. thres 90.94(3.84) 15.81(0.29) 11.121(7.69) 2354.96(19.51)

Trunc. exch. 90.68(3.82) 15.72(0.29) 11.127(7.64) 2354.95(19.59)

SE without thres. 216.32(9.12) 25.05(0.46) 11.082(7.67) 2354.91(19.34)

Truncated 145.95(6.16) 17.40(0.32) 11.080(7.70) 2354.98(19.60)

Slice efficient 254.45(10.73) 27.28(0.50) 11.196(7.65) 2354.90(19.60)

Slice eff. thres. 133.89(5.65) 15.62(0.29) 11.148(7.65) 2355.27(20.19)

Algo 8 (m = 2) 50.75(2.14) 13.13(0.24) 11.098(7.69) 2354.94(19.48)

Table 16: Lepto data n = 1000, LD = 150, LM = 800.
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IAT for # of
clusters

IAT for de-
viance

Estimated #
of clusters

Estimated
deviance

Slice exch. thres 17.09(0.57) 151.34(3.91) 7.476(2.65) 14989.81(53.22)

Trunc. exch. 18.02(0.60) 143.45(3.71) 7.484(2.65) 14989.68(51.86)

SE without thres. 56.57(1.89) 214.64(5.55) 7.473(2.64) 14989.66(52.30)

Truncated 21.73(0.72) 150.94(3.90) 7.454(2.64) 14990.39(54.49)

Slice efficient 66.67(2.22) 225.38(5.82) 7.481(2.65) 14990.43(54.78)

Slice eff. thres. 23.14(0.77) 156.84(4.05) 7.475(2.65) 14990.18(56.20)

Algo 8 (m = 2) 11.33(0.38) 97.28(2.51) 7.478(2.65) 14989.76(52.48)

Table 17: S&P 500 data n = 2023, LD = 300, LM = 500.
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B- Results for d = 0.3 and α = 1

IAT for # of
clusters

IAT for de-
viance

Estimated #
of clusters

Estimated
deviance

Slice exch. thres 10.56(0.27) 2.84(0.05) 4.867(2.13) 1561.67(21.84)

Trunc. exch. 9.81(0.25) 2.79(0.05) 4.716(1.77) 1561.61(21.93)

SE without thres. 27.22(0.70) 4.57(0.08) 4.868(2.13) 1561.66(21.83)

Truncated 29.20(0.75) 3.65(0.07) 4.932(1.97) 1561.73(21.94)

Slice efficient 44.65(1.15) 5.43(0.10) 4.872(2.13) 1561.66(21.82)

Slice eff. thres. 24.95(0.64) 3.72(0.07) 4.858(2.11) 1561.79(23.21)

Algo 8 (m = 2) 5.79(0.15) 2.37(0.04) 4.869(2.13) 1561.66(21.89)

Table 18: Galaxy data n = 82, LD = 150, LM = 300.

IAT for # of
clusters

IAT for de-
viance

Estimated #
of clusters

Estimated
deviance

Slice exch. thres 25.77(0.67) 7.75(0.14) 4.726(3.42) 267.96(9.97)

Trunc. exch. 26.47(0.68) 7.97(0.15) 4.650(3.06) 267.93(9.99)

SE without thres. 67.54(1.74) 14.84(0.27) 4.715(3.42) 267.96(9.92)

Truncated 71.53(1.85) 9.88(0.18) 5.067(3.93) 267.87(10.00)

Slice efficient 97.86(2.53) 16.35(0.30) 4.743(3.42) 267.95(10.05)

Slice eff. thres. 56.18(1.45) 9.74(0.18) 4.710(3.42) 268.18(10.50)

Algo 8 (m = 2) 14.27(0.37) 5.79(0.11) 4.720(3.40) 267.95(9.99)

Table 19: Bimod data n = 100, LD = 150, LM = 300.
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IAT for # of
clusters

IAT for de-
viance

Estimated #
of clusters

Estimated
deviance

Slice exch. thres 42.74(1.80) 2.60(0.05) 4.427(3.21) 2646.88(9.02)

Trunc. exch. 46.05(1.94) 2.54(0.05) 4.401(3.05) 2646.88(9.01)

SE without thres. 180.18(7.60) 5.86(0.11) 4.426(3.24) 2646.88(8.99)

Truncated 89.45(3.77) 2.82(0.05) 4.525(3.38) 2646.89(9.05)

Slice efficient 200.64(8.46) 6.23(0.11) 4.446(3.21) 2646.88(9.03)

Slice eff. thres. 77.30(3.26) 2.70(0.05) 4.409(3.18) 2647.10(9.45)

Algo 8 (m = 2) 22.80(0.96) 2.15(0.04) 4.425(3.18) 2646.88(8.99)

Table 20: Bimod data n = 1000, LD = 150, LM = 800.

IAT for # of
clusters

IAT for de-
viance

Estimated #
of clusters

Estimated
deviance

Slice exch. thres 47.85(1.60) 27.00(0.57) 3.719(3.70) 223.92(8.55)

Trunc. exch. 50.04(1.67) 26.91(0.57) 3.674(3.39) 223.86(8.61)

SE without thres. 188.12(6.27) 70.11(1.48) 3.709(3.69) 223.94(8.50)

Truncated 93.37(3.11) 35.96(0.76) 3.955(4.18) 223.78(8.75)

Slice efficient 224.68(7.49) 74.51(1.57) 3.696(3.68) 223.94(8.49)

Slice eff. thres. 85.39(2.85) 31.98(0.67) 3.732(3.73) 224.05(9.08)

Algo 8 (m = 2) 27.28(0.91) 17.83(0.38) 3.720(3.71) 223.92(8.55)

Table 21: Lepto data n = 100, LD = 200, LM = 500.

IAT for # of
clusters

IAT for de-
viance

Estimated #
of clusters

Estimated
deviance

Slice exch. thres 156.21(7.37) 13.56(0.29) 4.255(3.22) 2371.35(16.11)

Trunc. exch. 167.13(7.88) 13.08(0.28) 4.247(3.13) 2371.34(16.03)

SE without thres. 341.73(16.11) 18.15(0.38) 4.252(3.18) 2371.34(15.97)

Truncated 270.51(12.75) 17.04(0.36) 4.387(3.62) 2371.52(16.49)

Slice efficient 422.09(19.90) 20.47(0.43) 4.291(3.30) 2371.50(16.53)

Slice eff. thres. 217.35(10.25) 13.66(0.29) 4.226(3.19) 2371.54(16.60)

Algo 8 (m = 2) 96.90(4.57) 10.90(0.23) 4.242(3.22) 2371.34(15.98)

Table 22: Lepto data n = 1000, LD = 200, LM = 1000.
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