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Abstract

Topological insulators are a unique class of quantum solids where nontrivial inverted

bulk band structure dictates the existence of metallic surface states1–6 that are ro-

bust against impurity scattering2,3. This robustness is a consequence of the helical

spin-momentum-locked nature8–10 of the topological Dirac particles and is of great

potential import, among other, to spin-based electronics11. In real three-dimensional

(3D) topological insulators, however, the Dirac fermions intermix with the typically

conducting bulk thereby complicating access to the low energy (Dirac point) charge

transport or magnetic response. Here we use differential magnetometry to probe spin

rotation in the 3D topological material family: Bi2Se3, Bi2Te3, and Sb2Te3. We report

a discovery of a remarkable paramagnetic singularity in the magnetic susceptibility at

low magnetic fields which persists up to room temperature, and which we demonstrate

to arise from samples’ surfaces. The singularity is universal to the entire topological

family, largely independent of the bulk carrier density, and consistent with the exis-

tence of electronic states near the spin-degenerate Dirac point of the 2D helical metal.

The exceptional thermal stability of the signal points to an intrinsic surface cooling

process, likely of thermoelectric origin12,13, and establishes a sustainable platform for

the singular field-tunable Dirac spin response.
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Enduring symbiosis between condensed matter physics and material science benefits when-

ever well established technological materials turn out to be remarkably good model systems

for fundamentally new physical phenomena which in turn can lead to disruptive technological

advances. Topological insulators are one recent example – prized thermoelectrics12 since the

50’s they also host topologically protected spin-helical surface states, as predicted by theory1

(see Fig. 1a) and subsequently confirmed in a series of angularly resolved photoemission

spectroscopy (ARPES) experiments8,9,14. Much of the activity since has been inspired by

prospects of harvesting exotic properties of these helical states for electrical manipulation of

magnetic memory15 and error-free topological quantum computing16.

Considerable effort is presently aimed at improving synthesis and characterization of these

compounds with the goal of realizing materials with much suppressed bulk conduction chan-

nels – the latter tend to obscure surface physics, a problem particularly severe in charge

transport2,3. Indeed, complex intermixing (hybridization) of the bulk and surface states is

clearly observed by a variety of surface probes; for example recent time-resolved ARPES

experiments reveal strong phonon-assisted surface-bulk coupling at high lattice temperature

and unique cooling of Dirac fermions by acoustic phonons13. ‘Aging’ effects arising from

complex surface reconstruction processes are also observed17,18 – they tend to promote for-

mation of 2D electron gas states of bulk origin in close proximity to the topological Dirac

surfaces. Thus, existing materials continue to present a number of challenges to complete

understanding of the physics of topological Dirac metal, especially at low frequencies and

on mesoscales. Magnetic susceptibility measurements reported in this work witness singular

magnetic response of topological surface states, but also hint at an intriguing cooling pro-

cess involving these surface states and bulk carriers, thereby paving the way for systematic

exploration of low energy electrodynamics of these transformative materials.

The experiments were performed using weak low frequency ac excitation field (see Fig.

1b and Methods) to probe linear response, focussing on its in-phase component, which is the

equilibrium susceptibility χ(B) = ∂M(B)/∂H in the limit of zero frequency and in a range

of dc fields B = µ0H, including the vicinity of B = 0 (see Supplementary Information, Sec-

tion 1F). Figure 1c shows susceptibility of the canonical 2nd generation topological insulator

Bi2Se3 measured in dc fields H ∥ c-axis (normal to the (001̄) cleavage surface) of a platelike

shaped crystal. Above ∼ 0.5 T the response is diamagnetic, consistent with a decades old

magnetic susceptibility measurements19. At lower fields, however, we detect a large cusplike

paramagnetic susceptibility that sharply rises above the diamagnetic ‘floor’ in a narrow dc

field range of ∼ 0.2 T and approaching χ(H → 0) in a straight line (Fig. 1c). This singu-
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larity arises from sample’s surface, is robust across all several topological samples measured

and is most naturally ascribed to the opening of a Zeeman gap3 at the Dirac point of the

helical metal. Before we turn to substantiating these claims we note one particularly spec-

tacular aspect to our data – its thermal stability. Indeed, the singular field dependence of the

susceptibility shows no discernible signs of rounding up to the highest (room) temperature

measured. This persistence of singular response to elevated temperature is remarkable and

surprising when confronted with a rough conservative estimate of expected thermal smearing,

e.g. obtained from the ratio of thermal energy at 300 K (≃ 27 meV) to the rather small bulk

gap of these materials ∼ 100− 300 meV.

The presence of near-zero-field susceptibility cusp is universal – it is observed in all three

topological insulators: Sb2Te3, Bi2Te3, and Bi2Se3 (Fig. 2a-2c). It is absent in all our cal-

ibration and background materials (see Supplementary Information Section C1, Fig. S3),

which were carefully screened for any spurious signals. At higher fields, H & 0.5 T , the

temperature-dependent diamagnetism dominates (Fig. 2d-2f, and Fig. S2); it appears to cor-

relate with the details of the bulk band structure, but less clearly with the particulars of

donor (n-type) or acceptor (p-type) intrinsic defects (Fig. 2g-2i) present in the bulk.

The height of the cusp is evidently sensitive somewhat to the density of defects quenched

in during the crystal growth (see Methods), and there is an aging effect18 that can reduce the

height over time by an appreciable (up to 5) factor (an example is shown in Fig. S4). The cusp

height in different crystals varies some with the intrinsic bulk carrier density, which in any

particular crystal is determined from the measurements of Hall conductivity (see Fig. 2) or

Shubnikov-de-Haas (SdH) quantum oscillations (Fig. S5). However the ‘cuspiness’ as quan-

tified by the B = µ0H → 0 slope for any given member of this topological insulator family

is universal. An example of this is shown in Fig. 3a, where we compare two Bi2Te3 crystals

with carrier concentrations differing by two orders of magnitude. The cusp is frequency in-

dependent (Fig. 4a and Fig. S6), as expected for such low frequency response (2 ∼ 10 kHz).

And finally, the ‘smoking-gun’ evidence that the cusp is of the surface origin is illustrated in

Fig. 3b, which shows that for the same crystal area, when the sample thickness is reduced

the height of the cusp remains unchanged, while the diamagnetic background closely scales

with the volume. We note that similar, albeit weaker, response is detected with the sample

rotated by 90 degrees (see Fig. S1), consistent with the signal originating from noncleaving

surfaces20 where the Dirac dispersion is more complex.

Our finding of prominent singular magnetic response that survives high temperatures, huge

variations in carrier density, and does not scale with sample volume is quite surprising and as
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far as we know unprecedented. Absent any paramagnetic impurities (see Methods) or signs

of itinerant ferromagnetism, the origin of this particular low field anomaly may be traced

most naturally to the ungapped Dirac point. The simplest description of the Dirac fermions

is captured by a non-interacting Rashba-type21 Hamiltonian that effectively locks electron

spin to its momentum, i.e. parallel to the sample’s surface (see Supplemental Information,

Sec. 2). Field applied transverse to the surface enters through a Zeeman coupling which we

treat explicitly and via orbital quantization which we ignore (this approximation is justified

by the absence of oscillatory effects at low fields in our experiments, and, a posteriori, we can

also confirm that Dirac Landau level spacing is essentially negligible compared to the Zeeman

gap in the parameter range relevant to our experiments – see Supplementary Information,

Section 2). The equilibrium susceptibility is obtained by taking 2nd derivative of the total free

energy with respect to magnetic field B. With both chemical potential µ and temperature

set to zero, low field areal (sheet) susceptibility χA (see Supplementary Information) reduces

to

χA(B) ∼=
(gµB)

2Λ

~vF
−

2(gµB)
3

~2v2F
|B|+ . . . , (1)

where g is the Landé g-factor and vF is the Fermi velocity. This paramagnetic Dirac sus-

ceptibility has a form of a cusp with a linear field decay at low fields, just as the cusp

observed in our experiments (Fig. 3c). The maximum of χA depends on the effective size

of the momentum space Λ contributing to the singular part of the free energy, and thus may

be controlled in part by hexagonal warping of the Dirac cone22 and by the details of the

bulk bands. However, the singular field dependence only depends on universal (low energy)

parameters through the slope 2(gµB)3

~2v2
F

of χ in the limit B → 0. To compare with the ex-

periment we write the total susceptibility as a sum of the background contribution χ0 and

surface contribution χ = χ0+χAx/Lz, where x is the fraction of the surface contributing and

Lz ≈ 1 mm is sample’s thickness. We obtain a good match to the shape and the magnitude

of the cusp (see Fig. 3c) by using parameter values consistent with the reported velocity vF

in Bi2Te3 from Landau level spectroscopy23 and large effective g-factor24, broadly consistent

with the overall scale of g-factors expected for topological insulators and obtained from our

SdH measurements (Figs. 3c and S5). The participating surface fraction that emerges from

this analysis is remarkably small, x ≈ 0.002, i.e. these states are very rare.

The existence of the sharp nonanalytic paramagnetic cusp at zero temperature requires

the surface Fermi level to be at the Dirac point, µ = 0. Otherwise, for µ ̸= 0, we ex-

pect a smooth dependence (rounding) near B = 0 with sharp jump singularities in χ on

a field scale δB = µ/(gµB) where the Fermi level enters the valence or conduction band.
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Further phenomenological description can be facilitated by recastingthe low field paramag-

netic response in Eq. 1 in terms of effective Dirac bandwidth W = ~vFΛ and field energy

EB = gµBB as χA(B) = (gµB)2Λ2

W

(

1− 2EB

W
+ . . .

)

, so the characteristic width of the cusp

is set by the condition W ≈ EB. The observed temperature insensitivity requires thermal

energy ET = kBT ≪ EB < W , or T . 10K, which may be relaxed somewhat on the level of

this simple phenomenology if both g-factor and Fermi velocity are temperature dependent

(Supplementary Information, Section 2).

In our experiments, no appreciable rounding of the cusp is observed – this finding is

profoundly unexpected in view of the location of Fermi level gleaned from ARPES. Sepa-

rate experimental work will be required to obtain a clear and detailed understanding of the

microscopic origins of the electronic states giving rise to the singular response. From the

established surface nature and the observed aging effects we infer that renormalization of the

effective potential near the sample’s surface in the course of aging is important. Also, the

remarkable robustness to the variation in bulk carrier density and therefore bulk screening

length, suggests that electrostatic models invoking bulk dopants as the dominant source of

disorder at the surface may not be adequate to capture these states. Such models do readily

produce large scale inhomogeneity of chemical potential, µ, which has been observed, for ex-

ample, in graphene25 and has been recently directly mapped in several topological insulators

via scanning tunneling microscopy (STM)26. The typical amplitude of inhomogeneity in the

latter study, 10 ∼ 20 meV, appears too small to couple to the electronic states near the

Dirac point. However, rare states, that based on our analysis occupy only ≈ 0.2% of sam-

ple’s surface, may not be readily observed in STM. Moreover, the role played by unavoidable

differences in surface preparation among different experiments remains to be established.

Yet more intriguing puzzle uncovered by our experiments is the apparent thermal stability

of the singular response. This is certainly not within our simple Dirac phenomenology, which

has in it scales on the order of only 10 K. In fact, we may argue that any equilibrium theory

of the singular response in these narrowband semiconductors must show thermal effects near

room temperature, as the band gap is only a few times larger, at best. We propose, therefore,

that the local temperature at the location of electronic states responsible for the cusp is, in

fact, strongly affected by the ac probe itself, i.e. these patches are kept at very low, possibly

cryogenic effective temperature even though the cryostat and the rest of the sample are

”warm”. One plausible scenario (see Fig. 4) for this invokes disorder as the origin of local

Peltier elements. The most natural source of power for the putative Peltier cooler is the rather

large eddy current which does not contribute to χ itself but rather to the imaginary, out-of-
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phase part of χ(ω) (Fig. S7). To suppress Peltier heating (unavoidable due to ac excitation),

this would require a rectifying element as well (see Fig. 4c and Fig. S9). From general

consideration of the rectification process there should be then second harmonic generation,

which we clearly observe (Fig. 4b). The above scenario implies strong enhancement of the

effective (local) thermoelectric figure of merit as compared to known bulk values for these

materials, which is quite natural, based on the existing work on improved thermoelectricity in

nano-constrictions27, and on strong frequency dependence of the transport coefficients under

geometric confinement, as in the case of phonon heat conductivity28. We also note that strong

(local) variations of material properties, e.g. due to the presence of disorder, can give rise

to a novel variant of thermoelectric cooling, a “Thompson cooler”, which has been predicted

to display significant improvement of performance and, in principle, enable cooling to very

low, even cryogenic temperatures29. Detailed theory of the mechanism of thermal stability is

beyond the scope of this work and should be further explored.

Our experiments document a singularity in the low field response in a whole family of

materials with topological surface states which does not arise from either strong correlations

or fine tuning the chemical potential to the Dirac point. They are profoundly counterintuitive

as they suggest the controlling role of rare states (patches) near the Dirac point realized under

generic surface conditions in these samples. With this assumption we are able to reproduce

the overall shape and magnitude of the response. One of the surprising quantitative insights

that emerged was that a minority (/ 0.2%) of the surface is responsible for the singular

signal. This simple phenomenology is a step forward to a precise theoretical understanding

and improved experimental control of these phenomena that will be crucial for manipulating

robust polarization of protected surface states at room temperature.

Methods

Single crystals of Bi2Se3, Bi2Te3, and Sb2Te3 were grown by a modified Bridgman method (using

evacuated quartz tubes in a horizontal gradient furnace heated to 1000o C and cooled to room tem-

perature in 7 days) or the standard Bridgman-Stockbarger method23 using a vertical temperature

gradient pull. The starting materials used in modified Bridgman were cm-sized chunks of Sb, Bi

(purity of both 99.9999%), Te (purity 99.9995%), and Se (99.995%) from Alfa-Aesar used in stoi-

chiometric ratios. X-ray diffraction of crystals was performed in Panalytical diffractometer using Cu

Kα (λ = 1.5405Å) line from Philips high intensity ceramic sealed tube (3 kW) X-ray source with a

Soller slit (0.04 rad) incident and diffracted beam optics. The impurity level determined by elemen-

tal analysis using glow discharge mass spectrometry was found to be less than 0.005 ppm wt. We
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used a series of crystals with different carrier densities (set by the number of charged vacancies and

antisites quenched in during the crystal growth) which were obtained by varying the speed (down

to 2 mm/hr) of the pull or the gradient profile in a horizontal or vertical setup. Carrier densities

were determined from the measurements of Hall resistivity and Shubnikov-de Haas oscillations (see

Supplementary Information). Differential susceptibility measurements were performed in a Quan-

tum Design PPMS system, in a compensated pickup-coil detection configuration (Fig. 1b) with the

ac excitation and detection coils designed to align with the the direction of applied static field. The

ac excitation field amplitude was set at 10−5 T in a frequency range up to 10 kHz. Measurements

of the sample holder and starting materials showed no pathological behavior near zero dc field (

Fig. S3a,b,c). The system was calibrated using paramagnetic Pd standard, see Fig. S3d. The field

scans at different temperatures over a larger field range for the topological insulators in this study

are shown in the Supplementary Information. Calculations were performed using Mathematica.
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FIGURE LEGENDS

Figure 1 | Dirac point origin of the large singular spin susceptibility near zero

magnetic field. a, The energy-momentum relation of the surface states in a 3D topological

insulator has a spin-helical Dirac cone structure arising from strong spin-orbit interaction

that locks spins to their momentum14. For the (001̄) surfaces parallel to the quintuple layers2

of a layered topological insulator such as Bi2Se3 the spin texture near Dirac point is riding on

a circular constant energy contours of the Dirac bands, with spins aligned along the normal

to the momentum. At the Dirac point, however, electron spins should be free to align along

the tiny field as long as the Dirac spectrum is not gapped. b, Magnetic susceptibility of

Bi2Se3 measured by applying a small ac excitation field hac (see Methods) shows that c, spin

response is cusp-like and large near zero applied dc magnetic field. The susceptibility cusp is

remarkably robust up to room temperature for both, H ∥ c-axis and H ∥ ab field directions,

see Fig. S1. It rides on a temperature dependent diamagnetic background, see Fig. S2. Here,

the data at different temperatures were shifted to the lowest temperature of this study to

indicate that both the slope and the height of the cusp between 1.9 K and 300 K remain

intact.

Figure 2 | Universality of singular spin response near zero magnetic field. The

zero-field susceptibility cusp is found in all three topological insulators: a, Sb2Te3, b, Bi2Te3,

and c, Bi2Se3. The susceptibility surface in the H − T phase space for fields above H ∼

0.5 T is shown in d, for Sb2Te3, in e, for Bi2Te3, and in f, for Bi2Se3 (see Supplementary

Information). The most pronounced temperature dependence is found in Sb2Te3 (d), which

has the smallest bulk bandgap of ∼ 100 meV. g-i, Corresponding schematic band structures6

indicate noticeable differences in the location of the Dirac point relative to the bulk valence

and conduction bands. Measurements of Hall resistivity (insets in g-i) show that Te-based

TIs, Sb2Te3 and Bi2Te3, are intrinsically p-type, while the Se-based TI, Bi2Se3 is n-type.

Figure 3 | Signatures of the surface origin of the cusp. a, Susceptibility cusp for

two Bi2Te3 crystals with carrier densities differing by two orders of magnitude. The slope

of the cusp is independent of the bulk carrier density n. Here the diamagnetic background

was subtracted and the height of the cusp was normalized to χ(B = 0), which for the

n ∼ 10−19 cm−3 crystal was 3 × 10−5 emu/cc, and for the n ∼ 10−17 cm−3 crystal was

3.5× 10−5 emu/cc. b, Left: Susceptibility cusp before and after cutting the crystal thickness

by a factor of 0.63 (red), 0.29 (green), and 0.15 (blue) appears to be independent of thickness
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t. The diamagnetic background scales with thickness (volume for the fixed sample area

A). Right: The data for all thicknesses shown on the left shifted to match the diamagnetic

background. The signal to noise decreases with sample volume. c, The simple Dirac model

of Eq. 1 produces a very good match to the data, as illustrated for the case of Sb2Te3

(see also Supplemental Information). Here χ = xχA/Lz and χA is the 2D susceptibility

of the Dirac state, Lz ≈ 10−3m, thickness of our samples, and x < 1 the effective areal

fraction occupied by the ungapped Dirac state (x is used as a fitting parameter). Other

parameter values used to generate this plot are µ = kBT = 0, g = 30, vF = 3 · 103m/s,

which are known from our own studies (see Supplemental Information) and those of others23.

Both x and Λ (effective radius of k-space contributing to singular response) were adjusted

to match the data, producing x ≈ 0.033 and Λ = 2 · 108m−1. The cusp is preserved even

when hexagonal warping (inset in c) is taken into account22 – it is merely subsumed into

Λ. d, Rare regions of chemical potential µ ≈ 0 (grey) can exist in-between electron (blue)

and hole (yellow) droplets due in part to electrostatic potential established by the charged

defects in the bulk26. Such fluctuations of the local surface charge are likely ”healing” in the

course of the aging process17,18 as the mean chemical potential steadily floats away from the

Dirac point towards bulk conduction or valence bands, as has been documented in ARPES

studies17,18. This is qualitatively consistent with the observed decrease in the amplitude of

the paramagnetic anomaly over time.

Figure 4 | Surface cooling by the bulk. a, The in-phase component of the susceptibility

containing the singular cusp is frequency independent (shown here for Sb2Te3). However, the

diamagnetic susceptibility is frequency dependent (see Fig. S6). b, The nonlinearity of the

surface-bulk connection is witnessed by the observed 2nd harmonic of χ. It is consistent with

the existence of ”rectifying” paths in the putative thermoelectric cooling elements (sketched

in c, also see Figs. S8, S9 and Supplementary Information) required for the cooling of small

fraction of sample’s surface and thus suppressing thermalization of Dirac surfaces with the

bulk, as explained in text. The effective cooling of the surface is naturally achieved by

the electron and hole puddles in the sub-surface region forming a Peltier element owing its

cooling efficiency partly to nanoconstriction and partly to frequency-dependent transport

coefficients28.
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Fig. 1 Zhao et al.
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Fig. 2 Zhao et al.
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Fig. 3 Zhao et al.
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Fig. 4 Zhao et al.
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